
 

Abstract—The CLARAty camera interface is used for the
acquisition of  images and control of cameras on research
rovers for a number of NASA-supported research projects. A
third revision of the camera interface was recently released.
This paper traces the evolution of this interface over the past
five years and outlines the design and implementation of the
latest version.

I. INTRODUCTION

LARATY (Coupled Layer Architecture for Robotic
Autonomy) is an object-oriented software infrastructure

for the development and integration of new robotics
algorithms, principally for use on rovers [1]. Its purpose is
to provide a common interface to a number of heterogeneous
robotics platforms to simplify the initial development and
reuse of robotics algorithms in the areas of vision[2],
manipulation, navigation[3], and planning[4].  CLARAty
currently supports research rover platforms developed and
used at the Jet Propulsion Laboratory, Ames Research
Center, Carnegie Mellon University, and the University of
Minnesota.

In this paper, we present, in detail, the design of a new
camera interface for use within the CLARAty framework.
CLARAty has been under development since 1999, and
included a camera interface from early on. The first version
of the interface [5] was basic and offered limited
functionality that was not sufficient to support the increasing
demands of robotic image acquisition for planetary
exploration. The primary limitation was that the camera
abstraction was single threaded and did not allow for
functional extensions except along the hardware axis.

The second revision allowed for use in multiple threads
by locking individual cameras during image acquisition.
However, the design did not incorporate locking in the
camera settings placing that burden on the application
developers to keep track of these settings.  This left no way
for a thread to insure that the settings it requested were
applied when acquiring a particular image. It addressed the
extendibility limitation by introducing a bridge pattern [6]
that separated the camera hardware specialization axis from
the camera functional specialization. It also introduced a
capability for logging camera information using a generic
mechanism that has been deployed across all devices.  These
changes led to a design that became significantly more
complex than the first revision and was hence harder to
maintain over time.  The separation of the internal state from
the device abstraction to allow logging created a design with
numerous classes that was hard to adapt and extend.  It also

Manuscript received December 15, 2006.
D. S. Clouse (     Daniel.Clouse@jpl.nasa.gov    ) and Issa Nesnas are with

the Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA.

C. Kunz is with Ames Research Center, Mountain View, CA, USA, and
with Massachusetts Institute of Technology, MA, USA.

required changes to multiple places in the software for
adding new capability.  Needless to say, we were not
satisfied with the complexity and lack of maintainability of
that interface.  The third revision was intended to capture the
best of the first two revisions while adding better support for
multi-threaded applications. The remainder of this paper is
devoted to a description of the new camera interface and the
process by which it was conceived and developed with
occasional reference to the two earlier revisions.

Section II describes the requirements imposed on the new
interface by the rover environment.  Section III discusses and
justifies some of the design decisions made in the
development of the new interface. Section IV discusses some
of the problems encountered in developing an
implementation of the new interface for a particular camera
type.  Section V summarizes the lessons learned from this
enterprise.

II. REQUIREMENTS OF THE NEW INTERFACE

In the early stages of the design process for the third
revision, we developed an extensive list of requirements for
the new interface.  Though most of these requirements were
eventually supported in the final design, some were more
influential than others. In this section we discuss the short
list of most influential requirements.

Common tasks are easy. We have many transient users,
and many users who are not nearly as interested in the
minutia of camera control as they are in working out the
details of their algorithms. These users just want to take
single and multiple synchronized pictures so they can get on
with their work.  Therefore setting up the cameras, adjusting
parameters, and taking pictures must be easy to do.

Full access to hardware. Another class of users is very
interested in having fine control over the camera, as this is
essential to making some algorithms work well. These users
need access to the full functionality of the underlying
hardware, and are willing to put in the extra effort to learn
how to use it.

