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Multiagent Teleautonomous Behavioral Control

Khaled S. Aliy and Ronald C. Arkinz

Abstract: Multiagent schema-based reactive robotic systems are complemented with a new behavior
controlled by a human operator. This enables the society to be a�ected as a group rather than
individually. The reactive control system views the operator as another behavior. The operator
can also control the personality of the robot group. Simulation results are presented for foraging,
vacuuming, and herding tasks. Results on real robots are presented for maneuvering out of a box
canyon and squeezing through a small space. Teleautonomous operation of multiagent reactive systems
was demonstrated to be signi�cantly useful for some tasks, less so for others.
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1. Introduction

R
EACTIVE multiagent robotic societies are poten-
tially useful for a wide-range of tasks. This in-

cludes operations such as foraging and grazing [1], [7],
[12] which have applicability in service (vacuuming and
cleaning), industrial (assembly) and military (convoy
and scouting) scenarios.
Although some promising results have been achieved

in these systems to date [8], purely reactive systems
can still bene�t from human intervention. Many
purely reactive systems are myopic in their approach:
they sacri�ce global knowledge for rapid local interac-
tion. Global information can be useful and it is in this
capacity that a human operator can interact with a
multiagent control system.
A related problem in teleoperation is that the oper-

ator is potentially overwhelmed by the large amount
of data required to control a multiagent system in a
dynamic environment. This phenomenon is referred
to as cognitive overload. The approach described in
this paper provides a mechanism to signi�cantly re-
duce the human operator's cognitive and perceptual
load by allowing the reactive system to deal with each
robot's local control concerns. Two principal mecha-
nisms to achieve this are to allow the operator to act
either as a constituent behavior of the society or to
allow him/her to supervise the societal behavioral sets
and gains, acting only as needed based upon observ-
able progress towards task completion.
In this research, the operator is allowed to control

whole societies of agents; not one robot at a time, but
rather controlling global behavior for the entire mul-
tiagent system. This is a straightforward extension of
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our work in both multiagent robotic systems [1] and
teleautonomy [2]. The end product is a simple way for
a commander to control large numbers of constituent
elements without concern for low-level details (which
each of the agents is capable of handling by them-
selves). In essence, the human operator is concerned
with global social strategies for task completion, and
is far less involved with the speci�c behavioral tactics
used by any individual agent.

2. Single Agent Teleautonomous Control

Our previous results [2] in the integration of reac-
tive and telerobotic control in the context of single
agents provide the basis for our extension of this con-
cept into multiagent societies. In this earlier work we
have shown that a human operator can interact with
a reactive robot in at least two di�erent ways:

� Operator as a schema: Here the human acts
as an additional behavior in the already exist-
ing collection of behaviors that are active within
the robot. Using a schema-based methodology [3],
each active behavior contributes a vector that is
related to the agent's intentions - such as to get
to a particular object, not crash into something,
etc. The operator's intentions are introduced at
the same level - as another schema contributing
forces in the same manner as all the other behav-
iors do.

� Operator as a behavioral supervisor: In this
case, the human changes the behavioral settings
of the robot as it moves through the world, essen-
tially changing its \personality". For example,
the robot can become more aggressive by increas-
ing its attraction towards a desirable object or
decreasing its repulsion from obstacles.

In schema-based reactive control [3], each active be-
havior (schema) provides its own reaction to the en-
vironment by creating a vector response to a speci�c
perceptual stimulus. The entire set of vector outputs
created by all active schemas is summed and normal-
ized and then transmitted to the robot for execution.
No arbitration is involved, rather a blending of all ac-
tive concurrent behaviors occurs. The system at this
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level is completely reactive, not retaining knowledge
of the world or the agent's past performance.

