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Abstract

The Athena Software Development Model (SDM)
rover is an engineering testbed for Earth-based test-
ing of Mars rover capabilities on a realistic platform.
Originally developed as a prototype for a Mars Sam-
ple Return mission, featuring flight-like electronics, it
now serves as a testbed for the 2003 Mars Exploration
Rover surface navigation and mobility software.

In this paper we describe the software aspects of
the overall Athena SDM rover mobility system in
three parts: the control electronics, the software ar-
chitecture and development environment, and surface
navigation software. The Athena SDM architecture
has been shown to be capable of meeting mission nav-
igation requirements by being able to safely drive 100
meters using allowable resources within three hours.

1 Background

NASA will send a series of missions to Mars during
the next decade. Intended to carry the Athena sci-
ence payload, the Athena rover was designed at JPL
to perform a surface exploration and Sample Return
mission, but as of August 2000 has been superseded
by a new mission plan; two Mars Exploration Rovers
(MERs) will explore the Red Planet in early 2004.
This vehicle now serves as a research platform on
which MER Surface Navigation Software is being re-
fined and tested, and is pictured in Figure 1.

The Athena SDM is approximately 100 x 75 x
45 cm?, with a six-wheel rocker bogie suspension
on which four wheels can be steered, weighing ap-
proximately 60 kilograms. Its R3000 CPU runs at
12 MHz, a hundred times improvement over the So-

Figure 1: The Athena SDM Rover

journer rover CPU. [St096] FPGAs handle low-level
motor control during driving or steering operations.
The faster CPU, the additional controllers, a large 32
MByte DRAM memory and 64 MByte Flash memory
have allowed the implementation of much more intel-
ligent capabilities for surface navigation than were
possible on Sojourner.

The original flight (i.e., spaceflight) Athena rover
was designed to provide the capabilities demanded
by a Mars Sample Return mission, yet meet the envi-
ronmental constraints imposed on it by operating in
extra-terrestrial environments (including cruise and
Martian surface environments). While this paper
does not attempt to detail the original flight rover
design, many decisions that went into the design of
the Athena SDM were motivated by very real flight
constraints of the planned Athena Rover.

Several important capabilities were required for the
now-defunct Mars Sample Return mission. The rover
had to be capable of traversing through terrain simi-
lar to that seen by Viking Lander I (VL/I); generally



clear terrain with scattered insurmountable obstacles.
[GRI7] It had to be able to cover enough ground
so that geologically interesting and diverse samples
could be found; this was eventually expressed as a
requirement that the rover be able to safely traverse
up to 100 meters in one day of Mars operations.

The design had to satisfy several environmental
constraints. The electronics had to be designed to
survive seven months of radiation exposure during
cruise to Mars, and to function in the increased radi-
ation environment of the Martian surface. A mission
duration of at least 90 days on the surface meant
that a renewable power source would be necessary,
and the performance of solar cell technology dictated
that the rover only be in motion when the Sun was
high enough overhead; just over four Earth hours per
Martian day. Finally, the flight electronics had to
be robust to radiation, able to continue safely after
having a bit in memory change due to a radiation hit.

In this paper we describe the overall Athena SDM
rover mobility system in three parts: the control elec-
tronics, the software architecture and development
environment, and surface navigation software. Com-
bined with the mechanical components of the mobil-
ity system (described in [LRV99]), the Athena SDM
architecture has been shown to be capable of achiev-
ing primary navigation mission requirements (while
meeting spaceflight constraints): it has enough sys-
tem resources to drive 100 meter traverses safely in
less than four hours.

2 Electronics Overview

The electronics in the Athena SDM are flight-like pro-
totypes. While some rearrangement and repackaging
was expected in the next round of hardware design,
these electronics do incorporate the same CPU, mem-
ory architecture, motor controllers, and Inertial Mea-
surement Unit (IMU) that were planned for the flight
rover.

The prototype electronics consist of three boards
that communicate through the CPU’s address/data
bus, six Remote Engineering Units (REUs) that have
an I2C interface, and an IMU that also has an I2C
interface. A block diagram showing these boards ap-
pears in Figure 2.

