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Abstract

We introduce a procedure written in the mathematics software suite Maple, which transforms linear

time-invariant systems to a special coordinate basis that reveals the internal structure of the system. The

procedure creates exact decompositions, based on matrices that contain elements represented by sym-

bolic variables or exact fractions. Throughout the procedure, transformations are constructed with the

goal of avoiding unnecessary changes to the original states. The procedure is intended to complement

numerical software algorithms developed by others for the same purpose. We discuss various system-

theoretic aspects of the special coordinate basis as well as numerical issues related to the decomposition

procedure, and illustrate use of the procedure by examples.

1 Introduction

In 1987 Sannuti and Saberi introduced a structural transformation of multivariable linear time-invariant

(LTI) systems to a special coordinate basis (SCB) [1]. The transformation partitions a system into sepa-

rate but interconnected subsystems that reflect the inner workings of the system. In particular, the SCB

representation explicitly reveals the system’s finite and infinite zero structure, and invertibility properties.

Since its introduction, the SCB has been used in a large body of research, on topics including loop transfer

recovery, time scale assignment, disturbance rejection, H2 control, and H1 control. It has also been used

as a fundamental tool in the study of linear systems theory. For details on these topics, we refer to the

books [2]–[6], all of which are based on the SCB, and references therein. Other topics include decoupling

theory [1], factorization of linear systems [7], squaring down of non-square systems [1, 8], and model

reduction [9].

While the SCB provides a fine-grained decomposition of multivariable LTI systems, transforming an

arbitrary system to the SCB is a complex operation. A constructive algorithm for strictly proper systems

is provided in [1], based on a modified Silverman algorithm [10]. This algorithm is lengthy and involved,

and includes repeated rank operations and construction of non-unique transformations to divide the state

space. Thus, the algorithm can realistically be executed by hand only for very simple systems.

To automate the process of finding transformations to the SCB, numerical algorithms have been de-

veloped (see [11, 5]) and implemented as part of the Linear Systems Toolkit for Matlab [12]. Although

these numerical algorithms are invaluable in practical applications, engineers often operate on systems

where some or all of the elements of the system matrices have a symbolic representation. There are
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obvious advantages in being able to transform these systems to the SCB symbolically, without having to

insert numerical values in place of symbolic variables. Furthermore, the numerical algorithms are based

on inherently inaccurate floating-point operations that make them prone to numerical errors. Ideally, if

the elements of the system matrices are represented by symbols and exact fractions, one would be able

to obtain an exact SCB representation of that system, also represented by symbols and exact fractions.

To address these issues, we have developed a procedure for symbolic transformation of multivariable LTI

systems to the SCB, using the commercial mathematics software suite Maple. The procedure is based on

the modified Silverman algorithm from [1], with a modification to achieve a later version of the SCB that

includes an additional structural property (see, e.g., [13]), and an extension to SCB for non-strictly proper

systems [8]. The purpose of this paper is to introduce this procedure, and to explain how it is implemented

using Maple and the LinearAlgebra package. The paper is also intended to serve as an introduction to

the SCB, in particular for readers that might benefit from the possibility of working with symbolically

represented systems in SCB form.

We believe that our procedure serves as a useful complement to available numerical tools. Symbolic

transformation to the SCB makes it possible to work directly on the SCB representation of a system with-

out first inserting numerical values, thereby removing an obstacle to more widespread use. The work

presented in this paper also constitutes the first step in a wider effort to apply symbolic SCB representa-

tions to topics where the SCB has previously been applied, such as squaring down of non-square systems

and asymptotic time scale assignment.

1.1 Notation

We denote by col.z1; : : : ; zn/ the column vector obtained by stacking the column vectors z1; : : : ; zn.

We denote by diag.M1; : : : ; Mn/ the matrix with submatrices M1; : : : ; Mn (not necessarily of the same

dimensions) along the diagonal. We denote by In the n � n identity matrix. The symbol 0 may refer to

the scalar number zero, or a zero matrix of appropriate dimensions.

2 The Special Coordinate Basis

In this section we give a review of the SCB. For readers unfamiliar with the topic, the complexities of the

SCB may initially appear overwhelming. This is only a reflection, however, of the inherent complexities

that exist in general multivariable LTI systems. For a less technical introduction to the SCB, we recom-

mend [14]. In the following exposition, significant complexity is added to accommodate non-strictly

proper systems. To get an initial overview of the SCB, we recommend ignoring the non-strictly proper

case and the complexities that follow from it.

Consider the LTI system

POx D OA Ox C OB Ou; (1a)

Oy D OC Ox C OD Ou: (1b)

where Ox 2 R
n is the state, Ou 2 R

m is the input, and Oy 2 R
p is the output. We assume without loss of

generality that the matrices Œ OBT; ODT�T and Œ OC ; OD� are of full rank.

For simplicity in the non-strictly proper case (i.e., OD ¤ 0), we assume in this section that the input

and output are partitioned as

Ou D

�

u0

Ou1

�

and Oy D

�

y0

Oy1

�

;

where u0 and y0 are of dimension m0, and furthermore that OD has the form OD D diag.Im0
; 0/. Then we
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may write

Oy D

�

y0

Oy1

�

D

�

OC0 Ox C u0

OC1 Ox

�

; (2)

where OC0 consists of the upper m0 rows of OC , and OC1 consists of the remaining rows of OC . The special

form in (2) means that the input-output map is partitioned to separate the direct-feedthrough part from the

rest: the output y0 is directly affected by u0, and the remainder of the output Oy1 is not directly affected

by any input. Note that by substituting u0 D y0 � OC0 Ox, we can write the system (1) in the alternative

form

POx D . OA � OB0
OC0/ Ox C OB

�

y0

Ou1

�

; (3a)

Oy D OC Ox C OD Ou: (3b)

where OB0 consists of the left m0 columns of OB . In the strictly proper case, OB0 and OC0 are nonexistent.

