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 Abstract - A system that enables continuous slip 
compensation for a Mars rover has been designed, 
implemented, and field-tested.  This system is composed of 
several components that allow the rover to accurately and 
continuously follow a designated path, compensate for 
slippage, and reach intended goals in high-slip environments.  
These components include: visual odometry, vehicle 
kinematics, a Kalman filter pose estimator, and a slip 
compensation/path follower.  Visual odometry tracks 
distinctive scene features in stereo imagery to estimate rover 
motion between successively acquired stereo image pairs.  The 
vehicle kinematics for a rocker-bogie suspension system 
estimates motion by measuring wheel rates, and rocker, bogie, 
and steering angles.  The Kalman filter merges data from an 
Inertial Measurement Unit (IMU) and visual odometry.  This 
merged estimate is then compared to the kinematic estimate to 
determine how much slippage has occurred, taking into 
account estimate uncertainties.  If slippage has occurred then a 
slip vector is calculated by differencing the current Kalman 
filter estimate from the kinematic estimate.  This slip vector is 
then used to determine the necessary wheel velocities and 
steering angles to compensate for slip and follow the desired 
path. 
 
 Index Terms – rover navigation, visual odometry, slip 
compensation, kalman filter, kinematics. 
 

I.  INTRODUCTION 

This paper describes the design, implementation, and 
experimental results of an integrated system that enables a 
Mars rover to navigate in a high slip environment.  This 
system enables the rover to accurately follow a designated 
path, compensate for slippage, and reach intended goals 
independent of the terrain over which it is traversing (within 
the mechanical constraints of the mobility system).  The 
system is comprised of several key components that were 
developed and refined for this task and are described in 
detail below.  These components include: visual odometry, 
full vehicle kinematics, a Kalman filter pose estimator, and 
a slip compensation/path following algorithm.  Fig. 2 
provides a high-level functional block diagram of the 
system.  Visual odometry is an algorithm that uses stereo 
imagery to estimate rover motion independent of 
mechanical terrain properties and is described in Section II.  
The full vehicle kinematics, described in Section III, uses 
position sensor inputs from the joints and wheels of the 
rocker-bogie mobility system (see Fig. 1) to estimate rover 
motion.  The Kalman filter merges estimates from visual 
odometry and the onboard IMU to estimate rover motion at 
high sample rates, and is detailed in Section IV.  Because 
both the IMU estimate and the visual odometry estimate are 
independent of the vehicle’s interaction with its 

environment, the motion estimate from the Kalman filter 
can be compared with the motion estimate from the vehicle 
kinematics, which is highly dependent upon the vehicle’s 
interaction with its environment to determine if any 
statistically significant slippage has occurred.  If there is no 
slippage, the vehicle kinematic motion estimate can 
contribute to the Kalman filter motion estimate.  If, 
however, slippage has occurred, then the kinematic estimate 
and the Kalman filter estimate are differenced, resulting in a 
rover ‘slip vector.’  This slip vector is then used in 
combination with a path following algorithm to calculate 
rover velocity commands that follow a path while 
compensating for slip.  This algorithm is described in 
greater detail in Section V. 

The individual components of the system as well as a 
simplified integrated system has been tested onboard a 
rover.  Several independent tests were performed using 
Rocky 8 (see Fig. 1), a Mars rover research platform.  In the 
first test, visual odometry was tested onboard the rover in 
the JPL Mars Yard over two 25m traverses.  Under normal 
conditions, wheel odometry accuracy is not better than 10% 
of distance traveled and, in higher slip environments, it can 
be significantly worse.  Results from our first tests showed 
that we can achieve greater than 2.5% accuracy using visual 
odometry, regardless of the mechanical soil characteristics.  
The second test was a field test that used the slip 
compensation system described above, minus the Kalman 
filter.  This test was a traverse of over 50 meters on sandy 
slopes.  The third set of tests was done on a tiltable platform 
measuring 5x5 meters.  These tests were done using 
continuous rover slip compensation algorithms (described in 
Section V), instead of stopping the rover to estimate 
slippage, as done in previous tests.  Results from the three 
sets of experiments are provided in Section VI.  

This paper extends the work described in [1].  Related 
work includes rover trajectory generation [2], rough terrain 
navigation [3], and path following [4]. 