Implement what is commonly used. Our experience
with the original camera interface motivates our desire to
avoid implementing features in the generic interface that will
not be commonly used across applications particularly if
doing so complicates the implementation. Simplicity is
necessary not only to keep the interface easy to use, but also
to keep it easy to port to new platforms, and maintain.
Implementing the union of all possible functions leads to a
system that is harder to adapt and maintain.  Implementing
the minimal set (intersection of all functions) leads to a
system that requires extensions for every practical
application, thus increasing complexity.  We adopted an
approach that lies somewhere between these two extremes.
For specialized features, waiting until a feature is needed
allows the development of a better understanding of the
requirements of that feature. In particular, a number of
features have been identified as not immediately necessary

A Reusable Camera Interface for Rovers
Daniel S. Clouse, Issa A. D. Nesnas, and Clayton Kunz

C



for our purposes. These include video, timeout on image
acquisition, and returning the same image to two or more
tasks when image requests appear simultaneously. Adding
new features as they are needed may be accomplished
through inheritance, or by adding new member functions to
the base class.

Stable interfaces. To the extent possible, we would like
our interface to be defined well enough that users are not
required to change code when they change the type of
camera. This is especially difficult when it comes to
controlling the myriad camera parameter settings: shutter
speed, gain, frame rate, etc. Despite recent efforts to
standardize camera control [7][8], there are no widespread
standards for controlling both digital and analog cameras
(with their corresponding frame grabbers). In existing
standards, the meanings of the parameter values are often left
to the camera manufacturers.  For the most common of these
settings we would like to define the meanings of the
parameters in a common way.

Synchronization. Many algorithms require images taken
by multiple cameras to be precisely synchronized in time.
This is particularly evident for stereo algorithms that operate
while the robot is moving. This synchronization requirement
is not limited to stereo processing or to two stereo cameras
however. For example, an algorithm that hands off a feature
that is tracked in one stereo pair to another [9] may need to
precisely synchronize all four cameras.

Transient camera groups. Precise synchronization
requires hardware support for simultaneous image
acquisition. The level of support for this synchronization
varies with the hardware. In particular frame-grabber
hardware is generally capable of synchronizing a large
number of cameras with a micro second latency, while the
Firewire camera interface that we use on some platforms is
capable of synchronizing only 4 cameras at a time. This
Firewire interface does however allow any 4 cameras on the
same bus to be synchronized. Since our rovers often have
more than 4 cameras, a method is needed in the software
interface for indicating which subset of cameras is currently
to be synchronized. We must be able to change this subset
often and with little overhead during processing.

Task Safety. Generally, algorithms are developed in
isolation.  At times, we do need to run these algorithms
simultaneously in separate tasks, however. We would like
these algorithms to know as little as possible about each
other, but still be able to cooperate in the use of these shared
camera resources.

III. INTERFACE DESIGN DECISIONS

In this section, we discuss a number of design problems and
how they were addressed in the final design to make the
interface reusable.

A. Task Safety
One of the most challenging aspects in designing the new
camera interface is the requirement that two or more
independent tasks be able to share the cameras without
explicit cooperation.  There are essentially two kinds of
operations a user performs in interacting with cameras. First,
the user may set or query certain parameters such as image
format, image size, shutter speed, and gain.  Second, the

user acquires an image.  If two processes are using the same
camera, it is possible that process A will change the settings
on the camera between the time process B sets its parameters
and the time it acquires its image.  Some method is needed
to avoid this kind of interaction.

The first revision of the camera classes did not address
task safety. It was limited to a single-threaded
implementation. The second revision made the camera
devices multi-thread safe using locks that were inherited
from a generic device abstraction. If a process grabbed the
lock on a particular camera, no other process was allowed to
use that camera until the lock was released.  Generally, the
implementations for various camera types used this locking
mechanism to lock only the image acquire operation, leaving
users with no way to lock in a set of camera parameter
settings to be used for a particular image. One way to work
around this defect would be to give the user direct access to
the device lock. This would allow a thread to guarantee its
settings are in effect at the time the image is taken.
However, there are problems with this method.

First, to guard against another task changing the camera
settings you must write your code to reestablish your
settings every time you grab the lock.  This requires extra
code to be written at the application level to use the cameras
in a multitasking environment.

Second, it assumes users will write code in a cooperative
manner, releasing the lock when a camera is not in use.  If
this assumption fails, one process can easily starve all the
others. It is tempting to write this kind of non-cooperative
code to avoid the extra work of reestablishing the camera
settings for every image acquisition.

Third, when multiple cameras are involved, it is possible
for the system to become deadlocked. For example, process
A holds a lock on camera 1 while waiting for the lock on
camera 2, while process B holds the lock on camera 2 while
waiting for the lock on camera 1.