3. Multiagent Teleautonomous Control

Our laboratory is conducting extensive research in
multiagent robotic systems [1], [4], [5] both in simula-
tion and on our 3 Denning Mobile Robots. Robotic
systems are speci�ed as a �nite state acceptor that
speci�es the behavioral (schema) assemblages [9], [10]
and the transitions between them. An example state
machine for a foraging task appears in Figure 1. In
this �gure there exist three distinct high-level behav-
ioral states for each agent:

� Wander - which consists of a high gain and long
persistence noise schema that is used to produce
wandering while having moderate inter-robot re-
pulsion to produce dispersion coupled with signif-
icant obstacle repulsion (avoid-static-obstacle
schemas).

� Acquire - which consists of using a move-to-goal

schema to move towards a detected or reported
attractor (depending on the communication strat-
egy used [5]) with a reduced inter-robot repulsion
to allow for multi-robot convergence on attractors
and continued obstacle avoidance (again provided
by the avoid-static-obstacle schema). A small
amount of noise is still injected into the system
to facilitate navigation [3].

� Deliver - which occurs after acquisition of the at-
tractor and results in delivery of the object back
to homebase by one or more agents. The same be-
haviors are used as in the acquire state with the
goal location now being the homebase.

Deliver

Acquire
Encounter

Deposit
Attach

Wander

Fig. 1 Behavioral States for Foraging Task.

Space prevents a full discussion of the mechanisms
for reactive multiagent control. The interested reader
is referred to [1], [5] for more information.

3. 1 Implementation

We have developed a multiagent teleautonomy sys-
tem called Telop. In Telop, teleoperation is im-
plemented both as an additional schema in the sys-
tem (the operator-as-a-schema approach) and as a
method for modifying the behavioral parameters (the
operator-as-a-behavioral-supervisor approach).
We will discuss the operator-as-a-schema approach

�rst. Based on the instructions of a human agent,

the teleautonomy schema contributes a vector in the
same way as do the other schemas, such as move-

to-goal or avoid-static-obstacle. Unlike the other
schemas, however, which produce di�erent vectors for
each robot, the teleautonomy schema produces the
same output for each of the robots in the team. Thus,
if the human agent tells the robots to go north, then
all the robots receive the same vector. The output pro-
duced by the teleautonomy schema is summed with
all of the vectors produced by the other active schemas
in each agent to produce a combined vector which
determines the overall direction and rate of travel of
the robot. In this way, the robots use environmental
knowledge provided by the human agent in conjunc-
tion with their other goals, such as not to collide with
obstacles or each other, and trying to move toward
the given goal, rather than having the operator's goals
completely override the robots' other behaviors.
The human agent has control over both the direction

and magnitude of the vector produced by the teleau-
tonomy schema. An on-screen \joystick", as shown
in Figure 2, is used to input the desired direction and
magnitude.

Fig. 2 Main window with on-screen joystick.

When acting as a behavioral supervisor, the human
operator adjusts the behavioral parameters of the so-
ciety. Each of the behaviors has one or more param-
eters associated with it, such that the values deter-
mine exactly how the robots' will react. For instance,
one parameter of the avoid-static-obstacle behav-
ior is the gain. Increasing this value linearly increases
the magnitude of the vector output by this behavior.
This has the e�ect of causing the robot to exhibit
a stronger aversion to obstacles. The operator can
even control the gain for the teleautonomy schema,
thereby changing the maximum magnitude that the
vector given through the joystick can have. For more
information about the behavioral parameters, see [3].
The human operator can also manipulate the be-

havioral parameters in terms of abstract personality
traits. Making parameter changes in terms of person-
ality traits allows a user, with no knowledge about the
underlying behaviors and their parameters, to e�ec-
tively modify the robots' behavior. Abstract param-
eters, which represent general kinds of behavioral or
personality adjustments, are available for adjustment
by the human operator. In our current system these
characteristics include Aggressiveness andWanderlust.
The value of an abstract parameter controls the val-
ues of several individual low-level parameters. The
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Fig. 3 Personality window.

