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Abstract— This paper describes an on-line algorithm for multi-
robot simultaneous localization and mapping (SLAM). We take
as our starting point the single-robot Rao-Blackwellized particle
filter described in [1] and make three key generalizations.
First, we extend the particle filter to handle multi-robot SLAM
problems in which the initial pose of the robots is known (such as
occurs when all robots start from the same location). Second, we
introduce an approximation to solve the more general problem
in which the initial pose of robots is not known a priori (such as
occurs when the robots start from widely separated locations).
In this latter case, we assume that pairs of robots will eventually
encounter one another, thereby determining their relative pose.
We use this relative pose to initialize the filter, and combine
the subsequent observations from both robots into a common
map. Third and finally, we introduce a method for integrating
observations collected prior to the first robot encounter, using
the notion of a virtual robot travelling backwards in time. This
novel approach allows us to integrate all data from all robots
into a single common map.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a well-
studied problem with a number of extant solutions [2]. The
vast majority of these solutions, however, consider a single
robot in a static environment, using either sparse 2D/3D
feature points or dense 2D laser range-finder data. This paper
addresses the less-well-studied problem of multi-robot SLAM,
motivated by the fact that multiple robots can complete explo-
ration and mapping tasks faster than a single robot.

The starting point of our analysis is the Rao-Blackwellized
particle filter described in [1]. This algorithm uses a particle
filter to approximate the posterior probability distribution over
possible maps, and adds robot observations incrementally
using a Bayesian update step. This algorithm can readily be
generalized to solve the multi-robot SLAM problem, assuming
that the initial pose of all robots is known. More precisely, one
must know at least the initial relative pose of all but one of
the robots, with the pose of the remaining robot being chosen
arbitrarily. This assumption is extremely limiting in practice:
it implies either that all robots have started from the same
location, or that the initial locations of the robots have been
surveyed by some external means.

In the more general case, the initial pose of the robots
will not be known a priori; the robots may, for example,
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be placed at widely separated (and possibly random) initial
locations. Our solution for this problem has two important
elements. First, we assume that robots are to able detect,
identify and measure the relative pose of other robots at some
time during the exploration task (when those robots are both
nearby and within line-of-sight, for example). Such encounters
allow robots to fuse their subsequent observations into a
common map, using the measured relative pose to initialize
the filter. Note that only the first such encounter is used;
subsequent encounters between robots are ignored. Second, we
generalize the particle-filter-based SLAM algorithm such that
the filter supports time-reversed updates; this generalization
allows robots to incorporate observations that occured prior to
the first encounter, by treating those observations as if they
came from additional ‘virtual’ robots travelling backwards in
time.

As an illustration, consider the following example. Two
robots are exploring an environment from distant (and un-
known) initial locations. After some time, the robots encounter
one another and measure their relative pose. At this time, we
construct a filter in which robot 1 has an initial (arbitrary) pose
of zero, and robot 2 has the measured relative pose. Subsequent
measurements from the two robots are fed to the filter, and
thereby fused into a common map. At the same time, two
virtual robots are added to the filter with poses initialized as
above. Previously recorded measurements are fed to the filter
in reverse time-order, such that these virtual robots appear
to be driving backwards through the environment. Thus, the
filter incrementally fuses data from both robots, recorded both
before and after the encounter, into a single map.

This algorithm has number of attractive features. First, it
is able to fuse all data from all robots into a single map,
without knowing the initial robot poses. Second, it inherits
the bounded-time, bounded-memory properties of the single-
robot SLAM algorithm (CPU and memory requirements do not
increase with path length, as is the case with some algorithms
[3], [4]). Third and finally, the algorithm is fast: on a 2.4
GHz P4 processor, our implementation can fuse data from
four robots in real time. Collectively, these features make the
algorithm highly suitable for on-line, in-the-loop applications,
such as multi-robot exploration and search tasks.

II. RELATED WORK

The literature on single-robot SLAM is vast, and will not
be recapitulated here. Instead, we focus our attention on the
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less-well-studied problem of multi-robot SLAM.
There exist a number of multi-robot SLAM formulations

based on the Kalman Filter and its derivatives [5]–[7]. Fenwick
et al. [5] take what is perhaps the “classical” approach, gener-
alizing the Extended Kalman Filter (EKF) SLAM formulation
first described by Smith et al. [8], [9] to handle multiple robots.
Similarly, Thrun and Lui [7] reformulate the SLAM problem
using the Sparse Extended Information Filter [10], and then
generalize this filter for the multi-robot case. Compared with
the classic EKF, the Information Filter has some inherent
algorithmic advantages, including the fact that it is much more
amenable to distributed implmentation. Particle filters have
also applied to the multi-robot SLAM problem: Thrun [11]
describes a hybrid algorithm that combines maximum likeli-
hood mapping with Monte-Carlo localization; the algorithm
described in the current paper is, in part, a generalization of
this earlier work.

