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Abstract—NASA’s Mars Science Laboratory (MSL) mission has
updated the Curiosity rover’s flight software multiple times
since landing on Mars on August 6, 2012. The most common
patching method has been a hot patch, in which running flight
software is modified after being copied into RAM from its per-
sistent storage. The latest hot patch to be installed on Curiosity
fixed an issue in the robotic arm software that computes general-
ized inverse kinematics. Additional unit testing performed since
the start of the surface mission revealed that this software can
sometimes produce erroneous solutions.

The cause was identified as numerical instability in a quartic
root finder. When the inputs to that solver are not well condi-
tioned, floating-point numerical issues can cause erroneous roots
to be reported. In theory, this could result in the robotic arm
turret instruments being commanded to unintended positions,
for example, below the terrain surface. Out of approximately 3.7
million unit test cases, 97.2% of the position errors were below 5
mm. However, there were 16 test cases where the position error
was greater than 20 cm, and the maximum position error was
1.2 meters.

The patch was uploaded to Curiosity on sol 2642 (January 11,
2020) after the solution was developed, re-implemented as a hot
patch, and validated and verified using Earth-based Curiosity
testbeds. A checkout test of the patch was performed on Curios-
ity on sol 2657, and nominal use of the patch began on sol 2658.
In this paper, we describe the steps that led to integrating the
arm kinematic hot patch into Curiosity’s flight software, from
the discovery of the bug to the nominal use of the patch in flight.
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1. INTRODUCTION
Many space missions have benefited from the ability to
update their software remotely: Earth-orbiting satellites [1],
solar system-spanning explorers [2][3], and past NASA Mars
Rovers [4], to name a few. In this paper we will describe
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Figure 1. Sojourner (left), MER (middle), and MSL (right)
flight-like testbed rovers in the Jet Propulsion Laboratory

(JPL) Mars Yard. The MSL Vehicle System Test Bed
(VSTB) rover has its robotic arm unstowed with an

instrument in close proximity to a rock target. Image Credit:
NASA/JPL-Caltech.

one of the latest software updates made to the NASA Mars
Science Laboratory (MSL) Curiosity Mars rover.

On August 6, 2012, the Curiosity rover landed on Mars and
began the surface phase of its mission. A Mars solar day (sol)
is approximately 39 minutes and 35 seconds longer than the
24 hour Earth day. Curiosity’s design lifetime was to survive
at least one Mars year (687 Earth days). During its lifetime,
Curiosity has mission goals to drive at least 20 kilometers
(km), operate its arm joints with specific goals given in Table
1, and acquire at least 27 drill samples.

August 6, 2020 (sol 2857) marked the eight-year anniversary
of the landing of the Curiosity rover on Mars. Over those
eight years, Curiosity had driven 23,319.0 meters [5] and ac-
quired 28 drill samples, thus far exceeding its design lifetime
by 6.1 Earth years, its 20 km mobility objective by 16.6%,
and its drill sample objective by 3.7%. The arm joint with the
most use has been the turret, which has reached 35.3% of its
expected lifetime number of revolutions.

The other NASA spacecraft that have landed successfully on
the Martian surface have been the Mars Pathfinder (MPF)
Sojourner rover (July 4, 1997) [6], the twin Mars Exploration
Rovers (MER) Spirit and Opportunity (January 3 and Jan-
uary 24, 2004, respectively) [7], the Phoenix lander (May
25, 2008) [8], and the Interior Exploration using Seismic
Investigations, Geodesy and Heat Transport (InSight) lander
(November 26, 2018) [9]. NASA’s Mars 2020 (M2020)
Perseverance rover launched from Cape Canaveral, Florida
on July 30, 2020 and is scheduled to land on Mars on
February 18, 2021.
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Table 1. MSL robotic arm required joint revolutions over its
lifetime, and actual joint revolutions over the first 8 years of

the mission.

Joint Required Revs Actual Revs
1 9,095 1,422.9
2 9,025 1,276.9
3 9,095 2,035.4
4 11,543 3,186.1
5 11,543 4,070.7

Table 2. MSL key robotic arm specifications.