Figure 1: Rocky 8 on a Sandy Slope 



II. VISUAL ODOMETRY ALGORITHMS 

 Mobile robot long distance navigation on a distant 
planetary body requires an accurate method for position 
estimation in an unknown or poorly known environment.  
Visual odometry, or image-based ego-motion estimation, 
was originally developed by Matthies [5].  Following this 
work, some minor variations and modifications were 
suggested for improving its robustness and accuracy [6,7].  
The key idea of this method is to determine the change in 
position and attitude by solving for the transformation 
between a selection of 3D features extracted from 
consecutive stereo images by using maximum likelihood 
estimation.  The basic steps of this method are described 
below.  A more detailed description of this derivation can be 
found in [1]. 
 
A. Feature Selection 
 The first step in the visual odometry algorithm is to 
select features that can be easily matched between a stereo 
pair and tracked between image steps.  To achieve this, the 
Forstner interest operator [8] is applied to the left image of 
the first stereo pair.  The pixels with lower interest values 
are better features.  In order to ensure that features are 
evenly distributed across the image scene, a minimum 
distance between any two features is enforced.  In order to 
reduce the volume of data that needs to be sorted, the image 
scene is divided into grids, with a grid size significantly 
smaller than the minimum distance between features.  Only 
the pixel with the lowest interest value in each grid is 
selected as a potential feature. Then, all potential features 
are sorted in descending order and the top N pixels meeting 
the minimum distance constraint are selected as features. 
 

B. Feature Gap Analysis and Covariance Computation 
 The 3D positions of the selected features are then 
determined by stereo matching.  A template around each 
feature in the left image is correlated to a location in the 
right image.  Knowing the location of the features in the left 
and right images, a ray corresponding to the feature can be 
projected out of each camera.  Under perfect conditions, the 
rays of the same feature from the left and right images 
should intersect in space. However, due to image noise and 
matching error, they do not always intersect. The gap (the 
shortest distance between the two rays) indicates the 
goodness of the stereo matching. Features with large gaps 
are eliminated from further processing.  Additionally, the 
error model is a function of the gap.  This effect is 
incorporated in the covariance matrix computation 
described below. 
 Assuming the stereo cameras are located at C1 (X1, Y1, 
Z1) and C2 (X2, Y2, Z2) (see Fig. 3), r1 and r2 are two unit 
rays from the same feature in both images. Because of 
noise, r1 and r2 do not always intersect in space. The stereo 
point is taken to be the midway between the closest points 
of the two rays.   
 Assuming the closest points between the two rays are 
P1 and P2 we have 
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where m1 and m2 are the length of  P1C1 and P2C2.  
Therefore, we have 
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Then we have  
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Taking the partial derivatives results in 
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Figure 2: Path Following/Slip Compensation System 
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Figure 3: Feature Gap 

 



 
where P′ is the Jacobian matrix, or the matrix of first partial 
derivatives of P with respect to C1 and C2.  
 
C. Feature Tracking 

After the rover moves some distance, a second pair of 
stereo images is acquired.  The features selected from the 
previous image are then projected into the second pair using 
the knowledge of the approximated motion provided by the 
onboard wheel odometry (forward kinematics).  The 
features are first matched in the new left image by searching 
an area around the projected feature location.  Stereo 
matching is then performed on these tracked features on the 
second pair to determine their new 3D positions.  If the 
initial motion guess is accurate, the difference between the 
two estimated 3D positions should be within the error 
ellipse of the previous covariance matrix. 
 
D. Motion Estimation 

Given two sets of corresponding 3D features, the 
transformation between them is determined using a motion 
estimation algorithm that takes into account the matching 
covariance of each feature.  This algorithm is done in two 
steps.  Coarse motion is first estimated with Schonemann 
motion estimation, and then a more accurate motion-
estimate is determined by maximum likelihood motion 
estimation.  

Schonemann motion estimation [9] uses singular value 
decomposition (SVD) with an orthogonal constraint to 
estimate a rotation matrix and a translation that transforms 
the feature positions in I1 to those found in I2.  The 
Schonemann method is simple and fast, however, it is 
highly unstable when large errors are involved.  In order to 
overcome this problem, a least-median-of-squares method 
[10] is applied.  In this method, a subset of features is 
randomly selected.  Then each feature from the previous 
frame is projected to the current frame, and the distance 
error between that projection and the position of the 
corresponding feature in I2 is calculated.  The total count of 
features under a given error tolerance is calculated.  This 
procedure is repeated multiple times.  The motion with the 
largest number of agreeable features is chosen as the best 
motion. 