operator uses slider bars (see Figure 3) to modify the
value of an abstract personality trait, thus changing
the global performance of the overall society.
For instance, the abstract parameter Aggressiveness

determines the amount that the robot is focussed on
achieving its goal. Aggressiveness controls the rel-
ative gains of the move-to-goal and avoid-static-

obstacle behaviors. Increasing the Aggressiveness pa-
rameter results in an increase in the move-to-goal

gain and a decrease in the avoid-static-obstacle

gain. The e�ect produced is to cause the robots to
be more strongly attracted to their goal location and
be less repulsed by obstacles in their way, generally
resulting in more direct albeit hazardous paths. Like-
wise, decreasing aggressiveness results in a decrease
in the move-to-goal gain and an increase in the
avoid-static-obstacle gain, producing safer behavior
around obstacles but generally yielding longer paths.

Wanderlust represents the desire of the robot to
randomly explore the terrain and how much atten-
tion is given to any goal-oriented behaviors. Wan-
derlust controls the gains of the noise and formation

(which tries to keep the robots in a predetermined spa-
tial formation) behaviors. Increasing the Wanderlust
causes the robot to move more randomly and be less
concerned with maintaining formation with the other
robots.
Both the operator-as-a-behavioral supervisor ap-

proach and the operator-as-a-schema approach can be
used at any time during the robots' mission, so long
as the teleautonomy schema is active. The operator
can choose to use either method, both methods si-
multaneously, or neither method when controlling the
robot group.

4. Simulation Experiments

Telop was tested on �ve di�erent tasks. Three ap-
plication tasks were tested in a simulation environ-
ment. These tasks include foraging, grazing, and herd-
ing. The three simulation experiments were conducted
using the operator-as-a-schema approach.

4. 1 Simulation Environment

The system was tested on a graphical simulation en-
vironment for three di�erent tasks. The objects repre-

sented in the simulation environment include robots,
obstacles, and attractors. Each robot's trail is de-
picted by a broken line. Every robot uses the same set
of behaviors (a homogeneous society), but the sensory
input for each is di�erent, depending on the robot's lo-
cation within the environment. The robots can sense
objects within a certain radius around them. They
have the ability to distinguish whether a sensed ob-
ject is an obstacle, another robot, or an attractor.
The agents have a limited form of communication

between themselves. A robot is capable of communi-
cating its current behavioral state or the location (in
absolute Cartesian coordinates) of an attractor that
it is acquiring or delivering [5]. The communication is
simulated by using shared memory. Each agent only
looks at this shared memory when there is no attractor
within its sensing range.
In tasks that require the movement of attractors,

more than one robot is allowed to contribute to the
transport of the object at the same time. The net
e�ect of this cooperation is simulated by having the
robots move the attractor farther during each time
unit if there are more robots carrying it. The distance
traveled while carrying an attractor is determined by
the mass of the object and the number of robots car-
rying it.

4. 2 Tasks

The use of teleautonomy in multiagent systems was
tested in simulation for the tasks of foraging, grazing
(vacuuming), and herding the robots into a pen. In
all three tasks, an operator provided input at his own
discretion, using the operator-as-a-schema approach.
In the foraging task, the robots wander around look-

ing for attractors. When a robot �nds a target ob-
ject, it communicates its location to the other agents
while simultaneously moving to acquire it. After its
acquisition, the robot carries the attractor back to a
homebase, then deposits it, and �nally returns back to
the task of searching for more attractors. If a robot
cannot detect an attractor within its sensory radius,
it checks to see if any other agent has communicated
the location of another candidate goal object. If so,
then the robot proceeds to acquire it. The robots use
the avoid-static-obstacle, avoid-robot, move-to-

goal, noise, and teleautonomy schemas during this
task.
In the grazing task, the robots are placed in an