Specification Value
Degrees of freedom 5
Arm length (from the
base to its turret center)

2.2 m

Mass without turret instruments 67 kg
Mass of turret instruments 24 kg
Operating temperature range –110◦C to +50◦C
Non-operating temperature range –128◦C to +50◦C

All of these spacecraft have a robotic arm except for the
Sojourner rover. MSL’s robotic arm is the fourth to operate on
the surface of Mars [10][11]. The Perseverance robotic arm
is kinematically nearly identical to the Curiosity arm, having
five degrees of freedom, similar link lengths, and the same
actuator layout. Figure 1 illustrates the relative rover size of
the three rover missions that have operated on the surface of
Mars.

The fact that the rover arms (MER, MSL, and M2020) have
five degrees of freedom generally means that their inverse
kinematics algorithms are more complex than for the lander
arms (Phoenix and Insight) which have only four degrees of
freedom. While the arm flight software used for MSL was in-
herited from MER, MSL’s mission requirements necessitated
a new ability to control the turret orientation relative to the
gravity vector.

The more complex generalized inverse kinematics were im-
plemented to facilitate this capability. And while Persever-
ance does not require significant gravity relative command-
ing, not all tools have been physically mounted such that they
meet the assumptions of the standard tool inverse kinematics,
and thus these generalized inverse kinematics are required
there for tool placement as well.

The goal of the MSL mission is to explore and quantitatively
assess the habitability and environmental history of the Gale
crater field site, which includes the landing ellipse and the
adjacent lower portion of Mount Sharp [12]. Proximity
science campaigns are performed in between drive campaigns
using the Sample Acquisition, Processing, and Handling (SA-
SPaH) system.

A key mechanism in the SA-SPaH system is the 5 degree-
of-freedom robotic arm, which is responsible for accurately
placing five turret-mounted instruments on targets selected
by the Science Operations team (see Figure 2). The five
instruments on the rotating turret are a drill capable of cap-
turing rock samples, a Mars Hand Lens Imager (MAHLI)
camera, a Dust Removal Tool (DRT), an Alpha Particle X-

Figure 2. A picture of Curiosity inside the JPL Spacecraft
Assembly Facility during pre-launch testing on June 3, 2011,

illustrating the five degrees of freedom provided with the
robotic arm shoulder azimuth, shoulder elevation, elbow,

wrist, and turret joints. Image Credit: NASA/JPL-Caltech.

Table 3. Flight software full updates and cold patches for
surface phase on Curiosity through sol 2903.

Release First Use Update Type
R9.4.7 Sol 1 Full Update (Cruise)

R10.5.7 Sol 5 Full Update (Cruise)
R10.5.8 Sol 217 Cold Patch
R10.6.4 Sol 264 Full Update (Surface)
R11.0.4 Sol 446 Full Update (Surface)
R11.0.5 Sol 772 Cold Patch
R12.0.3 Sol 875 Full Update (Surface)
R12.0.4 Sol 2808 Cold Patch

Ray Spectrometer (APXS), and a Collection and Handling
for In-Situ Martian Rock Analysis (CHIMRA) device. MSL
key robotic arm specifications are shown in Table 2.

Proximity science decisions are guided by MSL’s long-term
strategic science plan and are subject to changes due to near-
term science objectives and engineering constraints arising
from terrain features not evident when planning from orbital
images. Over the first eight years, robotic arm motion has
been commanded on 1310 sols out of 2857 sols (45.9%).

Updates to Curiosity’s flight software are rare and typically
respond to critical hardware or software defects, or introduce
new capabilities helpful for mission success. Thus far during
the mission, Curiosity’s flight software has been fully up-
graded five times, patched and saved into nonvolatile storage
three times (as cold patches), and twelve hot patches have
been installed to provide incremental improvements where a
full release was not justified. All updates that were saved
into nonvolatile storage are summarized in Table 3. The most
common patching method, however, is a hot patch, which is
applied to flight software in RAM after the primary Rover
Compute Element (RCE) board has booted up [13].