As Thrun notes in [7], a key challenge for multi-robot
mapping lies with the determination of the initial pose of
the robots. Most multi-robot SLAM approaches sidestep this
issue by assuming either that landmarks are distinguishable,
or that robots start from nearby locations (such that they have
large overlaps between their initial maps). Of the approaches
described above, only Thrun attacks this problem directly,
proposing a method for matching triplets of anonymous
landmarks to determine both landmark correspondences and
relative robot poses.

Ko et al. [12] also address the specific problem of deter-
mining the relative pose of another robot while exploring
and mapping an environment. In this approach, each robot
builds its own global map, while continuously estimating
the pose of the other robot in that map. When this pose
has been determined with high probability, the two robots
execute a rendezvous [13] to confirm their locations. This
approach does have some subtle difficulties: since the global
maps are necessarily incomplete, and there is no guarantee
that one robot lies inside another robot’s partial map, we are
forced to construct sensor models for the “unknown” portion
of the world either by using prior assumptions about the
environment, or by learning general models from a collection
of prior experiences [14].

Another powerful, approach to multi-robot SLAM rests on
the notion of map merging or joining. Thus, for example,
Birk and Carpin [15] describe a approach in which robots
build individual occupancy grid maps, and subsequently merge
those maps using a stochastic search procedure. While this
algorithm has the advantage of being relatively simple, it relies
on the ability of single-robot SLAM algorithms to produce
maps with minimal bending or skewing, while also making
strong assumptions about the degree of self-similarity of the
environment.

The use of mutual observations between robots has been
explored by a number of authors in the context of both multi-
robot localization [16] and mapping [12], [17]. The techniques
for engineering such observations (in indoor environments) are
well-established, and are exploited in our algorithm to detect,
identify and determine the relative pose of other robots.

III. BAYES FILTERS, PARTICLE FILTERS AND
SIMULTANEOUS LOCALIZATION AND MAPPING

In this section, we review the basic theory of Rao-
Blackwellized particle filters, as applied to the problem of
simultaneous localization and mapping [1], [18]–[20]. Follow-
ing both the approach and notation of Hähnel [1], we first
develop a mathematical formalism for the single robot case,
then extend (and approximate) the formalism to handle multi-
robot SLAM. This extended formalism provides the basis for
the on-line SLAM algorithm presented in Section III-G.

A. Single-robot SLAM

The SLAM problem for a single robot is treated as follows.
Let x1:t denote a sequence of robot poses at times 1, 2, ...t, let
z1:t denote a corresponding sequence of observations, and let
u0:t−1 denote the sequence of actions executed by the robot.
Our (intermediate) aim is to compute the posterior probability
p(x1:t,m | z1:t, u0:t−1, x0) over the robot trajectory x1:t and
map m, given some initial pose x0. We write this as the
product of two factors:

p(x1:t,m | z1:t, u0:t−1, x0) =

p(m | x1:t, z1:t, u0:t−1, x0)p(x1:t | z1:t, u0:t−1, x0)
(1)

where the first term is a distribution over possible maps and the
second is a distribution over possible trajectories. The utility
of this expression lies in the fact that the first term can be
computed analytically once the robot trajectory x1:t is known.
Thus, we may approximate the posterior over trajectories and
maps using a particle filter in which each sample represents a
complete robot trajectory, and a separate map is conditioned
on each such sample.

Exploiting the conditional dependencies inherent in the
single-robot SLAM problem (see Figure 1), we construct the
Rao-Blackwellized particle filter as follows. Let each particle
(i) be a tuple 〈x

(i)
t

,m
(i)
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, w
(i)
t
〉 such that x

(i)
t

is the robot
pose at time t, m

(i)
t

is the map generated using observations
recorded up to and including time t, and w

(i)
t

is the particle
weight. Given some action/observation pair (ut−1, zt), the
filter is updated using:
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t
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where A, S and M are the action, sensor and map models,
respectively. More specifically: A is an action model that
returns a random pose drawn from the distribution p(x

(i)
t

|

x
(i)
t−1, ut−1); S is the sensor model p(zt | x

(i)
t

,m
(i)
t−1); and

M is an incremental map generator that returns a partial
occupancy grid (expressed in log-likelihood form to allow for
linear superposition of grids). The basic intuition captured in
these equations is that particles with self-consistent maps will
be assigned larger weights than particles with inconsistent
maps, and that the latter will ultimately be removed by
resampling.