By nonsingular transformation of the state, output, and input, the system (1) can be transformed to

the SCB. We use the symbols x, y , and u to denote the state, output, and input of the system transformed

to SCB form. The transformations between the original system (1) and the SCB are called �1, �2, and �3,

and we write Ox D �1x, Oy D �2y , and Ou D �3u.

The state x is partitioned as x D col.xa; xb; xc ; xd /, where each component represents a particular

subsystem described in the next section. The output is partitioned as y D col.y0; yd ; yb/, where y0 is

the original output y0 from (1), yd is the output from the xd subsystem, and yb is the output from the

xb subsystem. The input is partitioned as u D col.u0; ud ; uc/, where u0 is the original input u0 from

(1), ud is the input to the xd subsystem, and uc is the input to the xc subsystem. The transformation �3

is on the form diag.Im0
; N�3/, where N�3 is nonsingular.

2.1 Structure of the SCB

Consider first the case when (1) is strictly proper. The meaning of the four subsystems can be explained

as follows:

� The xa subsystem represents the zero dynamics. This part of the system is not directly affected by

any inputs, nor does it affect any outputs directly. It may be affected, however, by the outputs yb

and yd from the xb and xd subsystems.

� The xb subsystem has a direct effect on the output yb, but it is not directly affected by any inputs.

It may be affected, however, by the output yd from the xd subsystem. The xb subsystem is

observable from yb.

� The xc subsystem is directly affected by the input uc , but it does not have a direct effect on any

outputs. It may also be affected by the outputs yb and yd from the xb and xd subsystems, as well

as the state xa. However, the influence from xa is matched with the input uc . The xc subsystem is

controllable from uc .

� The xd subsystem represents the infinite zero structure. This part of the system is directly affected

by the input ud , and it also affects the output yd directly. The xd subsystem can be further

partitioned into md single-input single-output (SISO) subsystems xi for i D 1; : : : ; md . Each of

these subsystems consists of a chain of integrators of length qi , from the i ’th element of ud to the

i ’th element of yd . Each integrator chain may be affected at each stage by the output yd from the

xd subsystem, and at the lowest level of the integrator chain (where the input appears), it may be

affected by all the states of the system. The xd subsystem is observable from yd , and controllable

from ud .
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The structure of strictly proper SCB systems is summarized in Table 1. For non-strictly proper systems

the structure is the same, except for the existence of the direct-feedthrough output y0, which is directly

affected by the input u0, and can be affected by any of the states of the system. It can also affect all the

states of the system.

2.2 SCB Equations

The SCB representation of the system (1) is given by

Pxa D Aaaxa C Ba0y0 C Lad yd C Labyb; (4a)

Pxb D Abbxb C Bb0y0 C Lbd yd ; (4b)

Pxc D Accxc C Bc0y0 C Lcd yd C Lcbyb C Bc.uc C Ecaxa/; (4c)

Pxi D Aqi
xi C Bd0y0 C Lid yd C Bqi

.ui C Eiaxa C Eibxb C Eicxc C Eid xd /; (4d)

for i D 1; : : : ; md . The outputs are given by

y0 D C0axa C C0bxb C C0cxc C C0d xd C u0; (5a)

yi D Cqi
xi ; i D 1; : : : ; md ; (5b)

yb D Cbxb: (5c)

The qi -dimensional states xi make up the state xd D col.x1; : : : ; xmd
/; the scalar outputs yi make up

the output yd D col.y1; : : : ; ymd
/; and the scalar inputs ui make up the input ud D col.u1; : : : ; umd

/.

The matrices Aqi
, Bqi

, and Cqi
have the special structure

Aqi
D

2

6

6

6

4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

0 0 � � � 0

3

7

7

7

5

; Bqi
D

2

6

6

6

4

0
:::

0

1

3

7

7

7

5

; Cqi
D

�

1 0 � � � 0
�

:

The pair .Cb; Abb/ is observable, and the pair .Acc ; Bc/ is controllable. In the strictly proper case, the

input u0 and output y0 are nonexistent, as are the matrices Ba0, Bb0, Bc0, Bd0, C0a, C0b , C0c , and C0d .

2.3 Compact Form

We may write (4) as

Px D Ax C B

2

4

y0

ud

uc

3

5 ; (6a)

y D C x C Du; (6b)

Subsystem Input Output Interconnections Remarks

xa — — yb, yd Zero dynamics

xb — yb yd Observable

xc uc — yb, yd , xa
? Controllable

xd ud yd xa
?, xb

?, xc
? Observable and controllable

?Matched with input

Table 1: Summary of strictly proper SCB structure. The Interconnections column indicates influences

from other subsystems.
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with the SCB system matrices A, B , C , and D defined as

A D

2

6

6

4

Aaa LabCb 0 Lad Cd

0 Abb 0 Lbd Cd

BcEca LcbCb Acc Lcd Cd

Bd Eda Bd Edb Bd Edc Add

3

7

7

5

; B D

2

6

6

4

Ba0 0 0

Bb0 0 0

Bc0 0 Bc

Bd0 Bd 0

3

7

7

5

;

C D

2

4

C0a C0b C0c C0d

0 0 0 Cd

0 Cb 0 0

3

5 ; D D

2

4

Im0
0 0

0 0 0

0 0 0

3

5 ;

where Add D diag.Aq1
; : : : ; Aqmd

/CLdd Cd CBd Edd , Bd D diag.Bq1
; : : : ; Bqmd

/, Cd D diag.Cq1
; : : : ; Cqmd

/,

Ldd D ŒLT
1d

; : : : ; LT
md d

�T, Eda D ŒET
1a; : : : ; ET

md a�T, and similar for Edb , Edc , and Edd .

