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Abstract

Robust navigation for mobile robots over long dis-

tances requires an accurate method for tracking the

robot position in the environment. Techniques for

position estimation by determining the camera ego-

motion from monocular or stereo sequences have been

previously described. However, long-distance naviga-

tion requires a very high level of robustness and a very

low rate of error growth. In this paper, we describe

a methodology for long-distance rover navigation that

meets these goals using robust estimation. We show

that a system based on only camera ego-motion esti-

mates will accumulate errors with super-linear growth

in the distance traveled, owing to increasing orienta-

tion errors. When an absolute orientation sensor is

incorporated, the error growth can be reduced to a lin-

ear function of the distance traveled. We have tested

these techniques using both extensive simulation and

hundreds of real rover images and have achieved a low,

linear rate of error growth.

1 Introduction

Our goal is to perform robust and accurate rover
navigation autonomously over long distances in order
to reach terrain landmarks with known locations, but
that are not within sight. This is motivated by the
high desirability for Mars rovers to autonomously nav-
igate to science targets observed in orbital or descent
imagery. Since communication with such rovers usu-
ally occurs only once per day, navigation errors can
result in the loss of an entire day of scienti�c activity.

The most common method for the position esti-
mation of mobile robots is through dead-reckoning.
This technique integrates the velocity history, using
the estimated speed and direction of travel, to deter-
mine the change in position from the starting loca-
tion. Unfortunately, pure dead-reckoning methods are
prone to errors that grow without bound over time, so
some additional method is necessary to periodically
update the robot position. This can be performed
through global localization of the robot (see, for exam-

ple, [7]). In this paper, we concentrate on a di�erent
method called ego-motion (or visual odometry). Like
dead-reckoning, this method accumulates error as the
robot moves, so that some periodic update is bene�-
cial. However, we demonstrate that, when combined
with an orientation sensor, this technique is able to
reduce the growth rate of the error to a small fraction
of the distance traveled.

Several methods for the estimation of ego-motion
have been proposed using monocular sequences [1, 2,
3] and stereo sequences [4, 5, 9, 10]. In order for such
techniques to be e�ective for long-distance rover navi-
gation, the techniques must be highly robust to prob-
lems such as poor odometry, inaccurate feature match-
ing, and outliers. We have developed a method that
is capable of accurate navigation over long distances
using incremental stereo ego-motion [8]. The use of
stereo information in this method has been crucial
in both outlier rejection and reducing random errors
that occur due to feature localization and drift in each
frame. We use a maximum-likelihood formulation of
motion estimation that models the error in the posi-
tions more accurately than a least-squares formulation
and, thus, yields better results.

For long-range navigation, we must examine the
rate of error growth as the robot navigates the en-
vironment. Even a robust incremental method (such
as ego-motion) accumulates errors that grow super-
linearly with the distance traveled, if the absolute ori-
entation is not corrected periodically. We demonstrate
that incorporation of an orientation sensor, such as a
compass or sun sensor, can greatly improve the long-
range performance, reducing the accumulated error to
a linear function of the distance traveled.

We have constructed a simulator in order to eval-
uate changes in the ego-motion methodology with re-
spect to navigation performance. The simulator indi-
cates that, with our improvements, ego-motion perfor-
mance with error below 0.5% of the distance traveled
is potentially feasible. Experiments on hundreds of
real images have achieved errors of approximately 1%
of the distance traveled.
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Figure 1: Steps performed for motion estimation.

2 Motion estimation

We use a variation of the maximum-likelihood ego-
motion formulation originally developed by Matthies
[5, 6]. This method determines the change in position
for calibrated cameras using two (or more) pairs of
stereo images. The basic elements of the method are
shown in Fig. 1.

First, landmarks that can be easily tracked are se-
lected in an initial image. Stereo matching is used to
�nd the landmark in the corresponding stereo image
and the 3D landmark positions are estimated through
triangulation. Next, the landmarks are tracked into
a subsequent stereo pair with correlation-based search
using prior knowledge of the approximate robot mo-
tion. Stereo matching is then performed in the sub-
sequent stereo pair. Finally, the motion estimate is
computed using maximum-likelihood estimation as de-
scribed below.