environment studded with obstacles. Initially, all of
the 
oor that is not covered with an obstacle is \un-
grazed". Each section of the 
oor that is ungrazed
is treated as if it had an attractor on it. That is, a
robot can sense an ungrazed section of 
oor from a
distance, and it can also communicate the presence of
an ungrazed section of the 
oor to the other robots.
When an agent passes over an ungrazed region it be-
comes grazed. The task is completed when a certain
percentage of the 
oor, speci�ed in advance, has been
grazed. The robots normally wander randomly until
an ungrazed 
oor area is detected. The same set of
primitive behaviors is used as in foraging.
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In the herding task, there is a pen, formed of obsta-
cles, with an opening in the simulation environment.
All the agents are initially outside of the pen. The
robots wander aimlessly in random directions for the
duration of the run. The robots are repulsed by the
obstacles and the other robots. The task is to get all
of the robotic agents inside the pen at the same time.
The robots use the avoid-static-obstacle, avoid-
robot, noise, and teleautonomy schemas during
this task.

4. 3 Results

For the foraging and grazing tasks, tests were con-
ducted that compared the total number of steps taken
by the robots to complete the tasks with and without
the help of a human. For the herding task, no compar-
ison could be made between teleoperation and no tele-
operation, because the likelihood of all the robots wan-
dering into the pen by themselves at the same time is
virtually nil. Interesting information was gained about
this task nonetheless.

4. 3. 1 Foraging Results In the tests conducted for
the foraging task, three robots were used to gather
six attractors. The density of obstacles in the envi-
ronment was set to 10%. The total number of steps
required to �nish the task was measured both with and
without teleoperation. If teleoperation is used wisely,
it can signi�cantly lower the total number of steps re-
quired to complete the task by greatly reducing the
time spent in the wander state (i.e., the number of
steps that the robots spend looking for attractors). If
none of the agents currently sense an attractor, then
the operator can assist by guiding the robots in one's
direction. However, once the robots can sense an at-
tractor, the operator should stop giving instructions,
unless the instructions are to deal with a particularly
troublesome set of obstacles. In general, the robots
perform more e�ciently by themselves than when un-
der the control of a human if the agents already have
an attractor in sight. The human's instructions tend to
hinder the robots if they are already moving to acquire
or return an attractor. Indeed, when teleoperation is
used at all times, the overall number of steps required
for task completion often increases when compared to
no teleoperation at all. However, if the human only
acts to guide the robots toward an attractor when none
are currently detected, signi�cant reductions in time
for task completion are possible. The average over six
experimental runs of the total number of time steps
required for task completion when teleoperation was
used in this manner was 67% of the average task com-
pletion time when no teleoperation was used.

An example trace of a forage task without teleop-
eration is shown in Figure 4a. Another trace of the
same forage task with a human operator helping the
robots �nd the attractors when they did not have one
in sensing range is shown in Figure 4b. The robots all
started at the homebase in the center of the environ-
ment. In the run without teleoperation, the robots im-
mediately found the two closer attractors at the lower

right. Then they quickly found the two closer attrac-
tors at the upper right. At this point, the robots did
not immediately detect the remaining two attractors.
Two of the three agents proceeded by chance to the
left and upper left sides of the environment, wandering
unsuccessfully while seeking an attractor. Eventually,
the other robot found the attractor in the lower right
corner, and the other two robots moved to help with its
return. After delivering it to the homebase, the robots
wandered again for a while without �nding the last at-
tractor. Finally, the last attractor was detected and
successfully delivered to homebase. In the same world
with the help of a human, the two protracted periods of
wandering while searching for attractors are avoided.
This indicates the types of environments where the
use of teleoperation for the forage task is most bene-
�cial. The greatest bene�t from teleoperation can be
seen when there are one or more attractors that are far
from both the homebase and the start locations of the
robots. Typically, this is when the robots do not sense
the target objects without wandering for a while.