2.1 CPU Board

Very few boards have been qualified for spaceflight.
Of the available choices, two MIPS architecture ma-
chines led the evaluation of processor capabilities
done in 1997: the 20 MHz Rad6000 requiring 14

Watts, and the 12 MHz R3000 requiring 2-3 Watts.
Both compared favorably with Sojourner’s 100 KIP
8085 (requiring 1 Watt), but the severe power con-
tstraints led to the selection of the R3000 processor.

The Athena SDM CPU board is built around a
Synova®™ Mongoose-V processor, which is a 32-bit
processor with a MIPS R3000 RISC architecture.
On-chip it has a floating point unit, 2 kilobyte data
cache, and 4 kilobyte instruction cache. The proces-
sor is designed for space applications, and has on-chip
support for error detection and correction (EDAC)
memory which can correct single bit errors and de-
tect double bit errors in memory. Radiation hardened
flight-grade units are available; the Athena SDM has
an Engineering Model (EM-grade) unit. Since EDAC
is a required capability for the final system, having it
built into the CPU alleviates the need to implement
it in custom electronics or software.

The CPU board also contains

e 32 megabytes of dynamic RAM
¢ 4 megabytes of EEPROM

e 64 megabytes of flash memory
e 128 kilobytes of boot PROMs

All of these have EDAC memory associated with
them, and the flash memory may be turned off to
conserve power.

This board has an I2C serial interface, and is the
sole I2C master on this bus. It can read and write
messages at 400 kbps to the I?C slave boards, each
of which has a unique 7-bit address.

For development purposes, this board has two stan-
dard serial ports and a removable ethernet daughter-
card that plugs directly onto the CPU board. We use
one of the serial ports for a console, and the ether-
net card for communication with VxWorks’ Tornado
tools and command/telemetry tools running on a Sun
workstation. Currently the flight software is loaded
over the network and executed out of RAM; during
a mission the software would execute directly out of
EEPROM.

2.2 Power Switching Board

The number of rover subsystems that can be pow-
ered concurrently is limited by the amount of power
generated onboard. So a power switching board was
designed to keep overall consumption low. It con-
tains DC-to-DC converters and switches that control
power to cameras, remote engineering units, the IMU
board, and core power for motors.
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Figure 2: Block diagram of Athena SDM prototype electronics

This board has a current limiter that will clamp
the current delivered to the switched peripherals un-
less explicitly bypassed. If an overcurrent condition
persists for more than a few seconds, it will auto-
matically turn all switches off. The CPU will remain
powered on, and receives interrupts when limiting be-
comes active and when shutdown occurs.

Athena SDM power comes either through a tether
with a single 15-18V supply, or from a set of batteries
in the rover. Approximately 3.5 amps are required to
drive on a level surface.

2.3 I/0 Board

The I/0 board provides an interface to cameras that
can acquire images from a pair of cameras simulta-
neously, and an A/D converter. The A/D converter
scans up to 64 channels at either 1 Hz, 10 Hz, or 50
Hz. These channels are used for monitoring voltages
and temperatures on the Athena SDM.

2.4 Remote Engineering Units
Each Remote Engineering Unit (REU) has:

e an FPGA-based motor controller that can con-
trol two brushed motors

e an A/D converter for reading two potentiome-
ters, two temperature sensors, current draw from
two motors, and voltages

e interfaces for up to seven contact switches
e switches for heaters and pyro releases

The CPU board communicates to the REUs through
the I?C interface.

The motor controller is a PID controller running at
1 kHz, reading quadrature encoders and outputting
the direction and pulse width modulated duty cycle
to drive the motor. The controller can be commanded
to servo to a particular encoder count, or to main-
tain a constant rate. It has a profiler that enforces
a trapezoidal velocity profile, so that the motor will
ramp up smoothly to a maximum rate for the servo,
and then will ramp back down smoothly to reach its
commanded position. It can detect both motor stalls
and deviations from the commanded profile - and op-
tionally shuts down on either of these conditions. The
goal position/rate, PID gains, maximum velocity and
acceleration limits are all programmable parameters
to the controller, sent by software through the I?C
interface. The controllers can also be bypassed, and
motors driven at a software-specified duty cycle open-
loop.