This approach has some valuable practical characteristics.
It is a bounded-time, bounded-storage algorithm, in which
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Fig. 1. Bayes net for single-robot SLAM. The robot trajectory is indicated by the sequence (x0, x1, x2, x3...), observations by the sequence (z1, z2, ...),
and actions by the sequence (u0, u1, ...). Observations are conditioned on the map m.

processing effort and storage requirements scale linearly with
particle count, but are independent of the elapsed time t. It is
also very easy to implement: the sensor model S and action
model A are identical to those used in the standard Monte-
Carlo localization algorithm [21], and the map generator M is
a simple ray-tracing algorithm. The approach does have one
crucial limitation, however: the state space is extremely large
(with hundreds or thousands of dimensions), while the number
of particles is necessarily small (a few hundred to a few
thousand at most). Thus, the filter is a very sparse sampling of
the state space, and convergence is far from guaranteed; this
under-sampling typically manifests itself during loop closure,
when we may find that none of the particles generates a self-
consistent map. In order to make this approach manageable,
one requires either very good action models [1] or very good
proposal distributions [20]. In this paper, we adopt the former
approach, combining odometry with laser data to produce
“stabilized” odometric pose estimates (see Section IV-A).

B. Multi-robot SLAM with known initial poses

The single-robot SLAM formalism can readily be general-
ized to handle multiple robots, provided that the initial robot
poses are known. Consider a pair of robots whose observations
occur in lock-step time: x1

1:t denotes the trajectory for robot
1, and x2

1:t denotes the corresponding trajectory for robot 2.
Our aim is to simultaneously estimate the posterior probability
over two robot trajectories and one map. We write this down
in factored form as:

p(x1
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2
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(3)

where the first term gives the distribution over maps, and
the remaining terms give the distribution over possible robot
trajectories. Crucially, this factorization assumes that these
trajectories are independent, and that observations recorded
by one robot do not depend on the pose of the other (see
Figure 2). While this assumption will not hold true in general,
we can engineer it to be true in the context of cooperative
multi-robot mapping. When robots are far apart (outside sensor
range or line-of-sight), there can be be no mutual dependency;
when robots are nearby (within sensor range and line-of-
sight), robots are able to detect one another and exclude those

observations that are induced by other robots. If the robots are
using laser range-finders, for example, mutual detection can be
facilitated using retro-reflective targets [17], and the subset of
laser rays striking other robots discarded.

The particle filter for multi-robot SLAM is constructed as
follows. Each particle has properties 〈x
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t

, x
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x
1(i)
t

= A(u1
t−1, x

1(i)
t−1) x

2(i)
t

= A(u2
t−1, x

2(i)
t−1)

m
(i)
t

= M(z1
t
, x

1(i)
t

) + M(z2
t
, x

2(i)
t

) + m
(i)
t−1

w
(i)
t

= S(z1
t
, x

1(i)
t

,m
(i)
t−1)S(z2

t
, x

2(i)
t

,m
(i)
t−1)w

(i)
t−1 (4)

where the action model A, sensor model S and map generator
M are identical to those used in the single robot case. This
result will readily generalize to any number of robots.

From a practical standpoint, this approach has two important
limitations. First, the size of the state space is necessarily
larger than that seen in the single robot case, with a cor-
responding increase in the number of particles required to
ensure convergence. Note, however, that the dimensionality
scales with total path length rather the than the number of
robots, such that the state space for two robots, each of which
travels 50m, has the same dimensionality as the state space for
one robot traveling 100m. Thus, good results can be obtained
with a relatively small particle set if an efficient exploration
algorithm is used (i.e., one in which there is relatively little
overlap between the regions explored by the robots). The
second limitation is imposed by the filter resampling process:
should one of the robots stop while the other continues
moving, resampling may lead to particle impoverishment in
the vicinity of the stationary robot. Since impoverishment can
lead to filter divergence, best results are obtained when all
robots are moving at comparable speeds.