4. 3. 2 Grazing (Vacuuming) Task Results For the
grazing task, �ve robots were used. A sample run
of a grazing task is shown in Figure 5. In this case,
the robots performed poorly when a large amount of
teleoperation was involved. Teleoperation only proved
useful when the robots had di�culty in locating a
section of ungrazed 
oor. When the robots had al-
ready detected an ungrazed area, they performed bet-
ter without any input from the human operator. The
agents' performance degraded considerably, often tak-
ing several times longer to complete the task, if tele-
operation was used when a robot had already located
an ungrazed 
oor area. Moreover, since remaining un-
treated areas tend to be clustered together in large
patches, the agents typically do not need to spend
long periods of time looking for another ungrazed spot
(which is opposite the case of the foraging task dis-
cussed above). Therefore, the use of teleoperation did
not help signi�cantly with the grazing task. When
teleoperation was used solely to help the robots �nd
ungrazed 
oor area when they were not already graz-
ing, only a 4% improvement in average task completion
time over six runs was observed when compared to not
using teleoperation. Thus, when used wisely, teleop-
eration helped somewhat but not to a large extent.

4. 3. 3 Herding Task Results For the herding task,
�ve robots were herded into a pen that was 36 units
long by 18 units wide, with a 12 unit long door in one
of the longer sides. All of the robots started at one
spot on the side of the pen with the door. In most
test runs, the operator encountered no di�culty with
this task. He was able to herd the robots into the pen
with no problem. In some of the test runs, there were
a few minor di�culties, such as robots wandering back
out of the pen after having been herded in. However,
the human operator was still able to complete the task
without much frustration and in a reasonable amount
of time. The results of a test run for the herding task
are shown in Figure 6.
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(a)

(b)

Fig. 4 Foraging task.
(a) Without Teleoperation. Note that the robots spent
a signi�cant amount of time searching the upper left
corner of the environment, but there are no attractors
in that area.
(b) With Teleoperation. The robots did not spend time
looking for attractors where there are none, because the
human operator guided them in the direction of an at-
tractor when the robots could not sense one themselves.

5. Robotic Experiments

Two generic tasks were tested on two real robots.
These tasks include directing the robots out of a box
canyon and squeezing the robots through small spaces.
The �rst task tested the operator-as-a-schema ap-
proach, while the second task tested the operator-as-a-
behavioral-supervisor approach. Telop was tested on
a pair of Denning MRV-2 mobile robots, each about
three feet tall with a diameter of 32 inches. Each
robot is equipped with a ring of 24 ultrasonic sensors
and shaft encoders. A Sun Sparcstation 5 served as
the base station, running Telop throughMissionLaby

yMissionLab is a system for specifying and simulating multi-
agent robotic missions. MissionLab takes high-level military-
style plans and executes them with teams of real or sim-
ulated robotic vehicles. The source code for Mission-
Lab is available on the World Wide Web at the location
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/

Fig. 5 Grazing Task. The trails of the robots are shown for a
grazing task with teleoperation.

Fig. 6 Herding task. Five robots were herded from a location
outside the pen to the inside of the pen.

[11]. The base station communicates with the robots
using FreeWave radio links. The base station and hu-
man operator were on the third 
oor of the Manu-
facturing Research Center at Georgia Tech, and the
robots were running on the �rst 
oor. The feedback
to the operator consisted of the graphical depiction of
the robots actions relayed in real-time by MissionLab
and walkie-talkie communication between the opera-
tor and a human who was on the �rst 
oor observing
the robots.