High resolution encoders are needed to implement
fine positioning for sample acquitision. Each channel
of an Athena SDM encoder produces 16 pulses per
motor revolution, and the controller FPGA counts
the edges of both channels, resulting in 64 encoder
counts per motor revolution. The gear ratios for
steering and drive actuators are 1620:1.

The Athena SDM currently has six REUs that con-
trol four steering actuators, six wheel motors, and two
mast motors for NAVCAM pan/tilt. There are po-
tentiometers on the steering actuators, on each bogie,
and on the differential.

2.5 Inertial Measurement Unit

The inertial measurement unit consists of QA-3000
linear accelerometers in three axes, a QRS11 rota-



tional rate sensor about the rover Z-axis, and an A /D
converter for digitizing accelerometer and rate sen-
sor outputs, voltages, and temperatures. The CPU
board interfaces to the IMU through the I2C bus.
When the rover is known to be motionless, a ten sec-
ond calibration can be initiated by software to cal-
culate a fixed bias offset. The IMU compensates for
this bias when it integrates rate sensor readings while
the rover is in motion.

2.6 Cameras

The cameras on the Athena SDM are based on a
CMOS imager developed at JPL known as the Digi-
tal Integrated Camera Experiment 512A Active Pixel
Sensor, or DICE APS. [ZPF97]

Each chip contains a 512x512 pixel array, an A/D
converter for each column of the array (for faster
readout rates) yielding 8 or 10 bits per pixel, digital
logic which implements a serial command interface,
either serial or parallel output, and features such as
windowing and pixel subsampling. Exposure time is
specified through the command interface; the camera
electronics do not do any automatic exposure control.
The Athena SDM uses serial output at 10 megabits
per second. Each camera draws about 0.4W of power.

3 Software Architecture

3.1 Design Goals

The design of the Athena software has several drivers,
based on the nature of the mission and past experi-
ence:

e reliability - robust, valid behavior

o flexibility - adaptable to unexpected and chang-
ing conditions

e simplicity - avoiding unnecessary complications
to minimize development time and provide pre-
dictable operation

e case of operations - a command interface sup-
porting the needs and convenience of engineers
and scientists

e visibility - monitoring and reporting internal and
environmental conditions to speed development
and provide a clear picture during remote oper-
ations

e maximum results per uplink command cycle
- autonomy and programmability to limit the

number of operator interventions needed to com-
plete a task.

These same characteristics are helpful in a proto-
type testing environment as well.

3.2 Development Environment

In developing software for a flight mission, it is imper-
ative to provide a flexible structure that allows multi-
ple developers to modify shared code, track changes,
and be informed quickly of potential errors.

The software development environment is built
around a UNIX (Solaris) host platform, and the Wind
River VxWorks real-time operating system for the
onboard target computer. Onboard software is writ-
ten in C++, but primarily designed in a functional
organization rather than object-oriented. Features
of C++ that tend to add complexity, memory, and
execution time overhead (such as templates, excep-
tions, virtual functions, and dynamic object construc-
tion and destruction) are avoided. Standard UNIX
and open-source tools are used heavily to assist the
development process, including “CVS” (Concurrent
Version System) version control, “Make” program re-
building, and the Perl, Tcl, and shell scripting lan-
guages.

For reliability’s sake, automatic recompiles are per-
formed daily, with all compiler warnings enabled; any
warnings detected will abort the build and require
correction. Unresolved references (which, in C++,
can be due to mismatched declarations) are caught
at build time by an extra absolute link step, in addi-
tion to the relocatable linking normally used by the
VxWorks dynamic loader.

Software testing on the target system is facilitated
by a non-flight ethernet interface for downloading
code and controlling operation. The communications
software that would use a radio in flight can trans-
fer uplink commands and downlink telemetry across
this interface, transparently to the rest of the rover.
Simplified stand-in versions of ground-based control
systems were built to generate commands and dis-
play telemetry, allowing end-to-end rover testing us-
ing flight commands without dependence on flight-
level ground support software.

To support checkout and diagnostics of the proto-
type electronics, a standalone test package, separate
from the flight software, was developed, and is up-
dated incrementally. This program provides a more
convenient environment for testing, with direct user
control over the rover’s hardware components. It can
be also compiled under Solaris, to allow benchtop



System mode control handles system startup, and shut-
down.

Command sequencing handles scheduling and execution of
uplinked commands.