To see the relationship between the system matrices OA, OB , OC , and OD and the SCB matrices A, B , C ,

and D from (6), substitute Ox D �1x, Oy D �2y , and Ou D �3u in equation (3). Also, note that since �3

is of the form diag.Im0
; N�3/, we can make the substitution col.y0; Ou1/ D �3col.y0; ud ; uc/. We then

obtain the equations

Px D ��1
1 . OA � OB0

OC0/�1x C ��1
1

OB�3

2

4

y0

ud

uc

3

5 ;

y D ��1
2

OC �1x C ��1
2

OD�3u:

Comparison with (6) then shows that A D ��1
1 . OA � OB0

OC0/�1, B D ��1
1

OB�3, C D ��1
2

OC �1, and

D D ��1
2

OD�3. In the strictly proper case, the expression for A reduces to A D ��1
1

OA�1.

2.4 Pre-Transformation of Non-Strictly Proper Systems

We assumed initially that the input and output vectors Ou and Oy have a special partitioning that separates

the direct-feedthrough part from the rest, as shown in (2). A strictly proper system already has this form,

but given a general non-strictly proper system, a pre-transformation may have to be applied to put the

system in the required form. Suppose that the we initially have a system with input Qu, output Qy , input

matrix QB , and output matrices QC and QD. Then there are nonsingular transformations U and Y such that

Qu D U Ou and Qy D Y Oy , where Ou and Oy have the structure required in (2). The dimension m0 of u0 and y0

is the rank of QD. The matrices OB , OC , and OD are obtained from QB , QC , and QD by OB D QBU , OC D Y �1 QC ,

and OD D Y �1 QDU . Our Maple procedure, in addition to returning the matrices A, B , C , and D of the

SCB system, the transformations �1, �2, and �3 to transform (1) to SCB form, and the dimension of each

subsystem, returns the transformations U and Y , to take a general non-strictly proper system to the form

required in (1), (2).

3 Properties of the SCB

The SCB is closely related to the canonical form of Morse [15], which is obtained through transformations

of the state, input, and output spaces, and the application of state feedback and output injection. A system

in the canonical form of Morse consists of four decoupled subsystems that reflect essential geometric

properties of the original system. The SCB form of a system largely reflects the same properties; however,

the SCB is obtained through transformations of the state, input, and output spaces alone, without the

application of state feedback and output injection. Thus, the SCB is merely a representation of the original

system in a different coordinate basis, and it can therefore be used directly for design purposes.
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Some properties of the SCB, which correspond directly to properties of the canonical form of Morse,

are the following:

� The invariant zeros of the system (1) are the eigenvalues of the matrix Aaa. Hence, the system is

minimum-phase if, and only if, the eigenvalues of Aaa are located in the open left-half complex

plane.

� The system (1) is right-invertible if, and only if, the subsystem xb is non-existent.

� The system (1) is left-invertible if, and only if, the subsystem xc is non-existent.

� The system (1) is invertible if, and only if, both the subsystem xb and the subsystem xc are nonex-

istent.

� The system (1) has m0 infinite zeros of order 0 and i Nqi infinite zeros of order i , where Nqi is the of

number integrator chains of length i in the xd subsystem.

By studying the dynamics of the xa subsystem and its connections to the rest of the system, one obtains a

precise description of the invariant zero dynamics of the system and the classes of input signals that may

be blocked by these zeros. The information thus obtained goes beyond what can be obtained through the

notions of state and input pseudo zero directions (see [16, 13]).

The representation of the infinite zero structure through integrator chains in the xd subsystem allows

for the explicit construction of high-gain controllers and observers in a general multiple-input multiple-

output setting (see, e.g., [17]). This removes unnecessary restrictions of square-invertibility and uniform

relative degree that are found in much of the high-gain literature.

3.1 Connection to Geometry Theory

Geometry theory is concerned with the study of subspaces of the state space with certain invariance

properties, for example, A-invariant subspaces (which remain invariant under the unforced motion of

the system), .A; B/-invariant subspaces (which can be made invariant by the proper application of state

feedback), and .C; A/ invariant subspaces (which can be made invariant by the proper application of

output injection) (see, e.g., [18, 19]). Prominent examples of A-invariant subspaces are the controllable

subspace (i.e., the image of the controllability matrix) and the unobservable subspace (the kernel of the

observability matrix).

The development of geometry theory has in large part been motivated by the challenge of decoupling

disturbance inputs from the outputs of a system, either exactly or approximately. Toward this end, a num-

ber of subspaces have been identified, which can be related to the partitioning in the SCB. Of particular

importance in the context of control design for exact disturbance decoupling are the weakly unobserv-

able subspace, which, by the proper selection of state feedback, can be made not to affect the outputs;

and the controllable weakly unobservable subspace, which has the additional property that the dynam-

ics restricted to this subspace is controllable. Of particular importance in the context of observer design

for exact disturbance decoupling are the strongly controllable subspace, which, by the proper selection

of output injection, is such that its quotient space can be rendered unaffected by the system inputs; and

the distributionally weakly unobservable subspace, which has the additional property that the dynamics

restricted to its quotient space is observable.

We denote by Xa, Xb , Xc , and Xd the subspaces spanned by the states xa, xb, xc , and xd , and by

˚ the direct sum of two subspaces that intersect only at the origin. The subspaces mentioned above can

then be related to the SCB as follows:

� The weakly unobservable subspace is given by Xa ˚ Xc .
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� The controllable weakly unobservable subspace is given by Xc .

� The strongly controllable subspace is given by Xc ˚ Xd .

� The distributionally weakly unobservable subspace is given by Xa ˚ Xc ˚ Xd .

A list of further subspaces identified in geometry theory and their relationship to the SCB can be found in

[13].

The SCB provides a more direct and tangible path to disturbance decoupling design than the somewhat

abstract notions of geometry theory. For example, geometry theory tells us that a disturbance entering

into the weakly unobservable subspace can be decoupled from the outputs by the proper selection of

state feedback. In the SCB the weakly unobservable subspace is represented by the state variables xa and

xc ; thus, a disturbance affecting only xa and xc can be decoupled from the outputs. This decoupling is

achieved by selecting the state feedback u0 D �C0axa � C0cxc C v0, ui D �Eiaxa � Eicxc C vi ,

i D 1; : : : ; md , where v0 and vi , as well as uc , can be chosen freely. It can be verified by direction

inspection of (4) that this state feedback cancels the influence of xa and xc on the rest of the system,

and therefore on the outputs. With the help of symbolic transformations, such decoupling design can be

carried out directly on systems with a symbolic representation.