The best motion estimation found using the above 
procedure is refined using maximum likelihood motion 
estimation.  Maximum likelihood motion estimation takes 
account of the 3D position differences and associated error 
models in order to estimate motion. Let Qpj and Qcj be the 
observed feature positions before and after a robot motion.  
Then we have 
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where R and T are the rotation and translation of the robot 
and ej is the combined errors in the observed positions of the 
jth features.  In this estimation, the 3 axis rotations (Θ) and 
translation (T) are directly determined by minimizing the 
summation in the exponents T

j j je W e min=∑ , where 

j cj pje Q RQ T= − −  and Wj is the inverse covariance 

matrix of ej.  The minimization of the nonlinear problem is 
done by linearization and iterations [5].  Two nice properties 
of maximum-likelihood estimation make the algorithm 
significantly more accurate than the Schonemann method.  
First, it estimates the 3 axis rotations (Θ) directly so that it 
eliminates the error caused by rotation matrix estimation 
(which occurs with least-squares estimation).  Secondly, it 
incorporates error models in the estimation, which greatly 
improves the accuracy. 
 

III. KINEMATIC ALGORITHMS 

 Full rover kinematic algorithms were developed to fill 
two roles in the system shown in Fig. 2.  The first role is the 
forward kinematics of the vehicle, which estimates rover 
motion given the wheel rates and rocker, bogie, and steering 
angles.  The second role is the inverse kinematics of the 
vehicle, which calculates the necessary wheel velocities and 
steering angles to create a desired rover motion. 
 These algorithms are specific to the rocker-bogie 
configuration with six steerable wheels (see Fig. 1), but the 
techniques used to derive the algorithms could be used for 
any vehicle configuration (although there may be a fewer 
number of observable DOFs for different configurations).  
Additionally, these forward kinematic algorithms could be 
used directly for rovers with a subset of functionality (e.g. a 
rocker-bogie rover with only 4 steerable wheels, such as the 
Mars Exploration Rovers) simply by making the relevant 
parameters constant. 
The motivation for developing the full kinematics of this 
class of vehicles (rather than making the more common 
planar assumption) is twofold.  First, it allows for the 
observation of 5 DOFs, whereas the planar assumption 
limits this to 3 DOFs.  Second, as terrain becomes rougher, 
the errors due to the planar assumption grow.  These errors 
can grow to be significantly large (up to 30% distance 
traveled) and affect the slip calculations and, consequently, 
the slip compensation controller. 

The formulation of the forward and inverse kinematics 
closely follows that of [11,12], with significant extensions 
being made for 6 wheel steering.  Greater details of the 
kinematic derivations can be found in [1,11,12,13]. 
 
A. Rocker-Bogie Configuration 

The rocker-bogie configuration is a suspension system 
that is commonly used for planetary rovers and their 
prototypes.  The configuration analyzed here consists of 15 
DOFs: 6 steerable/drivable wheels (12 DOFs), a rocker, and 
two bogies.  It is beyond the scope of this paper to discuss 
the benefits of such a mobility system [14].  What is 
relevant here is that with a few assumptions, the rocker-
bogie system allows for the observation of 5 of the 6 DOFs 
of the rover.  These assumptions are: 1) the wheel/terrain 
contact point is in a constant location relative to the wheel 
axle, and 2) slip between the wheel and the terrain only 
occurs about the steering axis (e.g. no side or rolling slip).  
However, these slip assumptions are only made for the 
kinematics algorithm (not for the slip compensation system 
as a whole); in fact, these assumptions, in part, are what 
enable the calculation of slip by the system. 

 



B. D-H Table Formulation 
Denavit-Hartenburg conventions were used to define 

the frames of each of the 15 DOFs.  From the frame 
definitions, a unique set of D-H parameters can be derived 
that completely describes the kinematics of the rover.  From 
these parameters, wheel Jacobians can be derived as 
described in [1]. 