Each of these steps is performed for each pair of
adjacent frames in the stereo sequence. At each iter-
ation, the set of landmarks is retained from the pre-
vious step, with new landmarks added for those that
were not successfully tracked. The overall motion es-
timate is computed as the product (in homogeneous
coordinates) of each of the incremental motions over
the image sequence.

The maximum-likelihood motion estimation step
takes the landmark positions that have been estimated
from consecutive stereo images and determines the
change in the rover positions. We summarize the de-

tails of this method here. Let Lb and La be 3�n ma-
trices of the observed landmark positions before and
after a robot motion. For each landmark we have:

Lai = RLbi + T + ei; (1)

where R and T are the rotation and translation of
the robot and ei combines the errors in the observed
positions of the ith landmark at both locations. As-
sume, for the moment, that the pre-move landmark
positions are errorless and the post-move landmark
positions are corrupted by Gaussian noise. In this
case, the joint conditional probability density of the
observed post-move landmark positions, given R and
T , is Gaussian:
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Solving for the maximum-likelihood motion esti-
mate is a nonlinear minimization problem, which we
solve through linearization and iteration. We linearize
the problem by taking the �rst-order expansion with
respect to the rotation angles. Let �0 be the initial
angle estimates and R0 be the corresponding rotation
matrix. The �rst-order expansion is:

Lai � R0L
b

i + Ji(���0) + T + ei; (3)

where Ji is the Jacobian for the ith landmark and
ei is a Gaussian noise vector with covariance �i =
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After solving (4), the new motion estimate is used
as an initial estimate for the next step and the pro-
cess is iterated until convergence. Further details, and
a technique to estimate only � without T , so that es-
timation of T can be removed from the iteration, can
be found in [6].



3 Simulator experiments

One of the goals of our work has been to study the
long-range performance of ego-motion techniques un-
der controlled conditions. To this end, we have devel-
oped a simulator that tracks randomly generated land-
marks for motion estimation. The initial landmarks
are generated by selecting random image locations in
the left image of the �rst (pre-move) stereo pair. The
positions of the landmarks are backprojected into 3D
using a random (uniformly distributed) height. Each
landmark is then reprojected into the right image of
the stereo pair with Gaussian noise (� = 0:3 pixels)
added in order to simulate feature matching error.

A second (post-move) stereo pair is generated using
the same set of landmarks, but using camera models
translated and rotated to a new position (simulating
robot motion). The left image of the pair is gener-
ated by projecting the landmarks according to the
new camera model and adding more Gaussian noise
(� = 0:5 pixels) in order to simulate the feature track-
ing error. The new image features are again backpro-
jected into 3D (with the same heights) and reprojected
into the right image of the post-move stereo pair with
additional noise.

The incremental robot motion estimate is com-
puted using the maximum-likelihood ego-motion
method described above. Long-distance navigation is
simulated by chaining many of the incremental moves
together. At each step, the second set of landmark po-
sitions is saved for use as the initial set in the next step
and new landmark positions are generated as above.
When landmarks move out of the robot �eld of view,
they are replenished with randomly positioned land-
marks within the �eld of view.

3.1 Optimal �eld-of-view

We have used the simulator to perform an exper-
iment determining the e�ect of changing the camera
�eld-of-view on the ego-motion performance. Our ex-
pectation was that error in the ego-motion perfor-
mance would be better for smaller �eld-of-view cam-
era, if the other parameters remained the same, due
to the improved angular resolution of the camera. Of
course, at some point, this must break down due to
the �eld of view becoming too small to track the fea-
tures e�ectively. Figure 2 shows the result of an ex-
periment where the camera �eld of view was varied
from 15Æ to 90Æ. The baseline of the stereo pair was
maintained at 10 cm with a camera height of 1.4 m
and a tilt of 30Æ. The rover moved 50 cm between
each ego-motion calculation. In this case, the optimal
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Figure 2: The ego-motion error varies as a function of the
camera �eld-of-view.

camera �eld-of-view appears to be approximately 35Æ.
The optimal �eld-of-view changes when other param-
eters of the system change, but not by a large amount.
When the rover movement was varied between 30 and
70 cm between ego-motion calculations, the optimal
�eld of view remained between 30Æ and 40Æ. Similar
results were also obtained with a varying baseline and
camera elevation. Our conclusion is that decreasing
the �eld-of-view helps up to a point, but when the
�eld-of-view becomes less than 30Æ the improvement
is negated or reversed by other e�ects. In particular,
the limited �eld-of-view over which landmarks can be
tracked results in poor sensitivity with respect to the
orientation of the cameras.