Hot patches can vary in complexity, from simply replacing
the value of a single variable to replacing an existing ca-
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pability with a new capability requiring substantial amounts
of new code. An example of a complex hot patch was the
replacement of constant wheel speed control with a terrain-
adaptive wheel speed control algorithm in 2017, in an effort
to reduce the wheel damage rate [14].

A hot patch to fix an issue in the robotic arm generalized
inverse kinematics was developed, tested, and flown in 2019.
After the start of the surface mission, it was discovered
that the robotic arm generalized inverse kinematics could
produce erroneous solutions. The root cause is believed to
be numerical instability in the quartic root finder used when
solving inverse kinematics. In theory, this could result in
the robotic arm instruments being commanded to unintended
positions, for example, below the terrain surface.

After the development of the arm kinematics hot patch and a
Validation and Verification (V&V) test campaign on Curios-
ity testbeds, the patch was uploaded to Curiosity on sol 2642.
A checkout test of the patch was performed on Curiosity on
sol 2657, and nominal use of the patch began on sol 2658.
In the following sections, we describe the steps in integrating
the arm kinematic hot patch into Curiosity’s flight software,
from the discovery of the bug to its nominal use in flight.

2. DISCOVERY OF THE BUG
The Curiosity robotic arm software module employs a variety
of inverse kinematics functions. These inverse kinematics
functions compute the arm joint angles necessary to place the
desired tool at a given pose. Most of the inverse kinematics
work is calculated by a standard tool inverse kinematics
function. The generalized inverse kinematics function is only
used in cases where the assumptions made by the standard
tool inverse kinematics cannot be met.

During software development of the Perseverance robotic
arm software module, which uses the same generalized in-
verse kinematics code as the Curiosity rover, new unit tests
were written to validate the generalized inverse kinematics
function. While executing the new unit tests on the Perse-
verance arm module, there were failures which exposed a
potential Curiosity rover vulnerability to robotic arm colli-
sions during arm motions that use the generalized inverse
kinematics.

Each unit test starts with a given set of joint angles and a tool
control point (TCP). The forward kinematics are run to com-
pute the end effector pose corresponding to those joint angles
and TCP. Next, the inverse kinematics are computed using
the TCP and calculated end effector pose. This generates sets
of joint angles that should result in the specified end effector
pose. To verify the inverse kinematics are working correctly,
three checks are performed:

1. The inverse kinematics finds at least one solution. We
know a valid solution exists because we started with a set
of joint angles that produces the end effector pose given
as input to the inverse kinematics.

2. The original joint angles are reproduced by the inverse
kinematics. It is possible that the inverse kinematics
locates alternate solutions (there can be up to 8 solutions
for a given end effector pose), but does not find the
original joint angles we started with. If this happens, the
inverse kinematics is not finding all valid solutions.

3. All reported joint angle solution sets result in the spec-
ified end effector pose. For this check, each joint angle

Table 4. Number of violations that occurred during
3,749,460 unit test cases.

Violation Linux
Workstation

VSTB
Testbed

The inverse kinematics DOES
NOT find at least one solution

20,167
(0.54%)

20,168
(0.54%)

The original joint angles are
NOT reproduced by the
inverse kinematics

113,857
(3.04%)

113,854
(3.04%)

All reported joint angle
solution sets DO NOT result
in the specified end effector
pose

105,315
(2.81%)

105,310
(2.81%)

set is run through the forward kinematics to compute the
end effector pose. This should match the end effector
pose given as input to the inverse kinematics.

During generalized inverse kinematics unit testing, the user
can specify how frequently one of the five joint angles should
be varied. An increment of 18◦ was selected for varying
all five joint angles between their min and max values, one
joint at a time, which resulted in 937,365 unique sets of joint
angles. Four TCPs were selected and each TCP was tested
with the 937,365 unique sets of joint angles for a total of
3,749,460 unit test cases.