 
C. Forward Kinematics 

Once the wheel Jacobians are known, rover motion 
estimation can be performed using the least squares 
formulation 
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where [ ]Trpzyxv φ=  (the vector of rover 
velocities), η  is a 6x1 vector of unobservable parameters, A 
is a 24x10 matrix of the unsensed elements [11,13] of the 
Jacobians, compJ  is a 24x16 block diagonal composite 

matrix of the wheel Jacobians, and compq is a 16x1 

composite vector of measured kinematic rates. 
Note that it is not necessary to actually perform the 

inversion of ATA.  The matrix equations can be greatly 
simplified algebraically to make it computationally much 
more efficient.   
 
D.  Inverse Kinematics 

As can be seen in Fig. 2, inverse kinematics takes the 
commanded rover motion, and the current kinematic angles 
and angle rates as inputs, and produces six steering angles 
and six wheel rates.  An interesting feature of the 6 steerable 
wheels is the fact that this creates a holonomic rover (with 
an assumption of instantaneous steering).  Consequently all 
three controllable DOFs of the rover, [ ]φyx , are 
independent, which allows for the isolation of several 
different control loops as will be seen in Section V. 

The first step of the inverse kinematics algorithm is to 
calculate an instantaneous center of rotation, [xO yO], in the 
rover frame using 
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This instantaneous center of rotation is then transformed 
from the rover frame (R) into each wheel frame (Mi) using 
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The steering angle is then calculated using 
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Each wheel rate is then determined using 
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where Jai and Jui are the actuated and un-actuated Jacobians 
defined in [13].  Eq. (12) is the actuated inverse solution 
from Muir and Neumann [13]. 

Again, the matrix inversions can be algebraically 
simplified so that each wheel rate calculation is relatively 
simple and computationally efficient. 
 

IV. KALMAN FILTER 

In this section we present our approach for estimating 
the position and orientation of the rover using inertial 
measurements from the IMU and relative pose (position and 
orientation measurements) from visual odometry and 
vehicle odometry (forward kinematics). Since our 
formulation is based on sensor modeling, we use the 
Indirect form of the Extended Kalman Filter (EKF) that 
estimates the errors in the estimated states instead of the 
states themselves.  The interested reader is referred to [17, 
19, 20] for a detailed description of the advantages of the 
Indirect KF vs. the Direct KF.  Within this framework, the 
IMU measurements are integrated in order to propagate the 
state estimate [16, 18], while the visual odometry and 
vehicle kinematics (only when no slippage has occurred), 
are employed for updating the state estimate and providing 
periodic corrections.  The equations of the EKF for a 
nonlinear system are in [18]. 
 
A. System Propagation Model 

The state vector of interest in this estimation problem is:  
 

[ ]T T T T T T
gx q b u b p= α     

 
where q is the quaternion that represents the attitude of the 
vehicle, Tu  and p  are the linear velocity and position of 

the rover, and gb and ab  are the biases in the gyroscope and 
accelerometer signals. The corresponding error state vector 
is:  
 

[ ]T T T T T T
gx b u b p∆ = ∆ ∆ ∆ ∆ ∆αθ    



 
where ˆo o o∆ = − is the difference (error) between the real 
value of a state o and its estimate ô , and δθ  is determined 
based on the small angle approximation: 
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The continuous time equation for the error-state propagation 
is 

( ) ( ) ( )c cx t F x t G w t∆ = ∆ +   (14) 
 

 
By discretizing Eq. (14) we obtain: 
 

1k k k k kx F x G w+∆ = ∆ +    (15) 
 
The interested reader is referred to [18] for the details of the 
derivation of Eqs. (14) and (15). 
 
B. Relative Pose Measurement Model 

In what follows, we assume that at time kt  the vehicle 
is at position ( )G

kp t  with (quaternion) attitude ( )1
1G kq t q=  

and after m steps it has moved to position 2( )G G
k mp t p+ =  

with attitude ( )1
GC q . Frames {G}, {1}, and {2} are the 

inertial frames of reference attached to the vehicle at times 
0t , kt  and k mt + correspondingly. 

The errors in the relative position and attitude (pose) 
measurements are given by: 
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where Γ, D1, D2, and X are defined in [18]. 