5. 1 Tasks

The tasks conducted on Denning mobile robots in-
cluded navigating the robots out of a box canyon
and squeezing them through a tight space. In
both tasks, the robots were using the teleauton-

omy, avoid-static-obstacle, avoid-robot, move-

to-goal, noise, and column formation [6] behaviors.
In the �rst task, a box canyon, constructed from

chairs, was set up in the room. The robots were started
on the side of the room facing the opening of the box
canyon. The robots were instructed to go to a location
on the other side of the box canyon, such that the box
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canyon lay directly along the straight-line path from
the start location to the destination. Since the robots
operate purely reactively in this mode, they normally
would get stuck in the box canyon (as desired for this
experiment) and would need to be helped out by the
human operator.
The task setup for the second task was the same

as the �rst, except that the box canyon had a gap in
it. The gap was su�ciently small so that the robots
could not squeeze through it with the usual default
gain setting for the avoid-static-obstacle behavior.
The robots were provided with this default setting at
the start of the task, so they would normally become
stuck in the box canyon. The human operator should
then be able to increase the robots' Aggressiveness to
forcibly squeeze them through the gap.

5. 2 Experimental Results

For the two tasks involving the two Denning mobile
robots, the runs were videotaped, and a screen cap-
ture was taken of the tracking of the actual robots'
movement from the MissionLab interface. MissionLab
monitors the movement of the robots using informa-
tion from their shaft encoders. This movement is plot-
ted over an underlay depicting the task environment.

5. 2. 1 Box Canyon Results As expected, the two
robots got stuck in the box canyon while heading to
the destination location (see Figure 7a). Using the
operator-as-a-schema approach, the human operator
was able to use the on-screen joystick to steer the
robots out of the box canyon, and around the side
of it (see Figure 7b). After the robots were completely
around the lip of the box canyon and were no longer
in any danger of falling back into it, the operator re-
leased the joystick. Then the robots continued on to
their destination autonomously. A trace of the robots'
movement is shown in Figure 8.

5. 2. 2 Squeezing Results The robots became trapped
within the box canyon while heading to their destina-
tion (Figure 9a). This is a result of the default gain
for the avoid-static-obstacle behavior being set too
high and the gain for the move-to-goal behavior set
too low for the robots to pass through the gap. Us-
ing the operator-as-a-behavioral-supervisor approach,
the human operator slowly increased the robots' ag-
gression until the robots successfully squeezed through
the passageway (see Figure 9b). A trace of the robots'
movement is shown in Figure 10.

6. Analysis

The use of the teleautonomy schema in conjunc-
tion with the robots' other behaviors proved particu-
larly e�ective for the foraging task, improving the task
completion time by 33%, while being less e�ective for
the grazing task (vacuuming), improving task comple-
tion time by only 4%. During foraging, the best re-
sults were observed when teleoperation was used only
to guide the robots in the direction of an attractor
if one had not been previously sensed. For the vacu-
uming task, teleoperation was not signi�cantly better

(a)

(b)

Fig. 7 Box canyon task: (a) The robots are stuck in the box
canyon. (b) The robots are being maneuvered out of
the box canyon using the teleautonomy behavior.
The camera was located 4 
oors above the robots, giv-
ing a birds-eye view of the action. The robots have
circles of white tape on top of them to make them more
visible.

Fig. 8 MissionLab trace of the robots movement during the
box canyon task. The robots became stuck in the box
canyon, and were then herded around the side of the box
canyon by the human operator using the teleautonomy
behavior.
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(a)

(b)

Fig. 9 Squeezing task: (a) The robots are stuck in the box
canyon with a gap. (b) The robots are being squeezed
through the gap in the box canyon by making them
more aggressive.
The camera was located 4 
oors above the robots, giv-
ing a birds-eye view of the action.