The Perseverance generalized arm kinematics unit test was
initially performed on a Linux workstation and then subse-
quently on the Curiosity Vehicle System Test Bed (VSTB), a
rover testbed containing the same computing avionics hard-
ware as Curiosity. The Linux workstation contains a Pentium
central processing unit (CPU) and the VSTB RCEs contain
a RAD750 PowerPC CPU. As shown in Table 4, violations
of all three of the checks were found. The tolerance used for
the missing joint angles check was 0.974◦ for each joint. The
tolerance used for the erroneous solution check was 5 mm in
distance and a 0.974◦ orientation difference in end effector
pose.

Violations of the first two checks are unfortunate, but not
a safety concern. If a solution to the inverse kinematics
cannot be found, the activity will simply fault out (and this is
generally caught in simulation before commands are uplinked
to the rover). However, violations of the 3rd check are more
concerning. In theory, this could result in the arm being
commanded to unintended positions, for example, below the
terrain surface. The generalized inverse kinematics unit test
resulted in 2.81% of the 3,749,460 cases failing with erro-
neous solutions. The number of violations encountered on the
Linux workstation and the VSTB are slightly different due to
different floating-point hardware on the different CPUs.

Figure 3 illustrates the distribution of position error observed
during the unit test. Of the 113,494 reported solutions with
a position error greater than 5 mm, most (89%) resulted in a
position error of less than 2 cm. However, there were 16 test
cases where the position error was greater than 20 cm, and the
maximum position error was 1.2 meters. Figure 4 illustrates
the distribution of orientation error observed during the unit
test. Of the 367,526 reported solutions with an orientation
error greater than 0.974 degrees, most (81.8%) resulted in
an orientation error of less than 5◦. However, 0.3% of the
orientation errors were greater than 20◦ and the maximum
orientation error was 54.8◦.
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Figure 3. Distribution of the magnitude of position error
observed during the unit test. Most errors were less than 2

cm, but the max error was 1.21 meters.

Figure 4. Distribution of the orientation error observed
during the unit test. The max orientation error was 54.8◦.

3. RISK OF OCCURRENCE ON CURIOSITY
To understand the risk of an erroneous solution occurring
on Curiosity, the operations team determined the number of
commands that can call generalized inverse kinematics (from
a review of the source code), the number of those commands
that have been executed on Curiosity at least once, and the
total number of those commands that have been executed over
the first eight years of the mission. The numbers are listed in
Table 5.

As each of those commands may call generalized inverse
kinematics many times in order to construct a Cartesian
trajectory, it’s non-trivial to determine the total number of
calls that have been made to generalized inverse kinemat-
ics function over this period. The 2,769 total number of
executed commands that made any use of the generalized
inverse kinematics is a lower bound that likely significantly
undercounts the actual number of calls to the generalized
inverse kinematics function.

The unit test was re-run using a position error tolerance of 2
cm and an orientation error tolerance of 5◦. Of the 3,749,460

Table 5. Generalized inverse kinematics usage during the
first 8 years of the mission.

Usage Number
Available commands that can call
generalized inverse kinematics

5

Available commands that have called
generalized inverse kinematics

4

Executed commands that have called
generalized inverse kinematics

2,769

unit test cases, 26,066 cases resulted in either a position error
greater than 2cm or an orientation error of greater than 5◦,
which is a rate of occurrence for this unit test of one per
143.8 calls to the generalized inverse kinematics. It should
be noted, however, that not every bad solution would be used;
a single command that makes use of the generalized inverse
kinematics might return multiple solutions, many of which
need not have a significant error.

This analysis is conservative as it makes no assumption about
the trajectory generation process. The majority of the uses
of the generalized inverse kinematics have been to construct
Cartesian trajectories, where the end effector is moved in an
approximate straight line from the starting pose to the goal
pose. Cartesian trajectories are generated as a series of via
points on the Cartesian straight line between starting and end-
ing poses (which requires computing the inverse kinematics
at every via point). Via points are added to the trajectory
until the deviation from the straight line is below a param-
eterized threshold at the mid-point between each and every
via point. It is very unlikely that a Cartesian trajectory would
be successfully computed if the inverse kinematics produces
erroneous solutions. In that case, additional via points would
likely be added up to the maximum number allowed without
constructing a trajectory that meets the straight-line criteria.
Therefore, as a side effect of this process, erroneous solu-
tions will often result in a fault before any arm motion is
commanded.