Both noise nr and rn~ are assumed to be a zero-mean 
white noise Gaussian processes with 
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As is evident from Eq. (16), the relative pose measurement 
error is expressed in terms of the current 2 ( )k mx x t +∆ = ∆  
and the previous 1 ( )kx x t∆ = ∆  (error) state of the system. 
The Kalman filter state vector must therefore be 
appropriately augmented to contain both of these state 
estimates.  Note that kt and k mt +  are the time instants when, 
e.g., the two images (encoder readings) processed by the 
visual (vehicle) odometry algorithm were recorded and thus 
the relative pose (motion estimate) measurement provided 
by it corresponds to the time interval [ ]k k mt t + . 
 

C. Augmented-state propagation 
If ∆xk/k is the state estimate at time tk (when the first 

image or encoder measurement was recorded) we augment 
the state vector with a second copy of this estimate: 
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Since initially, at time tk, both version of the estimate of the 
error contain the same account of the information, the 
covariance matrix for the augmented system would be: 
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where Pkk is the covariance matrix for the (error) state of the 
vehicle at the time tk. In order to conserve the estimate of 
the state at tk, necessary for evaluating the relative pose 
measurement error at tk+m, the second copy of the state 
estimate is propagated (during this interval only) while the 
first remains stationary. The propagation equation for the 
augmented system is: 
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where ∆x1 is the non-moving copy of the error state of the 
vehicle. The covariance of the augmented system is 
propagated and after m steps is: 
 

T

/
/

kk kk
k m k

kk k m k

P P F
P

FP P+
+

 
=  
 

   (17) 

 
Where 11
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=∏F  and Pk+m/k is the propagated 

covariance of the evolving state at time tk+m. 
 
D. Mahalanobis Comparator (Slippage Estimation) 

In this section, we describe our approach to rover 
slippage detection.  Based on the kinematic equations of the 
rover and assuming no wheel slippage, the wheel and 
rocker-bogie joint measurements are processed to produce a 
relative position and orientation measurement over a certain 
time (sampling) interval.  Before updating the state estimate 
of the EKF, these measurements need to be validated.  If 
significant wheel slippage has occurred, the residual for the 
relative pose measurement will be significantly larger 
compared to the case where the rover moves on solid 
ground without any of the wheels slipping.  A statistical 
measure for assessing the validity of these measurements is 
the Mahalanobis squared distance  
 

2 1T
m k m k md r S r−
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where k mr +  is the measurement residual and S  is the 
corresponding residual covariance matrix, described in the 



previous section.  In the case of a vehicle odometry 
measurement, the Mahalanobis squared distance follows a 
Chi-square distribution with five degrees of freedom.  A 
sufficient test for validating vehicle odometry measurements 

k m+Z  is to require that these match the expected (estimated 

by the EKF) measurements k̂ m+Z  of the same quantities 
with a certain level of confidence.  By requiring the fit 
between the expected and actual measurements to be valid 
with probability, e.g., P=95%, odometric measurements are 
processed by the EKF only when 2

md t≤ , with t = 11.07.  If 
this inequality does not hold, these measurements are 
discarded and wheel slippage is detected.  In this case, the 
residual k mr +  is provided to the slip compensation algorithm 
for appropriately modifying the rover commands. 

 
V. SLIP COMPENSATION/PATH FOLLOWING 

At the center of Fig. 2 are the slip compensation/path 
following algorithms.  These two algorithms are used in 
close conjunction to achieve the system’s end goal of 
enabling the traversal of a desired path through high slip 
environments.  At the highest level, the algorithms take a 
3x1 slip vector [ ]slipyx φ , a 3x1 rover pose vector 

[ ]poseyx φ , and a 2x1 desired path vector [ ]pathyx  
and then outputs a 3x1 commanded rover velocity vector 
[ ]cmdyx φ .  
 
A. Carrot Heading Algorithm 

The carrot heading algorithm takes the desired path and 
the current rover pose and calculates a desired heading, 

carrotφ , and therefore is able to calculate the heading error, 

errφ  of the rover.  This algorithm was chosen for its 
robustness to path error [21,22].  The desired path consists 
of a set of linear segments between waypoints; however, the 
waypoints can be spaced any distance apart, thus allowing 
for paths of arbitrary complexity.  The algorithm determines 
the desired heading by calculating the intersection of a 
circle centered on the rover frame with the desired path and 
calculating the direction of that intersection.  The 
intersection point that is furthest along the path is always 
selected.  The heading error is then calculated using 
 

posecarroterr φφφ −=    (19) 
 

A large radius will tend to filter out small features of a 
path, but results in a smooth motion of the rover.  A small 
radius results in large heading changes of the rover for small 
path errors (which is extremely inefficient), but results in an 
overall smaller path following error.  A circle radius is 
selected that balances the desire to closely follow the path 
and the magnitude of the heading changes.  Under nominal 
conditions, the rover path error will always be smaller than 
the circle radius.  If this is not the case, then the radius is 
grown until an intersection occurs. 
 