C. Multi-robot SLAM with unknown initial poses

For robots deployed at widely separated locations, deter-
mining their initial poses may be impractical. In this case,
we adopt an alternative strategy, and exploit the notion of
encounters to determine the relative pose of robots. Simply
put, we start mapping with only one robot (whose initial
pose is arbitrary) and wait until the first encounter with each
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Fig. 2. Bayes net for multi-robot SLAM with known initial poses x1
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Fig. 3. Bayes net for multi-robot SLAM with unknown initial poses. The robots first encounter one another at time t = 2 and measure their relative pose
∆21

2
(the pose of robot 2 relative to robot 1 at time t = 2). The dependencies between the map m and the observations z1

1
, z2

1
, ... have been omitted for the

sake of clarity.

additional robot before incorporating data from that robot into
the map. Subsequent encounters between robots are ignored.

Let ∆21
s

denote the relative pose of robot 2 as measured by
robot 1 at time s. We wish to estimate the posterior over maps
and trajectories given by:

p(x1
1:t, x

2
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1
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2
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1
s
,∆2

s
)

(5)

We now make two important approximations: first, we ignore
the conditional dependency between the robot trajectories (see
Figure 3) and treat these as independent variables; second,
we assume that the uncertainty in the relative pose ∆21

s
is

small. Under these approximations, the particle filter remains
identical to that described in the previous section, with the
exception that we initialize the robot pose x

2(i)
s at time s using

the relative pose ∆21
s

:

x2(i)
s

= ∆2
s
⊕ x1(i)

s
(6)

where the ⊕ operator indicates an appropriate 2D coordinate
transform. The particle filter will incorporate all observations
from robot 1, and all observations from robot 2 for times t ≥ s.

D. Multi-robot SLAM algorithm
Figure 5 lists the algorithm for multi-robot SLAM. As an

illustration, consider a group of three robots deployed into a
closed environment at unknown (and distant) initial locations.
We assume that the robots broadcast action/observation pairs
to one another over a reliable wireless link, and that they are
capable of mutual recognition and relative pose determination
(for robots that are nearby and within line-of-sight). The
robots execute an individual exploration strategy that leads to
occasional encounters with other robots, as illustrated by the
encounter diagram in Figure 4. This figure shows both the
action/observation sequences for individual robots (horizontal
lines) and the encounters between robots (vertical lines); time
increases from left to right.

Consider robot 1: since this robot does not know the initial
pose of the other two robots, it simply performs single robot
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Fig. 4. Encounter diagram for an imaginary three robot experiment. The solid horizontal lines denote the sequence of observations recorded by each robot;
the dotted vertical lines denote robot encounters at times t = a (robot 2 observes robot 3), b (robot 1 observes robot 2) and c (robot 2 observes robot 3). The
shaded areas indicate observations that have been processed through the filter and incorporated into the map.

# Process a data from a single robot.
# rob: id of robot generating data
# (u, z): change in pose (odometry) and new laser scan
# rob′, ∆: id and relative pose of observed robot (if any)

0 def update(rob, u, z, rob′, ∆):

# If the robot has joined the map...
1 if rob in joined:

# Do sensor update
2 update filter(rob, u, z)

# Check for encounters
3 if rob′ and rob′ not in joined:

# Initialize filter for the new robot
4 init filter(rob, rob′, ∆)

# Add robot to joined list
5 append(joined, rob′)

6 return

Fig. 5. Algorithm for multi-robot SLAM (expressed in Python pseudocode).
In addition to the particle filter, there algorithm maintains a set joined

listing the robots whose data is currently included in the map. The function
update filter() is described by Equation 4.

SLAM (the filter contains particles 〈x1,m,w〉 describing the
map and the pose of robot 1). Algorithmically, the robot adds
itself to the set joined and uses its own observations to update
the filter (line 2). Since the observations from robots 2 and 3
cannot yet be incorporated into the map, these observations
are discarded.

At time t = b, robot 1 encounters robot 2 and determines
its relative pose. The particle filter is augmented with an
additional state variable 〈x2〉 representing the pose of robot
2, and this variable is initialized on a per-particle basis
according to Equation 8 (line 4). The initialization step ignores
any uncertainty (assumed to be small) associated with the
relative pose measurement. Subsequent measurements from
both robots are incorporated into the map.

At time t = c, there is an encounter between robots 2
and 3. The particle filter is augmented with a state variable
〈x3〉 representing the pose robot of 3, which is initialized
as described above. Subsequent measurements from all three
robots are incorporated into the map. Note the transitive nature
of this example: robot 1 is able to use observations from robot
3, despite the fact that these two robots have never seen one
other.