The operations team also made an assessment of whether
flight-software fault protection could protect against all er-
roneous solutions. There are general fault protection mech-
anisms designed to protect the robotic arm hardware in the
event of inadvertent contact with rover structure or terrain.
Fault protection scenarios were as follows:

1. The onboard collision model, which is designed to pre-
vent collisions between the robotic arm and the rest of
the vehicle, runs the forward kinematics on the actual
computed joint angles. So if erroneous solutions were
to result in collisions between enabled collision objects,
these will be caught during pre-check and the move will
result in a fault prior to any motion occurring.

2. Unexpected turret instrument contact-switch trips will
result in a fault.

3. Unexpected loads measured by the force sensor will
result in a fault.

4. Pose dependent current limits are designed to limit the
joint torques in the case of a motor stall (which is
what would eventually happen if no other safety checks
tripped and the arm were to make inadvertent contact).

The consensus among robotic arm subject-matter experts is
that there is no guarantee that these fault protection mecha-
nisms are sufficient to prevent damage in all situations, but
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Figure 5. Comparison of planned (simulated) motion of the TCP vs the actual motion from sol 1606 arm activities. The X, Y
and Z values are expressed in Rover Mechanical Frame with X forward, Y right, Z down. The left plot is X vs negative Z

(viewed from right of rover), the middle plot is Y vs negative Z (viewed from rover deck), and the right plot is Y vs X (viewed
from overhead). Thin green lines indicate Tool Frame changes; there is no corresponding turret motion, the TCP simply moves

to a different tool on the turret. The ”workspace” label in the plots just indicates the min and max bounds for each plot.

they are designed to minimize the damage potential to the ex-
tent possible. Given an increasing risk of experiencing a large
position error over time, the project decided to implement a
hot patch to eliminate that risk.

To date, the operations team has not identified a robotic
arm erroneous solution on Curiosity. That’s not to say
that Curiosity has never encountered one, but if it did there
were not any adverse ramifications. Theoretically, it should
be possible to reconstruct the commanded poses and TCPs
used for all Curiosity robotic arm moves commanded by
generalized inverse kinematics and then see if the resulting
joint angles make sense. However, such a task has not been
undertaken because it would require significant effort and
impact resources for higher priority mission tasks. Figure 5
shows one potential avenue of comparison, comparing the
planned vs actual trajectory of the TCP in 3-D over the course
of a whole sol’s activities.

4. MITIGATION
The root cause of this issue is believed to be numerical
instability in the quartic root finder utilized when solving the
inverse kinematics. When the inputs to that solver are not
well conditioned, floating-point numerical issues are believed
to cause erroneous roots to be reported. This issue was
mitigated in two ways using a hot patch.

First, iterative root polishing using Newton’s method was
enabled. The idea here was to correct any erroneous roots
using an iterative method to search for a true root in the
neighborhood of the erroneous one. Root polishing code
already existed in the robotic arm flight software, but was
disabled by default. Enabling root polishing is controlled

by setting the value of a global variable to non-zero, which
is trivial to perform in a hot patch. However, during unit
testing, two bugs were identified in the heretofore unused
implementation of the root polishing code. First, it was
discovered that a conditional expression incorrectly used ≥
(greater or equal) but should have used ≤ (less than or equal).
Secondly, it was discovered that a call to a function containing
Newton’s method had an incorrect integer argument value.
Both of the bugs could also be fixed in a hot patch by poking
corrected assembly code instructions into the flight software
binary image memory locations where the errors exist.

Second, a check of the solutions before returning them was
added. Source code was added to the end of an existing
generalized inverse kinematics function which checks the
results of the generalized inverse kinematics. Every set of
joint angles is run through the forward kinematics to generate
the corresponding end effector pose. This pose is then
compared to the end effector pose given as input to the inverse
kinematics. If the two are different, that solution is discarded.
This only addresses the erroneous solution violations, causing
the kinematics to fail in that case rather than providing a bad
solution. This was implemented as a hot patch by making a
copy of the function with a different function name, adding
the check to the bottom of the new function, and modifying
jumps to the old function to call the new function instead.