B. Slip Compensation/Path Following Algorithm 
When the Mahalanobis comparator determines that 

slippage has actually occurred, the calculation of rover slip 
is made by comparing the output from the Kalman Filter 
and the output from the forward kinematics.  If statistically 
significant slippage has not occurred then the slip vector 
consists of zeros and the compensation algorithm described 
below converges to a heading controller. 

The slip compensation algorithm consists essentially of 
two separate control loops.  The first control loop, the 
heading controller, is described by the equation 
 

Sslip2err1cmd T/)KK( φφφ +⋅=   (20) 
 

This loop determines the commanded yaw rate of the 
vehicle as a combined function of the heading error, errφ  
(as calculated by the carrot heading algorithm), and the yaw 
slip, slipφ .  It attempts to achieve the heading deemed by the 
carrot algorithm to be optimal, even when slipping in the 
yaw direction.  The second loop is described by the equation 
 

Sslip3cmd T/yKy ⋅=    (21) 
 

This loop calculates the rate of the rover in the y direction 
based entirely on the slip in the y direction during the 
previous sample period.  A y  command results in a 
crabbing maneuver, where all six wheels have a steering 
angle offset in the same direction.  cmdx  is then determined 
to be the maximum value allowed that keeps the rover 
within its operational constraints (i.e. the maximum speed of 
the drive motors).  These three rover commands, 
[ ]cmdyx φ , are then passed to the inverse kinematics. 

 
C. Continuous Motion 
 With minor changes made to the algorithm it was 
possible to allow continuous motion of the rover while 
compensating for slippage.  Images were taken, visual 
odometry was run, the slip vector was estimated, and the 
compensation command was sent, all while the rover was 
moving. 
  There are many benefits of continuous motion: more 
efficient motion (both in energy and time), less slippage due 
to smaller changes in momentum (this becomes more 
significant as the rover increases in mass and the terrain gets 
steeper), and it allows for a higher rate of slip compensation, 
thus enabling greater accuracy when following a path.  It 
also removes the requirement of many navigation 
algorithms to use arcs as the fundamental motion of the 
rover and allows more complex spline paths to be the basis 
of path planning.  Another advantage is that it allows more 
optimal spacing between navigation stops (allowing for 
other requirements, such as IMU bias zeroing, to drive the 
spacing between stops). 
 



VI. RESULTS 

Three sets of experiments have been performed using 
Rocky 8 (see Fig. 1), a Mars rover research platform 
developed at JPL. This rover has a very similar mobility 
system to Sojourner, Mars Exploration Rovers (MER), and 
the current design of the 2009 Mars Science Laboratory 
rover.  The body mounted hazard cameras on Rocky 8 have 
a resolution of 640x480 with a field of view of 79.5˚x64.0˚, 
a baseline of 8.4 cm, and are angled down at 45˚.   The first 
set of experiments was performed in the JPL Marsyard, a 
20x20 meter space designed as an analog (in rock 
size/distribution and soil characteristics) to the Viking 
Lander sites.  The experiment consisted of two consecutive 
25-meter runs with visual odometry running onboard.  The 
second set of experiments was performed in the Mojave 
Desert.  The terrain of this area consisted of slopes up to 25˚ 
consisting of loose granular sand (see Fig. 1).  This set of 
experiments was a test of a simplified integrated slip 
compensation/path following system.  It was simplified in 
the sense that the Kalman filter and Mahalanobis 
comparator had not yet been implemented, however, a slip 
estimate was calculated and compensated for whenever the 
visual odometry provided a new estimate, which was 
approximately every 20-30 cm.  Another simplification, due 
to limitations of the vehicle, was to assume the rocker and 
bogie angles were zero.  The third set of experiments was 
performed on JPL’s tiltable platform, a 5x5 meter ‘sandbox’ 
that could be tilted in discrete increments from 0˚ to 30˚.  In 
the experiments presented here it was set at 10˚.  This set of 
experiments consisted of multiple runs at varying approach 
angles (ranging from straight up the 10˚ slope to 
horizontally across the slope), and used the updated 
continuous motion algorithm described in Section V above. 