To address these problems, in the third revision of the
design we introduced the concept of separating logical and
physical cameras. This concept has since been incorporated
into the implementation of other devices within CLARAty
[10].

There are two kinds of camera objects in the new
interface, logical cameras, and physical cameras.
Implementation of new camera hardware will require writing
one of each. A physical camera represents the camera
hardware. Its API (application programming interface) is
unique to that specific camera type, and reflects the
capabilities and limitations of that particular camera
hardware.  Our intent is that no more than one physical
camera object exists for any camera on the system.  This
object is shared among all threads. A physical camera is
responsible for:

1 .  getting/setting camera parameters within the
physical device,

2. acquiring an image from the physical device,
3. implementing a locking mechanism which allows a

logical camera to block any other logical camera
from setting camera parameters, or acquiring an
image.

In contrast, a logical camera represents the user's view of
the camera.  Parameter settings made in one logical camera
do not affect the state of another logical camera, even if both



refer to the same piece of camera hardware. The
implementation of a logical camera is required to maintain a
local cache of the current user's view of the camera state.
The acquire member function of the logical camera affects an
atomic operation which both sets the physical camera
parameters to match the user's view of the camera state and
acquires a single image.

The following code demonstrates how to declare the
required objects and acquire images.

1:  Image<uint8_t> img1, img2;
2:  X_Hw_Camera  hw_cam1(id_unique_to_hardware);
3:  X_Camera     cam1(hw_cam1);
4:  cam1.set_brightness(0.35);
5:  cam1.acquire(img1);
6:  cam1.acquire(img2);

Line 2 declares the physical camera for a camera of type X.
The constructor takes an identifier to specify to which
camera hardware this object refers. It is an error to call this
constructor more than once with the same identifier across
all threads. In line 3, the physical camera object serves as an
argument to the logical camera constructor.  More than one
such constructor call may reside in different threads, each
referring to the same physical camera. In line 4, the settings
affecting the brightness of the returned image are apparently
changed.  This change does not actually take effect until line
5 when the acquire member function is called. Since the
acquire call is an atomic operation that both sets the camera
parameters and takes the picture, we are assured that the
brightness setting will be 0.35 when the image is taken. If
some other process were to change the brightness setting on
the physical camera between lines 5 and 6, it would be
restored to 0.35 before the image was taken a second time in
line 6.

Note that using this interface, the user need not write any
special code to maintain task safety. The code written for
single-threaded operation is identical to that required for
cooperation between multiple threads.

This does complicate the implementation of the logical
camera however.  The logical camera must maintain a cache
containing the state of all the camera settings. This cache is
updated by the set_brightness member function. During the
execution of the acquire member function, the values of all
the settings are transferred to the physical camera while the
physical camera in under lock. To avoid unnecessary
overhead, code is included to make sure this transfer only
occurs if the cached values or the camera settings have
actually changed.

B. Design Pattern
The second revision of the Camera interface (Fig 1) separates
the hardware adaptation from the functional adaptation using
a bridge pattern [6]. The Camera class defines the user
interface.  However, the implementation of a specific camera
is derived from a generic Camera_Impl class. A Camera
contains a pointer to a Camera_Impl and all interaction with
the camera hardware is effected via Camera_Impl member
functions.

This design was chosen to make it easy to add new
functionality. For example, to add video one could write a
Video_Camera that inherits from the Camera class, adding
new member functions, start_video, end_video, and

acquire_video.  If these new members could be written using
calls through the Camera_Impl interface, then video would
be added for all types of camera hardware without changing
all the various camera implementations.

Camera

Functional Hierarchy Hardware Hierarchy

DeviceDevice_Group

Camera_Group

X_Camera_Group

Generic Classes Adaptation Classes
Hardware Classes

X_Camera_Impl

Camera_Impl

Device_Impl

Camera is
extendable

Fig 1. Revision 2 Camera Hierarchy.

Camera

Logical Camera Hierarchy Physical  Camera

DeviceDevice_Group

Camera_Group

X_Camera_Group X_Hw_CameraX_Camera

Generic Classes
Adaptation Classes
Hardware Classes

Camera

DeviceDevice_Group

Camera_Group

X_Camera_Group X_Hw_CameraX_Camera

Fig 2. Revision 3 Camera Hierarchy.