These two fixes work in tandem. The first fixes the vast
majority of the violations, and the second acts as a belt-and-
suspenders check to guarantee the arm is never commanded
to an unintended position. Fixes 1 and 2 were made in Perse-
verance robotic arm source code. Unit tests were executed on
a Linux workstation with only fix 1, only fix 2, and combined
fix 1 and 2 enabled.
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Table 6. Number of violations that occurred during
3,749,460 unit test cases after implementing fix 1.

Violation Linux
Workstation

VSTB
Testbed

The inverse kinematics DOES
NOT find at least one solution

0 0

The original joint angles are
NOT reproduced by the inverse
kinematics

29 24

All reported joint angle solution
sets DO NOT result in the
specified end effector pose

0 0

Table 7. Number of violations that occurred during
3,749,460 unit test cases after implementing fix 2.

Violation Linux
Workstation

VSTB
Testbed

The inverse kinematics DOES
NOT find at least one solution

139,650 142,610

The original joint angles are
NOT reproduced by the inverse
kinematics

23,175 21,561

All reported joint angle solution
sets DO NOT result in the
specified end effector pose

0 0

The number of violations that occurred during the 3,749,460
unit test cases on a Linux workstation with fix 1, fix 2, and
combined fix 1 and 2 are shown in the middle column of
Table 6, Table 7, and Table 8, respectively. For fix 2, the
thresholds used to reject joint angles that did not result in
the specified end effector pose was 0.1 mm and 0.1◦. As
expected, the erroneous solutions were eliminated, essentially
being shifted into more failures to find any solutions.

The results for fix 1 and combined fix 1 and 2 were identical.
But because fix 1 does not guarantee complete absence of
any erroneous solutions and fix 2 does, both fixes were
implemented in a single hot patch for Curiosity. On Febru-
ary 6, 2018, the MSL Change Control Board approved an
Engineering Change Request for the flight software team to
develop this hot patch.

During development testing of the hot patch, the unit testing
performed on a Linux workstation was repeated on the VSTB.
The number of violations that occurred during the 3,749,460
unit test cases on the VSTB with fix 1, fix 2, and combined
fix 1 and 2 are shown in the rightmost column of Table 6,
Table 7, and Table 8, respectively. The number of violations
encountered on the Linux workstation and the VSTB are
slightly different due to different floating-point hardware on
the different CPUs.

5. INTEGRATION OF THE PATCH INTO
MISSION OPERATIONS

Flight software updates on a remote spacecraft require careful
planning, testing and review. Flight team members always
keep in mind lessons learned from prior missions, such as the
fact that missions can be lost due to incorrect updates. For
instance, the Viking 1 lander was lost due a software update

Table 8. Number of violations that occurred during
3,749,460 unit test cases after implementing fix 1 and 2.

Violation Linux
Workstation

VSTB
Testbed

The inverse kinematics DOES
NOT find at least one solution

0 0

Missing original joint angles 29 24
All reported joint angle solution
sets DO NOT result in the
specified end effector pose

0 0

inadvertently overwriting some code that was still needed
to point its antenna back to Earth. And the Mars Global
Surveyor mission was eventually lost due to an error in a
memory address written during a parameter update [15].

Updating a complete flight software image requires substan-
tial project resources. Any new capabilities must be tested in
a flight-like manner, and because the entire system is being
redeployed, even unrelated capabilities must be regression-
tested. The results of tests must be reviewed and interactions
with other systems considered. And even once the new soft-
ware has been successfully validated, operational plans must
be made to uplink the new software, sometimes requiring
months of logistical work to arrange sufficient uplink band-
width using the most capable Deep Space Network antennas.

In contrast, hot patches require far less effort. The software
changes are guaranteed to impact only a small number of
functions, eliminating the need to regression-test the whole
system. Uplink bandwidth is typically far less than that
required for a full system update, eliminating the need for
specialized uplink planning. And even if a problem should
occur that reboots the rover into safe mode, the hot patch is
guaranteed not be installed after the reboot, leaving the rover
in a known and consistent state; sequenced commands are not
executed in safe mode, so no patch will be applied.