3.2 Further Properties

Some useful connections can be made between the SCB representation of a system and the properties of

controllability, stabilizability, observability, and detectability:

� The system (1) is controllable (stabilizable) if, and only if, the pair

��

Aaa LabCb

0 Abb

�

;

�

Ba0 Lad

Bb0 Lbd

��

is controllable (stabilizable).

� The system (1) is observable (detectable) if, and only if, the pair

��

C0a C0c

Eda Edc

�

;

�

Aaa 0

BcEca Acc

��

is observable (detectable).

� The system (1) is stabilizable if it is right-invertible and minimum-phase (i.e., the xb subsystem is

nonexistent and the eigenvalues of Aaa are in the open left-half plane).

� The system (1) is detectable if it is left-invertible and minimum-phase (i.e., the xc subsystem is

nonexistent and the eigenvalues of Aaa are in the open left-half plane).

The subsystem partitioning of the SCB remains the same when state feedback and output injection is

applied to the system. This is in contrast to the system obtained by a Kalman decomposition, which is

partitioned according to the properties of controllability and observability.

4 Maple Procedure

Our Maple procedure is invoked as follows:

A, B, C, D, G1, G2, G3, U, Y, dim := scb(Ai, Bi, Ci, Di );
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The inputs Ai, Bi, Ci, and Di are system matrices describing a general multivariable LTI system. The outputs

A, B, C, and D are the system matrices describing a corresponding SCB system. The outputs G1, G2, and G3

are the transformation matrices �1, �2, and �3 between the system (1) and the SCB. The outputs U and Y

are the pre-transformations that must be applied to the system to put it in the form required of (1), (2), as

described in Section 2.4. Finally, the output dim is a list of four integers representing the dimensions of

the xa, xb, xc , and xd subsystems, in that order. The Maple source code is available from [20].

The modified Silverman algorithm for transformation to the SCB is much too long to be presented in

this article. For the details of the algorithm, we refer to [1]. In the following we shall present a broad

outline of the steps of the algorithm and discuss issues that require particular attention in a symbolic

implementation. Much of the algorithm consists of tedious but straightforward manipulation of matrices,

which is not discussed in this article.

Throughout the algorithm, we identify a large number of variables that are linear transformations of

the original state. We keep track of these by storing the matrices that transform the original state to the new

variables. For example, the temporary variable yi0, given by the expression yi0 D Ci Ox, is represented

internally by a Matrix data structure containing Ci . The procedure is not written to perform well on

floating-point data. For this reason, all floating-point elements of the matrices passed to the procedure are

converted to exact fractions before any other operations are performed, using Maple’s convert function. In

many cases, we need to store a whole list of matrices, representing variables obtained during successive

iterations of a particular part of the algorithm. To do this, we use the Maple data structures Vector and

Matrix, which can be used to store vectors or matrices whose elements are Matrix data structures.

4.1 Strictly Proper Case

The algorithm for strictly proper systems is implemented as scbSP. The first part of this algorithm identi-

fies the two subsystems that directly influence the outputs, namely the xb and xd subsystems, through a

series of steps that are repeated until the outputs are exhausted. The algorithm works by identifying trans-

formed input and output spaces such that each input channel is directly connected to one output channel

by a specific number of inherent integrations.

Let the strictly proper system passed to the scbSP procedure be represented by the state equations
POx D OA Ox C OB Ou, Oy D OC Ox. In the first iteration we start with the output y10 D OC Ox, and determine whether

its derivative Py10 D OC OA OxC OC OB Ou depends on any part of the input Ou. If so, we use a transformation NS1 to

separate out a linear combination of outputs and inputs that are separated by one integration in a linearly

independent manner. This will create an integrator chain of length one, as part of the xd subsystem.

A transformed part of the output derivative that is not directly influenced by the input is denoted QC1 Ox,

and is processed further. We use a transformation N�1 to separate out any part of QC1 Ox that is linearly

dependent on y10. This will create states that are part of the xb subsystem. After the linearly dependent

components are separated out, the remaining part of the output derivative is given the name y20. In the

next iteration we process y20 in the same fashion as y10, to identify integrator chains of length two, and

possibly further additions to the xb subsystem. The algorithm continues in this fashion until the outputs

are exhausted.

4.1.1 Constructing Transformation Matrices

When implementing these steps in Maple, the main part of each iteration consists of constructing trans-

formation matrices NSi and N�i . In particular, we are faced with the following problem at step i : given a

matrix Ci of dimension pi � n and a matrix NDi�1 of dimension Nqi�1 � m of maximal rank Nqi�1, let Nqi
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be the rank of Œ NDT
i�1; .Ci

OB/T�T, and let qi D Nqi � Nqi�1. Find a nonsingular matrix NSi such that

NSi

�

NDi�1

Ci
OB

�

D

2

4

NDi�1

ODi

0

3

5 ; NSi D

�

I Nqi �1 0

Sia Si

�

; Sia D

�

0

Sib

�

; Si D

�

Si1

Si2

�

;

where ODi is a qi � m matrix of maximal rank, and where Si1, Si2, and Sib are of dimensions qi � pi ,

.pi � qi / � pi , and .pi � qi / � Nqi�1. The meaning of the various dimensions is not important in this

context. In general, NSi is not unique.