In the first two sets of experiments, ground truth data 
was collected with a Leica Total Station (LTS), which is a 
laser based position measurement system.  The LTS was 
used to measure the absolute position of four prisms 
mounted to the rover (see Fig. 1) whenever the rover was 
stationary (approximately every 20-30cm).  This system 
gives an accuracy of ±2 mm in position and ±0.2˚ in 
attitude.  In the field test experiments the waypoints for the 
rover were also designated using the LTS and a single 
prism.  In the third set of experiments the LTS could only be 
used for ground truth at the beginning and end of the runs 
because the rover did not stop during the runs. 
 
A. Visual Odometry Results 

Visual odometry results are shown from both the 
Marsyard and the Johnson Valley experiments.  The results 
from both Marsyard runs are shown in Figs. 4 and 5.  The 
errors at the end of the runs are both less than 2.5% of the 
distance traveled.  As can be seen in Fig. 6, the error at the 
end of the field test run (0.37 m) is less than 1.5% of 
distance traveled (29 m). 
 
B. Slip Compensation/Path Following Results 

Results of the slip compensation/path following 
algorithm are shown in Figs. 7 and 8.  The entire section of 
the path shown in Fig. 7 was on a slope of between 10˚ and 
15˚.  Fig. 7 is an expansion of the box shown in Fig. 6.  Fig. 

8 is an expansion of the box shown in Fig. 7.  These two 
figures show three important pieces of information that the 
slip compensation/path following algorithm uses to 
calculate the rover commands: visual odometry pose, 
kinematics pose, and the desired path.  Carrot heading, 
which is calculated in an intermediate step, is also shown.   
In Fig. 7, the rover was able to accurately and efficiently 
follow the desired path, despite significant slippage.  As can 
be seen in Fig. 8, there is a noticeable, consistent bias 
between the visual odometry pose and the kinematics pose 
in the y direction.  This is due to the downhill slippage of 
the rover; this bias is being compensated for in the slip 
compensation algorithm, as is evident because the rover 
accurately follows the desired path. 

 
C. Continuous Motion 

Results from the continuous motion slip compensation 
experiments are shown in Fig. 9.  The top graph in the 
figure shows a 4.5 meter run using continuous slip 
compensation on a 10˚ slope.  Again, notice the constant 
offset between the kinematic and visual odometry estimates, 
indicating slippage.  The bottom graph shows an identical 
run without using slip compensation.  As can be seen, the 
significant slippage shown in the bottom graph was 
compensated for in the run shown in the top graph. 
 

VII. CONCLUSIONS 

In this paper we have described the design, 
implementation, and testing of a system that enables a rover 
to accurately follow a designated path, compensate for 
slippage, and reach intended goals, independent of terrain 
geometry and soil characteristics along the path (within the 
mechanical constraints of the mobility system).  Individual 
components have been simulated and tested; additionally, an 
integrated system (minus the Kalman filter) has been tested 
onboard a rover in a desert field test.  The results from the 
individual and integrated tests are encouraging.  Visual 
odometry is able to consistently estimate rover motion to 

0 2 4 6 8 10 12 14 16
-1

0

1

2

3

4

x (meters)

y 
(m

et
er

s)

ground truth
visual odometry

 
Figure 4: Mars Yard Run 1 Visual Odometry Results 
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Figure 5: Mars Yard Run 2 Visual Odometry Results 



within 2.5% of distance traveled.  Given this knowledge, the 
slip compensation/path following algorithm is able to 
accurately estimate and effectively compensate for slip and 
thus accurately follow a desired path and reach the intended 
goal while traversing through a high-slip environment.  The 
algorithm has also been extended to allow for continuous 
motion slip compensation.  Future work includes integration 
of this path following/slip compensation algorithm with a 
path planning/obstacle avoidance system such as 
MORPHIN or GESTALT [23, 24].  
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Figure 6: Field Test Visual Odometry Results 
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Figure 7: Field Test Slip Compensation Results 
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Figure 8: Expanded Slip Compensation Results 
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Figure 9: Tiltable Platform Slip Compensation Results 
(top: slip comp. enabled; bottom: slip comp. disabled) 
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