Arm Kinematics Patch

Once development of this particular software source code
update was completed, it was compiled into a single object
file following standard protocols for Curiosity flight software
hot patches [13]. The arm kinematics hot patch files consist
of a single object file containing the new functionality, and a
shell command script containing VxWorks operating system
commands to load the object file to VxWorks, set the values
of global variables, and poke new address offsets into mem-
ory locations that called the original function. This command
script is executed in each bootup period that requires the arm
kinematics hot patch.

During the Validation and Verification test campaign, the arm
kinematics hot patch was installed on the VSTB and the
robotic arm and fault-protection flight software modules were
regression tested. In addition, a overall systems regression
test was performed called Sol-in-the-Life, which includes
common command and control activities during a typical sol.

Robotic arm testing was also performed with additional
patches under development installed, to verify their com-
patibility with the arm kinematics hot patch. This test in-
cluded some drive commands. At the time this testing was
performed, the VSTB only had a single RCE installed, so
the portion of the overall fault-protection regression test that
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requires two RCEs was performed on the Mission System
Testbed (MSTB), a platform with two RCEs but no actuators.

The arm kinematics patch is hundreds of times smaller than a
full flight software load would be, and the files that comprise
it were able to be completely uploaded on sol 2642. During
a checkout test of the hot patch on sol 2657, the shell
command script was executed to install the hot patch and arm
motion was commanded to exercise the generalized inverse
kinematics. The checkout test was successful and the patch
was approved for nominal use on sol 2658. Since then, the
arm kinematics hot patch has been applied to Curiosity’s
flight software on all sols that contain robotic arm activities.

6. SUMMARY
The robotic arm on the M2020 Perseverance rover is kine-
matically nearly identical to the robotic arm on the MSL
Curiosity rover, having five degrees of freedom, similar link
lengths, and the same actuator layout. In addition, Perse-
verance inherited much of Curiosity’s arm flight software,
including the generalized inverse kinematics.

During unit testing of the Perseverance robotic arm flight soft-
ware module on a Linux workstation with 3,749,460 unique
sets of joint angles, it was discovered that the generalized
inverse kinematics function can generate erroneous solutions
that cause position and orientation error. The average rate
of occurrence of position error greater than 2 cm or orien-
tation error greater than 5◦was one per 143.8 calls to the
generalized inverse kinematics, and the max position error
was 1.21 meters. The unit test results were reproduced on
the VSTB engineering model of the Curiosity rover with
minor differences in the number of violations due to different
floating-point hardware between the Linux workstation and
the VSTB.

Curiosity has not shown evidence of having encountered
a robotic arm erroneous solution – though one may have
occurred without drastic consequences. However, in theory,
an erroneous solution could result in a turret instrument
being commanded to an unintended position, for example,
below the terrain surface. Although there are general fault
protection mechanisms designed to protect the robotic arm
hardware in the event of inadvertent contact with rover struc-
ture or terrain, there is no guarantee that these fault protection
mechanisms are sufficient to prevent damage in all situations.

A code correction was made to the Perseverance source code,
which inherited its robotic arm codebase from Curiosity. The
Perseverance bug fix was then implemented as a hot patch for
Curiosity. The hot patch was uploaded to Curiosity on sol
2642, and after a checkout test on Mars on sol 2657, it was
approved for nominal use on sol 2658.

During the 199 sols between when the patch was approved
for nominal use and the 8 year anniversary of the Curiosity
landing (sol 2857), robotic arm motion has occurred on 93
sols (46.7%) and generalized inverse kinematics has been
called 488 times. The arm kinematics hot patch is applied to
Curiosity’s flight software on all sols that contain robotic arm
activities, eliminating the risk of erroneous solutions from
generalized inverse kinematics. The Curiosity SA-SPaH team
will continue to monitor robotic arm performance and flight
software improvements will be implemented as needed as
Curiosity continues to explore as-yet-unseen terrains.
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