E. Discussion: incomplete maps

This simple algorithm has an obvious limitation: it does
not incorporate all of the available observations into the map.
In the example described above, the map built by robot 1 is
missing data from robot 2 for times t < b and from robot
3 for times t < c. Interestingly, the maps built by robots
2 and 3 (which execute the same mapping algorithm) will
omit different portions of the data. Robot 2, for example, will
omit data from robot 1 for times t < b and from robot 3
for times t < a. Thus, some robots will have more complete
maps than others. If the algorithm is run after the fact (i.e.,
when exploration is complete and the time of all encounters
is known) one can easily predict which robot(s) will have the
most complete map (in this example, robots 2 and 3). If the
algorithm is used on-line, however, and we wish to incorporate
all of the available data, the algorithm must be extended.

F. Multi-robot SLAM with virtual robots

One can take the formalism described in Section III-C one
step further, and incorporate observations from robot 2 that
occur prior to the first encounter with robot 1. To do this,
we break the robot trajectory into two parts x2

1:s−1 and x2
s:t,

representing the trajectory before and after an encounter at
time s (see Figure 6). The new posterior probability is given
by:
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(7)

In the corresponding particle filter, robot 2 now has two
instances: a causal instance corresponding to forward motion
of the robot, and an acausal instance corresponding to time-
reversed motion of the robot. Each particle has properties
〈x

1(i)
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, x
2(i)
t

, x̄
2(i)
t

,m
(i)
t

, w
(i)
t
〉, where x
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is the pose of robot
2 at time t and x̄

2(i)
t

is the pose of robot 2 at time 2s− t. At
the first encounter, these poses are initialized using:
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(8)

Two sets of observations are given to the filter: the forward
observations (z1

t
, u1

t−1, z
2
t
, u2

t−1), and the time-reversed obser-
vations (z̄2

t
, ū2

t
) = (z2
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, u2

2s−t
). The filter update step is thus
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Fig. 6. Bayes net for multi-robot SLAM with unknown initial poses and time-reversed updates. The two robots encounter one another at time t = 2 and
measure their relative pose ∆21

2
. This information is propagated both forwards and backwards in time, such that we can infer the pose of robot 2 prior to the

first encounter. Note that dependencies between the map m and the observations z1

1
, z2

1
, ... have been omitted for the sake of clarity.
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where we have introduced a new time-reversed action model
Ā, since the acausal instance of the robot drives backwards
rather than forwards. This filter has been explicitly constructed
such that the causal and acausal instances are updated at the
same rate; as such, we can conceptualize the acausal instance
as an additional “virtual” robot traveling backwards in time.

G. Multi-robot SLAM algorithm with virtual robots

Figure 7 lists the algorithm for multi-robot SLAM using
virtual robots; we will work through this algorithm using a
concrete example. Consider again a group of three robots
deployed into a closed environment at unknown locations,
as described in Section III-D. Figure 8 shows the encounter
diagram for this thought experiment, with encounters at times
t = a and t = b.

Consider robot 1: since this robot does not know the initial
pose of the other two robots, it performs single robot SLAM
using its own action/observation sequence. Observations from
robot 1 are appended to a queue (line 1), from which they
are subsequently removed and used to update the filter (lines
4–5). Since the observations from robots 2 and 3 cannot yet
be incorporated into the map (their relative initial pose is un-
known), these observations are simply appended to individual
queues (line 1). Any encounters between robots 2 and 3 (such
as the one occurring at time t = b) are similarly queued.

At time t = b, robots 1 and 2 encounter one another and
determine their relative pose. The particle filter is augmented
with two additional state variables 〈x2, x̄2〉 representing both

causal and acausal instances of robot 2. The poses are initial-
ized on a per-particle basis (lines 7–8) according to Equation
8. This initialization step ignores any uncertainty (assumed
to be small) associated with the relative pose measurement.
The queued data for robot 2 is now split into two (lines 9–
10): the causal queue contains all of the data recorded after
time t = b (an empty queue, in this case), and the acausal
queue contains all of the data recorded before time t = b

(all of the data to date). In subsequent calls to the update
function, the causal queue (whose length remains fixed) is
used to update the causal instance x2 (lines 4–5), while the
acausal queue (whose length decreases monotonically) is used
to update the acausal instance x̄2 (lines 13–14). The first
two encounter diagrams in Figure 8 illustrate this process,
with the shaded areas indicating observations that have been
incorporated into the map. The use of the acausal instance x̄2

allows us to include all of the observations occurring prior to
the first encounter between robots 1 and 2.