than no teleoperation, although minor improvements
were observed. The best results were again seen when
teleoperation was used in guiding the robots towards
ungrazed areas that were outside the sensor (or com-
munication) range of the agents.
Trying to herd the robots into a pen, as in the herd-

ing task described in section 4. 2 is straightforward, al-
though some di�culties can arise, such as robots wan-
dering back out of the pen or being pushed out by the
operator while he is trying to direct other robots into
the pen. Two conceivable improvements can be used
for this task regarding teleoperation. The �rst is to al-
low the operator to turn o� the input from the teleop-
eration schema for speci�c robots but not for others,
allowing the operator to concentrate on the outside
robots without worrying what e�ects his actions will
have on robots already inside the pen. This would pre-
vent the problem of the operator pushing robots back
out of the pen while he is trying to move other robots
into the pen. The other improvement is to allow the
human operator to completely stop a robot's move-
ment when it is inside the pen. In this way, the output
of the teleoperation schema could be thought of as pro-
ducing a vector that nulli�es the vectors produced by
the robot's other schemas. This improvement would
solve both of the problems encountered.
Another important point is that if the human op-

erator is given unrestricted control of the magnitude
of the vector produced by the teleoperation schema, it

Fig. 10 MissionLab trace of the robots movement during the
squeezing task. The robots became trapped in the box
canyon with a gap, but the operator squeezed them
through the passage by increasing their aggressiveness.

is possible for the operator to force a robot to collide
with obstacles and other robots. The operator must be
careful when increasing the gain of the teleautonomy

schema so that this does not occur. It can be a delicate
task to override the output of the noise schema, which
is necessary to cause the robots to quickly move in a
particular direction, while not overriding the avoid-
static-obstacle behaviors.

When increasing the aggression of the robots, the
operator should make small incremental increases until
the robots squeeze through the small space. Then the
operator should decrease the aggression again. If, how-
ever, the operator increases the aggression too much,
the robots may charge through obstacles on their way
to the goal (although this may be consistent with what
the operator wants).

Allowing the operator to give instructions to the
robot group as a whole, but not to individual robots,
is advantageous for reducing the cognitive load on
the operator. However, in the operator-as-a-schema
approach, this group-level instruction can limit the
kinds of tasks that can be accomplished. If the op-
erator needs to instruct the robots to spread out to
cover more area, this type of movement can not be
accomplished with the operator-as-a-schema approach
alone. Spreading out requires the robots to all move
in di�erent directions. This movement to coverage
can, however, be accomplished with the operator-as-
a-behavioral-supervisor approach. By increasing the
Wanderlust, the robots will spread out more. It
can also be accomplished by using the operator-as-a-
behavioral-supervisor method to increase the gain on
the avoid-robot schema.

While the two approaches presented are e�ective for
many kinds of tasks involving multiple agents, some
tasks require individual robots to take actions di�erent
from the rest of the robots. Since we allow group con-
trol only, these tasks are not facilitated by our meth-
ods. Ideally, the operator should control the group
as a whole whenever possible, yet have the capability
to command subgroups or individual robots when the
situation requires.
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Human assistance was found to be useful in cases
when the operator has some global knowledge that the
robots do not have. In cases when the robots can cur-
rently sense the information required to complete the
task, human assistance was shown to be detrimental
to task completion time.

7. Summary

A method by which multiagent reactive robotic soci-
etal task execution can be in
uenced via human inter-
vention has been demonstrated. This method has been
demonstrated for a range of tasks including foraging,
grazing, herding robots into a small con�ned area, ma-
neuvering robots out of a box canyon, and squeezing
robots through a small space. Teleautonomous opera-
tion of multiagent reactive systems was demonstrated
to be signi�cantly useful for some tasks, while less so
for others. In our experiments, this form of human in-
tervention into the execution of tasks for reactive mo-
bile robot groups improved foraging behavior by 33%,
but had a limited impact on grazing behavior. This
form of human intervention also facilitated the congre-
gation of agents into a con�ned area, rescuing robots
from a box canyon, and squeezing robots through a
small space, without overriding the inherent reactive
behaviors of the system. These last three activities
would not have been possible with a strictly reactive
system.

The Telop system has been integrated with the
ARPA UGV Demo II architecture using the STXmcu
mission control system for use on teams of HMMWVs.
The teleautonomy behavior was demonstrated at a
technical demo during Demo C of the UGV project
in the summer of 1995.
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