Communications handles uplink and downlink

Navigation performs operator commands for driving, with
or without stereo image-based hazard avoidance. The
basic driving cycle includes calculation of steering angles
and drive distance for each of the six wheels to achieve a
vehicle path along an arbitrary arc, smooth synchronized
wheel motion using a trapezoidal velocity profile, and
dead reckoning based on wheel encoders and the IMU’s
gyroscopic turn rate sensor.

Science instrument control performs operator commands
for science data collection and data reduction

Imaging operates the many cameras on the rover, including
image capture, wavelet compression, stereo range map-
ping, and feature extraction

Health/status monitoring performs periodic sensor input,
filtering, and alarm monitoring.

Device control provides an interface layer to the hardware
systems.

Motion control operates the motors, providing position and
velocity servoing services to the other components.

Error handling/recovery provides a uniform error report-
ing mechanism.

Support library provides assorted basic services, including
time, math, and specialized memory allocation.

Operating system includes the VxWorks executive and
system-specific configuration

Table 1: Software Functional Components

testing of REUs and the IMU through a serial port
on the host using a commercial 12C serial adaptor.

An extensive internal web site was built so that
design documentation, notes, and development sta-
tus are readily available to the development and test
teams, kept up-to-date, and easily searchable. Scripts
reduce the effort needed to maintain the documents,
by auto-generating flight source code, ground-based
source code, and developer documentation from a sin-
gle description file. Inter-dependencies among these
documents are thus automatically kept in sync.

Primary documentation maintained in this way in-
cludes the:

Software Design Document, which reflects the
structure of the implementation by extracting
documentation and inter-dependencies directly
from the source code

Command dictionary, which covers the format
and meaning of uplink commands and configu-
ration data supported by the rover

Telemetry dictionary, which explains the format
and interpretation of downlink data produced by
the rover

Rover Programming Manual,
which describes the onboard software infrastruc-
ture and services. This is written by and for the
rover development team.

3.3 Software Structure

The Athena SDM flight software executes one com-
mand sequence at a time. The ground operations

team sends lists of conditional sequences to the rover,
which acts on each command in turn. Power, device,
and operations constraints override the usefulness of
performing multiple operator commands simultane-
ously.

The onboard software consists of six scheduler
tasks, shown in Figure 3, the key one being a single-
threaded uplink command sequencer. The remain-
ing tasks perform periodic support duties, includ-
ing monitoring of sensors and controlling motors.
Telemetry data that result from commands and peri-
odic monitoring are buffered for prioritized transmis-
sion.

The major data structures in the rover’s software
architecture are:

Uplink command sequence data

Downlink telemetry buffers

Configuration tables

Persistent global system state and parameters

Volatile global system state

The code is partitioned into the functional compo-
nents given in Table 1.

4 Surface Navigation

The Athena SDM relies on three pairs of cameras to
provide input for onboard stereo vision range com-
putations. One stereo camera pair is mounted on a
mast approximately 140 cm above the ground, the
others are rigidly mounted to the body at 48 cm
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Figure 3: Software Tasks: Each oval represents a distinct VxWorks task.

above ground. JPL Stereo Vision software [XM97]
provides the raw range data used to autonomously
understand the local terrain elevations, and a varia-
tion of Carnegie Mellon’s Morphin planner [SHCW96]
processes this range data and evaluates a variety of
possible paths, choosing the safest route that lets the
rover make progress toward its goal.

The Athena surface navigation software is based on
the GESTALT package for onboard hazard detection
and avoidance. GESTALT (Grid-based Estimation
of Surface Traversability Applied to Local Terrain) is
a C++ software library developed at JPL that pro-
cesses environmental data collected by a robot’s sen-
sors (e.g., stereo cameras, laser scanner) to determine
how to drive safely.

The world is represented as a grid of rectangular
cells; imagine melting checkerboard-style kitchen tiles
over the surface of Mars, as in the upper right of
Figure 4. Nothing need be known about its world
in advance, the software only requires that the rover
provide new 3D sensory data as it moves throughout
the environment (data are expected to be somewhat
noisy). These data are collected into grid cells and are
evaluated as separate rover-sized planar patches. In
this evaluation potential traversability hazards such
as step hazards, slope hazards, and rough terrain are
found and marked.