3.2 Long-range error growth

Since we are interested in long-range navigation for
Mars rovers, we have performed experiments exam-
ining the error growth of the stereo ego-motion tech-
niques by applying them to a long sequence of simu-
lated data. Our goal here is to understand the asymp-
totic growth of the error over long distances.

We performed an experiment with a 500 meter
traverse. Ego-motion estimates were computed ev-
ery 50 cm using cameras with a 45Æ �eld-of-view and
512� 480 pixels (corresponding to the values on our
research prototype rover). Figure 3 shows the error
growth in the robot position for this experiment. It
can be observed that the growth in the error is greater
than linear in the distance traveled. The explanation
for this is that the expected error in the orientation
parameters grows approximately proportional to the
square root of the distance traveled (since the over-
all variance is the sum of the individual variances).
The overall position error grows as the sum of two
terms. First, the individual position errors contribute
a term that is expected to grow with the square root
of the distance traveled. Second, the accumulating
orientation errors contribute a term that grows with
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Figure 3: Expected position error as a function of distance
traveled.

the integral of the orientation error. We, thus, ex-
pect a super-linear contribution from this term, which
has O(d

3

2 ) asymptotic growth, where d is the distance
traveled. The contribution from the orientation error
thus dominates the overall position error in this case.

In order to eliminate the super-linear error growth,
we have examined the use of an absolute orientation
sensor to provide periodic updates to the orientation
estimate. For example, accelerometers can be used to
provide roll and pitch information, while a compass,
sun sensor, or even a panoramic camera could be used
to determine the robot yaw. We have simulated such
sensors as providing periodic orientation updates with
Gaussian noise having zero mean and 1Æ standard de-
viation. Figure 3 shows that this results in linear error
growth in the distance traveled when the orientation
updates are used and, in general, the growth is much
slower than when only the ego-motion estimates are
used. In this experiment, the simulations indicate that
error less than 1% of the distance traveled is achiev-
able with the error variances described above.

An absolute orientation sensor appears to be crit-
ical for navigation over long distances, unless some
other means is used to periodically update the robot
position. If no orientation sensor is used, the robot
may navigate safely over short distances. However,
over long distances the increasing orientation errors
will build until the position estimate is useless.

4 Robust estimation

In order to achieve accurate navigation over long
distances, errors in the matching process and in the
position estimation of the landmarks must have a
very small e�ect on each computed motion estimate.
Tracking must be performed such that mismatches are

rare. When mismatches occur, there must be mecha-
nisms for detecting and discarding them. This section
reviews some improvements we have developed for per-
forming these steps [8], while reducing the overall error
growth in the rover position for improved navigation.

4.1 Improved feature tracking

In many environments, including Martian terrain,
the landmarks that are selected for tracking appear
similar to each other and other image locations. We
don't want to search for each feature over a large por-
tion of the image, because incorrect matches will occur
frequently in this case. However, error in the a pri-

ori estimate for each landmark position (obtained us-
ing dead-reckoning) usually requires the use of a large
search window.

In order to decrease the size of this search window,
we �rst estimate the errors in the robot pitch and yaw
by searching for a large, distant landmark in the im-
age. The use of a large landmark allows us to avoid
mismatches, even searching over a large portion of the
image for this landmark. The robot pitch and yaw es-
timates are then corrected such that they accurately
predict the position of the landmark in the new image.
Once this correction has been performed, the search
for the smaller landmarks in the image can be per-
formed over a small area, and so the possibility of an
incorrect match is reduced.