The bridge pattern turned out to be a poor design choice.
It introduced significant complexity without offering much
in the way of flexibility. On the complexity side of the
equation, the pattern resulted in parallel hierarchies with
similar APIs.  The API of the Camera_Impl ended up being
as detailed as the Camera API, effectively doubling the
complexity of the design. On the flexibility side of the
equation, it turned out that there was little need to add new
functionality to the interface. In addition, it is not clear that
adding functionality as complicated as video could be
accomplished without adding new functionality to the
Camera_Impl interface as well, so the presumed advantage of
the bridge pattern went unrealized.

In the new design, revision 3, (Fig 2) the implementation
of a physical camera class is left completely unconstrained
by any base class.  You can think of a physical camera as a
device driver. The physical camera need only support those
functions required by the logical camera implementation
specific to a particular piece of camera hardware.

In contrast, all logical cameras are derived from the base
Camera class by simple inheritance. The Camera class
defines a set of member functions used to perform all the
common operations on a camera (Fig 3). This allows high-
level code to be written using the Camera interface without
knowing the type of physical camera being used.



Each derived logical camera implementation must provide
enough state to remember the settings desired for this
camera, and the glue logic to turn the base Camera class
member functions into calls to the physical camera interface.
Low-level operations specific to a particular type of camera
may also be supported by a logical camera implementation
by adding new member functions.

We hope that sacrificing some of the unused flexibility of
the bridge pattern will result in a design which is simpler,
more maintainable, and easier for users to understand.

C. Camera Parameter Settings
In keeping with our requirement to implement only what is
commonly used, we have chosen to include only three
parameter setting member functions in the base Camera
class: set_contrast, set_brightness, and set_exposure.
Brightness is a multiplicative parameter controlling gain,
whereas contrast is an additive one. Set_exposure controls
the exposure time. These parameters are the most commonly
used, and are supported in some measure on most camera
hardware.  Setting these parameters will be especially easy
for the user because the same interface is used for all
cameras.

To meet the requirement of well-defined interfaces, we are
providing common meanings for all of these parameters.
Exposure time is defined in seconds. For each camera,
brightness takes on values between 0.0 and 1.0, which span

the entire range of gain settings. Similar to brightness,
contrast takes on values from 0.0 to 1.0 spanning the entire
range of values available for any particular camera.

For the benefit of power users, additional parameters may
be supported by specific camera implementations to allow
full control of the hardware.

D. Support for Image Formats
The set_format member function allows selection of the
image format to be returned by acquire. The set_format
function also specifies the size of the image, as the range of
available image sizes is often determined by the format. If a
particular camera does not support the specified image
format, false is returned, and the format is left unchanged.

Two versions of the acquire member function are
supported. One version returns Images containing 8-bit
elements.  The other returns 16-bit elements. The image is
resized, if necessary, to match the geometry expected by the
camera hardware.

For each version of acquire two optional parameters are
included in the prototype.  If timestamp_ptr is not NULL, it
points to an object that will return the time at which the
image was taken. If feature_map_ptr is not NULL, it points
to a Map object for returning the settings of camera
parameters in effect when the image was taken.

CLARAty defines a generic Image data type that can
support color images in more than one way. Rather than
allow the Camera class to determine the specific
representation for all color images, we decided to return
images using the memory layout defined by the physical
camera.  For example the first 4 bytes of the Image returned
from acquire when the camera is in YUV422 format mode
will contain the U, Y1, V, and Y2 components in that order.
Using these components, it is possible to build up the first
two pixels in an RGB image.  That translation from YUV to
RGB is not performed within the Camera class however.
Making this translation an explicit function call outside of
the Camera class allows us to keep the Camera class
relatively simple, and will make it easy to extend the class
to new formats in the future.

E. Camera Groups
Our solution for specifying the set of cameras to synchronize
is embodied in a new class hierarchy based on class
Device_Group.  You will notice in Fig 2  the similarity
between this new Camera_Group hierarchy and the Camera
hierarchy.