The rank of the matrix Œ NDT
i�1; .Ci

OB/T�T can be obtained with the Rank function in the LinearAlgebra

package. To construct the matrix NSi , the first observation we make is that, since Sib
NDi�1 C Si2Ci

OB D 0,

the rows of the matrix ŒSib; Si2� must belong to the left null space of Œ NDT
i�1; .Ci

OB/T�T. If Œ NDT
i�1; .Ci

OB/T�T

has full rank Nqi�1 C pi , then Sib and Si2 are empty matrices, and we may select Sia D 0 and Si1 D

Ipi
. Otherwise, we can obtain a set of linearly independent basis vectors for the left null space of

Œ NDT
i�1; .Ci

OB/T�T, or equivalently, for the right null space of its transpose, using the NullSpace function

of the LinearAlgebra package. The transpose of the basis vectors can then be stacked to form the ma-

trix ŒSib; Si2�, which can be split up to form Sib and Si2. However, the null space basis is not unique

and, moreover, the order in which the basis vectors are returned by Maple is not consistent. This may

cause our procedure to produce different results on different executions with the same matrices, which

is undesirable. To avoid this, we first stack the transpose of the basis vectors, and then transform the

resulting matrix to the unique reduced-row echelon form, by using the ReducedRowEchelonForm function

of the LinearAlgebra package. Since the transformation involves a finite number of row operations, the

rows of the matrix in reduced-row echelon form remain in the left null space.

Since NSi should be a nonsingular matrix, the submatrix Si must be nonsingular. This requires that

Si2 has maximal rank, which is confirmed as follows: if any of the rows of Si2 are linearly depen-

dent, a linear combination of rows in ŒSib; Si2� can be constructed to create a row vector v such that

vŒ NDT
i�1; .Ci

OB/T�T D 0, where the rightmost pi columns of v are zero. However, since the rows of NDi�1

are linearly independent, this implies that v D 0, which in turn implies that ŒSib; Si2� must have linearly

dependent rows. Since this is not the case, Si2 must have maximal rank.

We continue by constructing the matrix Si1. Nonsingularity of Si requires that the rows of Si1 must

be linearly independent of the rows of Si2. One way to produce Si1 is to choose its rows to be orthogonal

to the rows of Si2, which can be achieved by using a basis for the right null space of Si2. However,

since the matrix NSi will be used to transform the state of the original system, it is generally desirable

for this matrix to have the simplest possible structure. This helps avoids unnecessary changes to the

original states, and thus it generally produces more appealing solutions. We therefore construct Si1 by

the following procedure: we start by initializing Si1 as the identity matrix of dimension pi � pi . We

then create a reduced-row echelon form of Si2, and iterate backwards over the rows of this matrix. For

each row, we search along the columns from the left until we reach the leading 1 on that row. We then

delete the row in Si1 corresponding to the column with the leading 1. This ensures that Si D ŒST
i1; ST

i2�T

is nonsingular, with Si1 consisting of zeros except for a single element equal to 1 on each row. The

construction of NSi is now easily completed.

At each step, we must also construct a nonsingular matrix N�i . The problem of finding this matrix is

analogous to the problem of finding NSi , and we therefore use the same procedure. Finding the transfor-

mations NSi and N�i constitute the most important part of finding the states xb and xd . After xb and xd

are identified, finding the output transformation �2 is straightforward, based on [1]. We also find an input

transformation � 0
3 based on [1] and write Ou D � 0

3Œud
T; u

0
c

T
�T, where u

0
c

is a temporary input. Unlike [1],

we shall apply a further transformation to u
0
c

to achieve an input uc that is matched with the influence

from xa on the right-hand side of the xc equation.

9



4.2 Constructing the xa and xc States

After finding the transformations from the original states to the xb and xd states, the next step is to find a

transformation to a temporary state vector xs that will be further decomposed into the states xa and xc .

The requirements on xs is that it must be linearly independent of the already identified states xb and xd ,

so that xs, xb, and xd together span the entire state space; and that its derivative Pxs must only depend on

xs itself, plus yb, yd , and u
0
c
, because those are the only quantities allowed in the derivatives of xa and

xc in the strictly proper case.

Suppose that col.xb; xd / D �bd Ox. The procedure for finding xs is to start with a temporary state

vector x
0
s

D �0
s Ox that is linearly independent of xb and xd . Hence, we select �0

s such that Œ�0T
s ; �T

bd
�T

is nonsingular. To do so in our Maple procedure, we use the same technique as for finding Si1 based on

Si2 in Section 4.1.1.

The derivative of x
0
s

, written in terms of the states x
0
s

, xb, and xd , and the inputs u
0
c

and ud , can be

written as

Px0

s
D A0

2

4

x
0
s

xb

xd

3

5 C B0

�

ud

u
0
c

�

D A0
s x

0

s
C A0

bxb C A0
d xd C B0

d ud C B0
c u

0
c
;

for some matrices A0 D ŒA0
s ; A0

b
; A0

d
� and B0 D ŒB0

d
; B0

c �. In our Maple procedure, we can easily

calculate A0 D �0
s

OA.Œ�0T
s ; �T

bd
�T/�1 and B0 D �0

s
OB� 0

3, and then extract the matrices A0
s , A0

b
, A0

c , B0
d

,

and B0
c . To do so, we use the MatrixInverse function of the LinearAlgebra package.

To conform with the SCB, we need to modify x
0
s

to eliminate the input ud in Px0
s

. To eliminate ud ,

we create a temporary state vector xd0 D �d0 Ox, consisting of the lowermost level of each integrator

chain in the xd subsystem (that is, the point where the input enters the integrator chain). According to

(4), we then have Pxd0 D ud C Ad0Œx0
s

T
; xb

T; xd
T�T, for some matrix Ad0. Therefore, by defining a new

temporary state x
1
s

D x
0
s

� B0
d

xd0, we have Px1
s

D .A0 � B0
d

Ad0/Œx0
s

T
; xb

T; xd
T�T C B0

c u
0
c
. Hence,

the derivative of the new temporary state vector x
1
s

is independent of ud , bringing us one step closer to

obtaining xs. The elimination procedure is continued in a similar fashion, as described in [1], until we

obtain a state xs such that Pxs depends only on xs, yb, yd , and u
0
c
.