4.2 Outlier rejection

We use several methods to reject outliers in the mo-
tion estimation process. Initially, matches in both the
stereo matching and feature tracking steps are elim-
inated if the correlation score is too low. In addi-
tion, for each stereo match, the rays from the cameras
through the image features are computed to determine
if they consistent. The consistency is measured by the
distance between the rays at the location of smallest
separation. (If there was no error, the rays would in-
tersect.) Finally, after all of the matches have been
found and tracked in both stereo pairs, a rigidity test
is applied to prevent gross errors. Here, we use a con-
straint that the landmarks must be stationary. If a
landmark moves between stereo frames, the landmark
is not useful for determining the robot motion. This
test repeatedly rejects the landmark that appears to
have moved the most, by examining the pairwise dis-
tances between the landmarks before and after the
robot motion. Landmarks are rejected until all re-
maining deviations are small enough to be considered
noise.
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Figure 4: Image sequences demonstrating robust feature tracking. The top row is largely forward motion. The bottom
row is largely rotation. The squares indicate the tracked landmarks and the lines show the motion of the landmark from
the previous frame.

4.3 Camera roll

Camera roll due to traversing rough terrain is a
signi�cant problem for robots that operate outdoors.
While pitch and yaw are reasonably approximated by
translation of the features in the image, roll causes the
features to be rotated and makes tracking signi�cantly
more diÆcult. Our experiments indicate that correla-
tion scores degrade approximately linearly with the
camera roll. In most terrains, camera roll of less than
10Æ can be tolerated without diÆculty to the feature
tracking.

Clearly, a robust motion estimation system for out-
door navigation must consider the e�ects of camera
roll. The simplest solution to this problem is to en-
sure that image pairs are captured frequently enough
that the robot does not roll by more than 10Æ between
frames. For many systems, this solution is adequate.
An alternative, for cases where large amounts of cam-
era roll are possible, is the use of an orientation sensor,
such as a gyro or accelerometer. If the approximate
roll of the camera is known, then the correlation win-
dow for each landmark can be rotated to the appro-
priate orientation for tracking.

5 Results

These techniques have been tested on hundreds of
stereo pairs, including outdoor terrain, with the robot
undergoing six degree-of-freedom motion. Figure 4
shows landmark tracking for several frames of mostly
forward motion (top row) and mostly rotational mo-

tion (bottom row) in rocky terrain. Despite errors in
the nominal camera movements and features occurring
on occluding boundaries that are diÆcult to track, it
can be observed that the �nal tracking is highly ro-
bust, with no outliers in the tracking process. For this
data set, the overall error was 1.3% of the distance
traveled.

In order to test the performance of these techniques
on extended sequences, we have applied them to im-
agery from a rover traverse consisting of 210 stereo
pairs. This traverse was performed with a small rover
and a wide �eld-of-view, so the cameras were close to
the ground (10 cm) and there was considerable distor-
tion in the appearance of close-range locations. Fig-
ure 5 shows an example of consecutive stereo pairs
with 320 � 240 resolution. The rover traversed ap-
proximately 20 meters, taking images about every 10
centimeters. For cameras with a higher viewpoint and
narrower �eld-of-view, the techniques could be exe-
cuted less frequently. However, for this rover, small
motions between stereo pairs are necessary to track
the foreground landmarks. Figure 6 shows the re-
sults for this traverse. It can be observed that the
ego-motion track closely follows the ground-truth from
GPS, while the odometry estimate diverges from the
true position. The error in this run was approximately
1.2%.

6 Summary

We have discussed techniques for improving long-
range rover navigation using stereo ego-motion. An



Figure 5: Stereo pairs from rover traverse sequence.

important result of our investigation is that an ab-
solute orientation sensor is necessary to perform ac-
curate navigation over long distances, since estima-
tion based on ego-motion alone has error that grows
super-linearly with the distance traveled. The use
of an orientation sensor reduces the error growth to
linear in the distance traveled and results in a much
lower error in practice. Stereo data was also critical
to elimination of outliers and accurate motion esti-
mation. Techniques for performing robust feature se-
lection and tracking with outlier rejection have been
developed in order to ensure accurate motion estima-
tion at each step. We believe that this combination of
techniques results in a method with greater robustness
than previous techniques and that is capable of accu-
rate motion estimation for long-distance navigation.
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