The Device_Group base class (Fig 4) implements what is
essentially a container that holds a group of pointers to

class Camera : public Device {
public:
  enum IMAGE_FORMAT {MONO8, YUV411, YUV422,
                                           YUV444, RGB8, MONO16, RGB16};

  virtual bool     set_contrast(double gain_frct) = 0;
  virtual double get_contrast() const = 0;
  virtual bool     set_brightness(double offset_frct) = 0;
  virtual double get_brightness() const = 0;
  virtual bool     set_exposure(double seconds) = 0;
  virtual double get_exposure() const = 0;

  virtual bool     set_format(IMAGE_FORMAT format,
                                        int width_pixels,

                                            int height_pixels) = 0;
  virtual IMAGE_FORMAT get_format() const = 0;
  virtual int        get_width()  const = 0;
  virtual int        get_height() const = 0;

  virtual void acquire(Image<uint8_t> & image,
                                   Time*        timestamp = NULL,
                                   Feature_Map* feat_map = NULL) = 0;

  virtual void acquire(Image<uint16_t> & image,
                                   Time*        timestamp = NULL,
                                   Feature_Map* feat_map = NULL) = 0;
};

Fig 3. Simplified Definition of Camera  Class.

class Camera_Group : public Device_Group {
public:

virtual int acquire(vector<Image<uint8_t>*>& im_vec,
                                   vector<Time> *                     ts_vec = NULL,
                                   vector<Feature_Map*> *    fm_vec = NULL);

virtual int acquire(vector<Image<uint16_t>*>& im_vec,
                                   vector<Time> *                       ts_vec = NULL,
                                   vector<Feature_Map*> *      fm_vec = NULL);
};

Fig 5. Simplified Definition of Camera_Group Class

class Device_Group  {
public:
  unsigned int  size() const;
  void          append(Device & device);
  void          remove(Device & device)

                            throw(invalid_argument);

  template <class Sub, class Arg>
  int for_each(bool Sub::*memb_func(const Arg &),
                      const Arg & value);
};

Fig 4. Simplfied Definition of Device_Group class.



Devices. For our purposes, these Devices will be Cameras.
Member functions are supplied to append and remove
Devices from the container. The template function, for_each,
supplies a way for some member function of Camera to be
called for every camera in the group. This allows, for
example, set_brightness to be called to set each camera to
the same brightness level. The value argument to for_each
specifies the brightness level.

The Camera_Group class (Fig 5) supplies new acquire
member functions that take synchronized images from all
cameras in the group.  Two virtual functions allow
acquisition of 8 and 16 bit images.  The caller must supply
a vector of Image pointers in which the images are returned.
Optional vectors return timestamps, and maps of the camera
parameter settings at the time of acquisition.  A default
implementation of the group acquire grabs images from the
cameras in the group in sequential order without true
hardware  synchronization. For true synchronization of
image acquisition for a new camera type X, you need to
derive a new class (X_Camera_Group) from the
Camera_Group base class. The two virtual acquire member
functions will need to be written to support synchronized
acquire for the new X cameras.

The following code demonstrates how to declare the
required objects and acquire synchronized images from a pair
of cameras.

1:  X_Hw_Camera pcam1(id1);
2:  X_Hw_Camera pcam2(id2);
3:  X_Camera    cam1(pcam1);
4:  X_Camera    cam2(pcam2);
5:  X_Camera_Group grp(cam1, cam2);
6:  grp.for_each(set_brightness, 0.35);
7:  vector<Image<uint8_t>  > images(2);
5:  grp.acquire(images);

Lines 1 and 2 declare two physical cameras of type X.
Lines 3 and 4 create logical cameras referring to the physical
cameras just constructed, just as in our previous example. In
line 5, a Camera_Group containing the two cameras is
constructed.  The X_Camera_Group class is  a
Camera_Group object specific to cameras of type X.  This
class allows a group of two cameras to be built by simply
passing them as arguments to the constructor.  In line 6, the
settings affecting the brightness of the returned images are
changed using the for_each function.  Line 7 declares a
vector of two images which are passed to the group acquire
function in line 8.  Acquire resizes the images to match the
physical cameras and returns synchronized images acquired
by the two cameras.