The final step is to decompose xs into two subsystems, xa and xc , and to transform the input u
0
c

into

uc , in such a way that xa is unaffected by uc and xc is controllable from uc . Furthermore, the influence of

xa on xc should be matched with uc , as seen in (4). If u
0
c

is nonexistent, then we simply set xa D xs. If

u
0
c

does exist, we proceed by first finding the derivative Pxs D Assxs CLsbyb CLsd yd CBscu
0
c
, for some

matrices Ass , Lsb , Lsd , and Bsc . We then obtain the proper transformations by calling scbSP recursively

on the transposed system with system matrix AT
ss , output matrix BT

sc , and an empty input matrix. This

recursive call returns a system consisting only of an xa and an xb subsystem. It is easily confirmed that,

when transposed back again, this system has the desired structure. We therefore let Œxa
T; xc

T�T D �?
1

T
xs

and uc D �?
2

T
u

0
c
, where �?

1 and �?
2 are the state and output transformations returned by the recursive

call.

4.3 Non-Strictly Proper Case

To handle the non-strictly proper case, the first step is to find the pre-transformation matrices U and Y ,

described in Section 2.4. Suppose that the matrices passed to the procedure scb are OA, QB , QC , and QD.

We need to find nonsingular U and Y such that, according to Section 2.4, OB D QBU , OC D Y �1 QC , and
OD D Y �1 QDU , where OD is of the form diag.Im0

; 0/. The rank m0 of QD is found using the Rank function.

Let Y �1 D ŒY T
1 ; Y T

2 �T, where Y1 has m0 rows. Then we have the equations

Y �1 QDU D

�

Y1
QDU

Y2
QDU

�

D

�

Im0
0

0 0

�

:
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To solve these equations, we choose the rows of Y2 from the left null space of QD, using the functions

NullSpace and ReducedRowEchelonForm as before; and we select Y1 such that ŒY T
1 ; Y T

2 �T is nonsingular,

using the same procedure as for finding Si1 given Si2 in Section 4.1.1. This leaves us to solve the

equation Y1
QDU D ŒIm0

; 0� with respect to some nonsingular U . Let U �1 D ŒU T
1 ; U T

2 �T such that U1

has m0 rows. We select U1 D Y1
QD, and we select U2 such that ŒU T

1 ; U T
2 �T is nonsingular, by the same

procedure as before. It is then straightforward to confirm that Y1
QDU D ŒIm0

; 0�. We can now calculate

the matrices OB , OC , and OD that conform with the required structure of (1), (2).

Let OB0 consist of the left m0 columns of OB , and let OB1 consist of the remaining columns of OB . Similar

to (3), we can write the system equations (1) as

POx D . OA � OB0
OC0/ Ox C OB0y0 C OB1 Ou1; (7a)

y0 D OC0 Ox C u0; (7b)

Oy1 D OC1 Ox: (7c)

Suppose we obtain the SCB form of the strictly proper system described by the matrices . OA � OB0
OC0/,

OB1, and OC1, by invoking the procedure scbSP, and suppose the transformation matrices returned for this

system are N�1, N�2, and N�3. Substituting Ox D N�1x, Oy1 D N�2Œyd
T; yb

T�T, and Ou1 D N�3Œud
T; uc

T�T in (7)

yields

Px D N��1
1 . OA � OB0

OC0/ N�1x C N��1
1

OB0y0 C N��1
1

OB1
N�3

�

ud

uc

�

;

y0 D OC0
N�1x C u0;

�

yd

yb

�

D N��1
2

OC1
N�1x:

It is easily confirmed that this system conforms to the SCB, by defining A D N��1
1 . OA � OB0

OC0/ N�1, B D
N��1

1 Œ OB0; OB1
N�3�, C D Œ OC T

0 ; . N��1
2

OC1/T�T N�1, and D D diag.Im0
; 0/. Defining the transformations for

the non-strictly proper system as �1 D N�1, �2 D diag.Im0
; N�2/, and �3 D diag.Im0

; N�3/, we obtain

A D ��1
1 . OA � OB0

OC0/�1, B D ��1
1

OB�3, C D ��1
2

OC �1, and D D ��1
2

OD�3, which are the proper

expressions relating the matrices OA, OB , OC , and OD to the SCB matrices (see Section 2.3).

5 Examples

In this section, we apply the decomposition procedure to several example systems.

5.1 Linear Single-Track Model

A widely used model for the lateral dynamics of a car is the linear single-track model (see, e.g., [21]).

For a car on a horizontal surface, this model is described by the equations

Pvy D
1

m
.Ff C Fr/ � rvx ;

Pr D
1

J
.lfFf � lrFr/;

where vy is the lateral velocity at the center of gravity; r is the yaw rate (angular rate around the vertical

axis); m is the mass; J is the moment of inertia around the vertical axis through the car’s center of gravity;

lf and lr are the longitudinal distances from the center of gravity to the front and rear axles; and Ff and Fr
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are the lateral road-tire friction forces on the front and rear axles. The longitudinal velocity vx is assumed

to be positive and to vary slowly enough compared to the lateral dynamics that it can be considered a

constant. The friction forces can be modeled by the equations

PFf D
cf

Tr

�

ıf �
vy

vx

� lf

r

vx

�

�
1

Tr

Ff;

PFr D
cr

Tr

�

�
vy

vx

C lr

r

vx

�

�
1

Tr

Fr;

where ıf is the front-axle steering angle; cf and cr are the front- and rear-axle cornering stiffnesses; and

Tr is a speed-dependent tire relaxation constant (see, e.g., [22]). In modern cars with electronic stability

control, the main measurements that describe the lateral dynamics are the yaw rate r and the lateral

acceleration ay D 1
m

.Ff C Fr/. Considering ıf as the input, the system is described by

OA D

2

6

6

6

4

0 �vx
1
m

1
m

0 0 lf

J
� lr

J

� cf

Trvx
� lfcf

Trvx
� 1

Tr
0

� cr

Trvx

lrcr

Trvx
0 � 1

Tr

3

7

7

7

5

; OB D

2

6

6

4

0

0
cf

Tr

0

3

7

7

5

;

OC D

�

0 1 0 0

0 0 1
m

1
m

�

; OD D

�

0

0

�

:

If we pass these matrices to our Maple procedure, we obtain SCB system matrices

A D

2

6

6

6

6

4

� 1
Tr

1 0 Trlfm
cr.lfClr/

� lrcr.lfClr/
vxTrJ

0 1 lfm
cr.lfClr/

� cr.lfClr/
TrJ

0 0 1
vx

cr.lrcr�lfcf/.lfClr/

mT 2
r vxJ

0 � cfCcr

mTr
� 1

Tr

3

7

7

7

7

5

; B D

2

6

6

4

0

0

0

1

3

7

7

5

;

C D

�

0 0 0 1

1 0 0 0

�

; D D

�

0

0

�

;

and the transformations

�1 D

2

6

6

6

4

0 0 vx 0
cr.lfClr/

TrJ
0 0 0

� cr

T 2
r

cr

Tr
0 m

cr

T 2
r

� cr

Tr
0 0

3

7

7

7

5

; �2 D

"

0 cr.lfCcr/
TrJ

1 0

#

; �3 D
mTr

cf

:

The dimension list dim returned by the procedure is 0; 3; 0; 1, meaning that the first three states belong to

the xb subsystem, and the last state is an integrator chain of length 1, belonging to the xd subsystem.

Inspection of the SCB system immediately reveals that the system is observable, since both the xb and

xd subsystems are always observable. The system is left-invertible, since the state xc is non-existent,

meaning that the steering angle can be identified from the outputs if the initial conditions are known. The

system is not right-invertible, since it has an xb subsystem, reflecting the obvious fact that the yaw rate

and lateral acceleration cannot be independently controlled from a single steering angle. The system has

no invariant zero dynamics, since the state xa is non-existent.

If we add rear-axle steering by augmenting the OB matrix with a column Œ0; 0; 0; cr

Tr
�T, the Maple
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procedure returns the SCB system matrices

A D

2

6

6

6

4

0 1 �vx 0

� cfCcr

mTrvx
� 1

Tr

lrcr�lfcf

mTrvx
0

0 0 0 1
lrcr�lfcf

JTrvx
0 �

l2
f cfCl2

r cr

JTrvx
� 1

Tr

3

7

7

7

5

; B D

2

6

6

4

0 0

1 0

0 0

0 1

3

7

7

5

;

C D

�

0 1 0 0

0 0 1 0

�

; D D

�

0 0

0 0

�

;

and the transformations

�1 D

2

6

6

4

1 0 0 0

0 0 1 0

0 lrm
lfClr

0 J
lfClr

0 lfm
lfClr

0 � J
lfClr

3

7

7

5

; �2 D

�

0 1

1 0

�

; �3 D

"

lrTrm
cf.lfClr/

TrJ
cf.lfClr/

lfTrm
cr.lfClr/

� TrJ
cr.lfClr/

#

;

with dimensions 1; 0; 0; 3. This means that the first state of the system belongs to the zero dynamics

subsystem xa, and the remaining three states belong to the xd subsystem. The xd subsystem consists of

two integrator chains; one of dimension one, and one of dimension two. We conclude that the system is

invertible, due to the lack of xb and xc subsystems. The Aaa matrix is identically 0, meaning that the

system has a zero at the origin. Hence, the relationship between the steering angle inputs and the yaw

rate and lateral acceleration outputs is non-minimum phase.

Referring back to our discussion of geometry theory, we see that the weakly unobservable subspace is

spanned by the vector Œ1; 0; 0; 0�T. Transformed back to the original coordinate basis, this corresponds to

the state vy . We therefore know that a hypothetical disturbance occurring in Pvy can be decoupled from the

outputs ay and r by state feedback (and the SCB representation tells us exactly how to do it). However,

we also know that the resulting subsystem would not be asymptotically stable, since the non-minimum

phase zero would become a pole of the closed-loop system.

5.2 DC Motor with Friction

According to [23], a DC motor process can be described by the equations

P� D !;

J P! D u � F;

where � is the shaft angular position, ! is the angular rate, u is the DC motor torque, F is a friction

torque, and J D 0:0023 kg m2 is the motor and load inertia. The friction torque can be modeled by the

dynamic LuGre friction model

F D �0´ C �1 Ṕ C ˛2!;

Ṕ D ! �
�0´j!j

�.!/
;

where �.!/ D ˛0C˛1 exp.�.!=!0/2/. Numerical values for the friction parameters are �0 D 260:0 Nm=rad,

�1 D 0:6 Nm s=rad, ˛0 D 0:28 Nm, ˛1 D 0:05 Nm, ˛2 D 0:0176 Nm s=rad, and !0 D 0:01 rad=s. The

system can be viewed as consisting of a linear part with a nonlinear perturbation �0´j!j=�.!/. Assuming

that only the shaft position � is measured, a nonlinear observer can be designed for this system by using

the time scale assignment techniques from [17]. To do so, it is necessary to find the SCB form of the
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system, with the nonlinear perturbation �0´j!j=�.!/ considered as the sole input. The original system

with the nonlinear perturbation as the input is described by the matrices

OA D

2

4

0 1 0

0 � 1
J

.˛2 C �1/ � 1
J

�0

0 1 0

3

5 ; OB D

2

4

0
1
J

�1

�1

3

5 ; (8a)

OC D
�

1 0 0
�

; OD D 0: (8b)

Inserting numerical values and using the Linear Systems Toolkit [12] yields the SCB matrices

A �

2

4

�433:3 �707:1 0

0 0 1

�1:1 � 105 �1:8 � 105 164:8

3

5 ; B D

2

4

0

0

1

3

5 ;

C D
�

0 1 0
�

; D D 0;

where the first state belongs to the zero dynamics subsystem xa, and the remaining two states consist of

an integrator chain of length two, in the xd subsystem. As suggested by the large elements in the system

matrices, the problem is poorly conditioned, and we find that we require very large gains to stabilize the

system. Using our Maple procedure, we obtain the SCB matrices

A D

2

6

6

4

� �0

�1
� �0.�0J ��1˛2/

�3
1

0

0 0 1

� �0

J
� �0.�0J ��1˛2/

J�2
1

�0J ��1˛2��2
1

J�1

3

7

7

5

; B D

2

4

0

0

1

3

5 ;