Finally, straight and curved paths from the rover’s
current position are evaluated. Other modules (e.g.,
a visual servoing module) are expected to evaluate
the same fixed set of paths, so that their votes can
be easily merged with those generated by the haz-
ard avoidance module. The safest path that helps
the rover move toward its goal will be selected. Once

a safe steering direction has been chosen, the rover
takes a small (35cm) step along the arc in that direc-
tion. The small step size is needed both to bound the
error in its position knowledge, and to ensure that
sufficiently interesting paths can be taken (else the
rover would only move in broad arc sweeps).

This software is a fresh implementation and exten-
sion of the Morphin algorithm developed by Carnegie
Mellon University’s Robotics Institute. Although it
lacks the continuous driving and multithreaded fea-
tures of CMU’s implementation [WBMT99], it im-
proves upon the original algorithm in several ways.
Traversability can be evaluated in a direction-specific
manner; this software recognizes that a hill which is
unclimbable head-on might be climbable on a side-
ways approach. Also, navigation parameters can be
reset at any time, more detailed debugging outputs
are available, and multiple rover configurations can
be evaluated in a single map. For instance, one map
evaluation might consider the wheel-based rover foot-
print with small obstacles, while a second evaluation
would assume a wider rover (with solar panel foot-
print) yet allow much taller obstacles.

Figure 4 illustrates one of GESTALT’s diagnostic
images. It has the following features:

o The largest area is an overhead view of the world
model, 10 m x 10 m in 20 cm cells. (upper left)

— Red cells (those outside the circular path)
indicate that no information is available.
Greyscale cells indicate the goodness value
of placing the rover there; white means
clear, black means an obstacle, grey indi-
cates a slight roughness to the area but not
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Figure 4: GESTALT Diagnostic Image. Here the rover has been commanded to drive in a circle, and is
nearing the end of its traverse.

enough to force it to be avoided.

Range data stays fixed in the Grid as
the rover moves; our world model wraps
around, so when the rover moves off to the
right it reappears on the left.

e Left camera rectified image (upper right)

Range data availability is color-coded;
greyscale pixels have valid range data,
tinted pixels have no range data available.

Grid cells are marked off not only in the
overhead view, but also in this image view.
Cell corners are projected onto the virtual
ground plane, no correction based on the
local topography is performed.

e Subpixel Elevation Image (far right, middle)

Elevation of pixels in the input range image
(assuming (0,0,0) is on the ground plane) is
plotted and color-coded.

Grid cells are plotted in the virtual ground
plane.

e Arc votes display (lower left)

— Forward and backward arc evaluations are

intensity-coded.

— The single arc ultimately selected for driv-

ing is indicated by a box in the lower left
display, and by a different color in the over-
head world view display.

5 Timing Results

The Morphin algorithm has been demonstrated
successfully on several earlier robot systems, e.g.
[KHH199, WBMT99, MXH*00, SSS*00]. Experi-
ments are in progress to validate each component of
the present implementation of the navigation system:
cell-based traversability analysis, path-based trajec-
tory evaluation, and overall success at navigation to-
ward a goal through several varieties of terrain. Un-
fortunately those characterizations were not available
at time of publication.

Although we have yet to demonstrate a complete
100 meter traverse, qualitative results of shorter tra-



Image Acquisition and Downsample | 16 sec
Stereo (128x128 images) | 4 sec

Nav (unoptimized) | 7 sec

Actual Motion | 10 sec

| TOTAL | 37 sec

Table 2: Nav algorithm timings on 12MHz R3000
CPU

verse tests and timing results of the currently imple-
mented navigation system convince us that this ar-
chitecture can meet the mission requirement of safely
traversing 100 m per day. Mobile operations on Mars
will nominally be allowed from 10:00am to 2:00pm
Mars Local Time (just over 4 Earth hours). The time
required for each step of navigation processing on the
12MHz R3000 CPU is 37 seconds, reported in Table 2
from actual test runs. Since the nominal rover mo-
tion is 35 cm along an arc at each step, this results
in an average speed of about 1 cm/sec, or 36 m/hr.
Hence the rover is capable of driving over 100 m in 3
hours, demonstrating that 100 m/day is realizable.
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