IV. IMPLEMENTATION AND EFFICIENCY CONSIDERATIONS

The common Camera interface was designed for reusability.
It presents to the user an interface that is simple to use and
understand. The apparent simplicity of this interface hides
some vexing implementation problems though. In this
section we discuss some of the design decisions made for
one particular implementation, that of the IEEE1394 (or
Firewire) interface for VxWorks.

Three new classes are included in the implementation. A
class representing a physical camera is  named
MR1394_Hw_Camera. A class representing a logical

camera, and derived from the Camera class is named
MR1394_Camera.  A class derived from Camera_Group is
name MR1394_Camera_Group. The MR in the names refers
to the MindReady IIDC driver interface [11] that this
implementation uses to communicate with the camera
hardware. The IIDC interface specification [7] provides a
common interface allowing MR1394_Hw_Camera to
support a variety of cameras.

A. Fast Synchronized Image Acquisition
In our implementation, synchronization between two or
more cameras is accomplished by putting them into video
mode. The cameras then self-synchronize via the Firewire
bus. Acquiring a synchronized image from a set of cameras
that are already in video mode is fast. It can be accomplished
at frame rates. A naïve implementation of the Camera_Group
acquire operation would enter and exit video mode once for
each acquire operation. This would slow things down by
over 1 second per frame. To avoid this overhead, it would be
nice if we could leave all the camera in video mode all the
time. Unfortunately, as we will see in the following section,
the scarcity of DMA channels and bus bandwidth limit the
number of cameras left concurrently in video mode. Our
solution is to always leave a camera in video mode at the
end of a synchronized acquire. The next acquire operation
determines which cameras to remove from video mode to
free up enough resources to complete its function. In this
way, we avoid the overhead caused by unnecessarily exiting
and reentering video mode.

B. Resource Limits and Multi-Tasking
As we mentioned in the previous section, the number of
DMA channels and total bus bandwidth limits the number
of cameras that can be simultaneously left in video mode.
Specifically, most Firewire cards support only 4 DMA
channels and 320 Mbps for synchronized images. As we
mentioned in section III.E, accommodation for these
limitations was provided in the interface design by
supporting synchronization via transient Camera_Groups.

It is a simple matter to include code in the MR1394
implementation to limit the size of any camera group to 4
cameras, and the bus bandwidth required of any single
acquire opration to 320 Mbps. More difficult is the task of
insuring that neither the 4 DMA channel limit, nor the bus
bandwidth limitation is exceeded by any group of
independent threads.
   The implementa t ion  provides  a  function,
grab_all_resources, which atomically captures all the
resources needed to finish both parameter setting and image
acquisition from all cameras in a Camera_Group, or from an
individual camera (which is equivalent to a Camera_Group
of one). Required resources include exclusive access to the
individual cameras, one DMA channel per camera, and
enough bus bandwidth to transfer all the images at the
current frame rate. If any resource is not immediately
available, the function waits until it is freed by some other
thread. If, after grabbing enough DMA channels, the bus
bandwidth does not allow the new acquire operation to
proceed in parallel with existing acquires, the task will
continue to wait for more DMA channels to be released until
the total bandwidth requirements are met.



The following invariants assure us that the resources
needed to complete an acquire operation will be available in
a short time without the possibility of deadlock:

1 .  Any acquire operation that exceeds total system
resources  fails without grabbing resources.

2. Only one thread at a time is allowed to grab camera
resources. Thus, resource grabbing is effectively an
atomic operation.

3. Any camera resources which are currently unavailable
are held by currently executing acquire operations.

4. All camera resources are released at the completion of
the acquire operation.

5. All acquire operations are of short time duration.

 Some concurrency is lost in this design because it does
not allow multiple threads to concurrently grab camera
resources. More importantly however, the design does allow
multiple threads to acquire images simultaneously if
resources are available.

C. Camera Feature Caching Efficiency
In Section III.A we described how, at the logical camera

level, any of the feature setting member functions (e.g.
set_brightness) do not immediately cause a change to the
camera hardware.  Rather, the value of a new setting must be
cached within the logical camera class, and only applied to
the physical camera at the time of the next acquire operation.
The Firewire implementation does not allow the camera
settings to be changed in video mode, and so a method is
needed for quickly detecting if the settings have changed
since the last acquire to avoid the overhead of unnecessarily
removing a camera from video mode.