C D
�

0 1 0
�

; D D 0:

This reveals that the small parameter �1 generates a singularity for several elements of A, even though

the original matrices in (8) did not have any singularities with respect to this parameter. In particular, we

see that �1 acts as a small regular perturbation that results in singularly perturbed zero dynamics, which

happens when a regular perturbation reduces a system’s relative degree [24]. Using the approximation

�1 D 0 results in a dramatically different structure, with the SCB consisting of a single integrator chain

of length three, represented by the SCB matrices

A D

2

4

0 1 0

0 0 1

0 � �0

J
� ˛2

J

3

5 ; B D

2

4

0

0

1

3

5

C D
�

1 0 0
�

; D D 0:

Proceeding with the observer gain selection based on this system, we obtain good results without using

high gains.
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5.3 Tenth-Order System

Our last example is a strictly proper, tenth-order system from [1]:

OA D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 1 1 0 0 0 0

�1 0 0 0 1 0 1 0 0 0

1 1 �1 �1 0 0 �1 0 0 0

0 1 1 1 0 0 0 0 0 0

�1 2 0 �1 2 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

�1 �1 0 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; OB D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 0 1

0 0 0 0

0 0 0 0

0 1 0 1

0 2 0 1

0 0 1 0

0 0 0 0

0 0 0 0

1 0 1 0

0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; OC T D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�1 0 0 0

�1 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

2 1 0 0

0 1 0 1

0 0 0 0

0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The Maple procedure gives the SCB system matrices

A D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 1 �1 0 �1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 �1 1 0 1 0 0

2 �12 0 2 �8 8 0 8 0 0

2 �4 �2 1
2

�2 1 1 1 1 0

0 0 0 0 0 0 1 0 0 0

2 �2 �2 0 0 �1 1 �1 1 �1

0 0 0 0 �1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 2 0 � 1
2

2 �2 0 �2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; B D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; C T D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and the dimensions 1; 2; 1; 6. Hence, the first state belongs to the xa subsystem, and we can therefore

easily see that the system has a non-minimum phase invariant zero at 1. The next two states belong to the

xb subsystem; thus, the system is not right-invertible. The fourth state belongs to the xc subsystem; thus,

the system is not left-invertible. Finally, the last six states consists of three integrator chains of length 1,

2, and 3, respectively, belonging to the xd subsystem.

6 Numerical Issues

The procedure described in this paper uses exact operations only; thus, there is no uncertainty in the

results produced by the decomposition algorithm. The algorithm is primarily based on rank operations

and the construction of bases for various subspaces. Rank operations are discontinuous, in the sense that

arbitrarily small perturbations to a matrix may alter its rank. This implies that, when a decomposition is

carried out using exact operations, arbitrarily small perturbations to system matrices may fundamentally

alter the identified structure of a system. This is in contrast to decompositions based on floating-point

operations, which may be insensitive to small perturbations to the system matrices.

Whether exactness is desirable or not depends on the application. When the input data is exact or

the system model is based on first principles, an exact decomposition may help to reveal fundamental

structural properties of the system and how these properties are affected by various quantities in the

system matrices. If, on the other hand, the system matrices have been derived based on experimental

system identification, an exact decomposition may not be desirable, and it may even provide misleading

information about the system structure. Thus, the exact procedure presented here is not a replacement for

numerical tools developed for the same purpose.
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Throughout the decomposition algorithm, a number of non-unique transformation matrices must be

constructed. In the Maple procedure, these matrices are constructed with the goal of having a simple

structure, based on the assumption that fewer changes to the original states will result in less complicated

symbolic expressions in the computed SCB system. Depending on the structure and dimensions of the

system, however, the procedure may still result in complicated expressions, and if the original system

matrices contain complicated expressions, these will in general not be simplified.

A precise analysis of the computational complexity of the procedure is difficult, due to the complex

nature of the decomposition algorithm and the underlying Maple functions. However, it is possible to

make some practical observations regarding this issue. Executed in Maple 12 on an Intel Pentium pro-

cessor with two 2-MHz cores, the total CPU time needed for decomposition of the single-track model

was approximately 0:30 s for the single-input case and 0:21 s for the double-input case. For the DC motor

example, the total CPU time was approximately 0:19 s for the original matrices in (8) and 0:25 s with the

modification �1 D 0. For the tenth-order example, the total CPU time was approximately 0:48 s. These

execution times illustrate that an increase in the order of the system does not automatically result in a

large increase in execution time; the structure of the system and the complexity of the expressions in the

system matrices has a greater impact on execution time. For example, randomly generated, strictly proper

systems with 20 states, 4 inputs and 4 outputs, with the system matrices made up of integers between �10

and 10 with 25% density, are generally decomposed in less than 0:4 s. If, on the other hand, the number

of inputs is reduced to 3, the decomposition generally takes around 50 s. The reason for this large dif-

ference is that, in the former case, the computed SCB systems generally consist of an xa subsystem with

16 states and an xd subsystem with four states, which requires only a single iteration of the algorithm

for identifying xb and xd (described at the beginning of Section 4.1). In the latter case, the computed

SCB systems generally consist of an xb subsystem with 17 states, and an xd subsystem with three states,

which requires 17 increasingly complex iterations of the algorithm for identifying xb and xd .

7 Concluding Remarks

We have presented a procedure written in the mathematics software suite Maple, which is capable of

transforming any linear time-invariant system described by exact symbols and fractions to the SCB, and

we have illustrated the use of this algorithm on several examples.

The DC motor example shows that the symbolic form of the SCB can be used to reveal structural bifur-

cations in linear systems due to parameter changes. Systematic ways of using symbolic representations

of the SCB for this purpose is a topic of future research. Future research will also investigate application

of symbolic SCB representations to topics such as squaring down of non-square systems and asymptotic

time scale assignment.
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