To detect this situation, the MR1394_Hw_Camera class
includes a feature setting counter. When a logical camera
changes any of the feature settings on a camera, it increments
that counter. The next time it wants to acquire an image, it
checks the value of that counter to see if it has changed.  If it
has not, it can forgo resetting the features and thus avoid the
expense of leaving video mode.

V. LESSONS LEARNED

In conclusion, we would like to highlight some lessons
learned as a result of our experiences.  First, designing good
reusable interfaces is not easy. We believe that the process of
architecting and designing an interface is essential to
producing a useable product. However, there is no substitute
for the experience gained from implementing and using the
interface over a period of time. When problems are
discovered, rearchitecting and redesigning the interface
incorporating the insight gained from experience will result
in a better design.

Second, our experience with the second revision of this
interface suggests that too much flexibility is not necessarily
a good thing. The added flexibility may add complexity that
makes the interface more difficult to understand and
maintain. In the third revision, in order to simplify the
design, we removed some flexibility, making it more
difficult to extend the Camera class along the functional
axis. That increased simplicity allows us to concentrate on
supporting features, which are more likely to be needed by
users, such as, improved support for multitasking.

Third, implementing a reusable interface design is
necessarily more complicated than implementing a design
that is not reusable. To support multiple camera types in our
design, it is necessary for us to hide the details of any
particular type of camera from the user. This complicates the
code required to support any particular type of camera, as
demonstrated in section IV. The increased complexity
inherent in a reusable interface is not always justifiable.
However, in cases, such as CLARAty, where a significant
number of applications use the interface, the pay off for the
increase complexity comes from the ability to leverage
common infrastructure and algorithms across multiple
platforms.

ACKNOWLEDGMENT

Our thanks go to Lorenzo Fluckeiger, Richard Madison,
Michael McHenry, and Hans Utz for the many useful ideas
they contributed.  We would also like to thank I-Hsiang
Shu, Jeffrey Edlund, Nik Melchoir, and Robert Steele for
participating in the code review process.  Our thanks also go
to our sponsor, the NASA Mars Technology Program, for
their support.  The work described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology with contributions from NASA Ames Research
Center and Carnegie Mellon under a contract to the National
Aeronautics and Space Administration.

REFERENCES

[1] I. A. Nesnas et al., “CLARAty: Challenges and Steps Toward
Reusable Robotic Software,” International J. of Advanced Robotic
Systems, vol. 3. no. 1., 2006, pp. 23-30.

[2] I. A. Nesnas et al., “Visual Target Tracking for Rover-based
Planetary Exploration,” Proceedings of the IEEE Aerospace
Conference, Big Sky Montana, March 2004.

[3] C. Urmson, R. Simmons, I. Nesnas, “A Generic Framework for
Robotic Navigation,” Proceedings of the IEEE Aerospace
Conference, Big Sky Montana, March 2003.

[4] T. Estlin et al., “Continuous Planning and Execution for an
Autonomous Rover,” Proceedings of the Third International NASA
Workshop on Planning and Scheduling for Space, Houston, TX,
October 2002.

[5] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras, H. Das,
"CLARAty: Coupled Layer Architecture for Robotic Autonomy."
JPL Technical Report D-19975, Dec 2000.

[6] E. Gamma et al., “Design Patterns: Elements of Reusable Object-
Oriented Software”, Reading, Mass: Addison-Wesley, 1995.

[7] 1394 Trade Association, “IIDC 1394-based Digital Camera
Specification”, ver. 1.31, 2004.

[8] Specification of the Camera Link Interface Standard for Digital
Cameras and Frame Grabbers, October 2000.

[9] R. Madison, “Improved Target Handoff for Single Cycle Instrument
Placement,” Proceedings of the IEEE Aerospace Conference, Big
Sky Montana, March 2006.

[10] I. A. Nesnas, “The CLARAty Project: Coping with Hardware and
Software Heterogeneity”  in the Software Engineering for
Experimental Robotics, Springer Tracts on Advanced Robotics, ed.
Davide Brugali, 2006.

[11] Mindready Solutions Inc., “Instrument & Industrial Digital Camera
IIDC IEEE-1394 Protocol Reference Manual”, ed. 1, rev. 2, 2003.