At time t = c = a + (b − a), an encounter between robots
2 and 3 is popped from robot 2’s acausal queue (this is an
encounter that occurred in the past at time t = a). The particle
filter is augmented with the state variables for robot 3 〈x3, x̄3〉,
which are initialized on a per-particle basis using the pose
of the acausal instance of robot 2 (lines 16–17). The queue
for robot 3 is split into causal and acausal components (lines
18–19), and subsequent updates incorporate data from both
queues into the map. This process is illustrated in the diagram
in Figure 8; note that, for robot 3, the causal queue is always
non-empty, and causal updates for this robot lag behind those
for robots 1 and 2.

It should be apparent from this example that robot 1 can
fuse data from all three robots into a single map. Similar
computations on the other two robots will produce comparable
(but not necessarily identical) maps.

H. Discussion: complexity and latency

Two questions naturally arise regarding this algorithm: first,
in what sense is this an ‘on-line’ algorithm (there may be
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Fig. 8. Encounter diagram for an imaginary three robot experiment with time-reversed updates. The solid horizontal lines denote the sequence of observations
recorded by each robot; the dotted vertical lines denote encounters at times t = a (robot 2 observes robot 3) and t = b (robot 1 observes robot 2). The shaded
areas indicate observations that have been processed through the filter and incorporated into the map.

# Process a data from a single robot.
# rob: id of robot generating data
# (u, z): change in pose (odometry) and new laser scan
# rob′, ∆: id and relative pose of observed robot (if any)

0 def update(rob, u, z, rob′, ∆):

# Add data to the queue
1 append(queue[rob], (u, z, rob′, ∆))

# If the robot has joined the map...
2 if rob in joined:
3 if len(queue[rob]) > 0:

# Do causal update
4 (t, u, z, rob′, ∆) = remove(queue[rob])
5 update filter(rob, u, z)

# Check for causal joins
6 if rob′ and rob′ not in joined:

# Initialize filter for causal and acausal instances
7 init filter(rob, rob′, ∆)
8 init filter(rob, rob

′

, ∆)
# Split the queue into causal and acausal components

9 queue[rob′] = reverse(queue[rob′][0 : t − 1])
10 queue[rob′] = queue[rob′][t + 1 :]

# Add robot to joined list
11 append(joined, rob′)
12 if len(queue[rob]) > 0:

# Do acausal update
13 (t, u, z, rob′, ∆) = remove(queue[rob])

14 update filter(rob,−u, z)
# Check for acausal joins

15 if rob′ and rob′ not in joined:
# Initialize filter for causal and acausal instances

16 init filter(rob, rob′, ∆)
17 init filter(rob, rob

′

, ∆)
# Split the queue into causal and acausal components

18 queue[rob′] = reverse(queue[rob′][0 : t − 1])
19 queue[rob′] = queue[rob′][t + 1 :]

# Add robot to joined list
20 append(joined, rob′)

21 return

Fig. 7. Algorithm for multi-robot SLAM with virtual robots (expressed
in Python pseudocode). In addition to the particle filter, there are two basic
data structures: a set joined listing the robots whose data is included in
the map (initialized to contain exactly one robot), and a pair of queues
(queue[rob], queue[rob]) for each robot (all queues are initially empty). The
function update filter() is described by Equation 4.

significant latency), and second, why are old observations
(stored in the queues) processed at the same rate as new
observations (gathered from sensors or received from other
robots)? The answers to these two questions are closely

intertwined.
As constructed, the algorithm has bounded time update

steps: the worst-case effort required in each cycle is O(nm),
were n is the number of robots and m is the number of
particles. This is a direct consequence of the fact that obser-
vations (both new and old) are always processed at the same
rate. The drawback of this approach, however, is latency: in
the encounter diagram shown in Figure 8, for example, the
observations for robot 3 lag 2(a− b) seconds behind those for
robots 1 and 2. In the worst case, the latency can be as high
as (n − 1)t seconds, where n is the number of robots.

To illustrate the alternative approach, consider again the
encounter between robots 2 and 3 shown in Figure 8. Fol-
lowing this encounter, one could step through all of the stored
observations for robot 3, updating the filter with each and
every observation, and entirely eliminating the latency. We
choose not to do this for two reasons. First, this alternative
approach no longer has bounded-time update steps (worst-
case effort is now O(nmt)) and a single robot encounter
may cause the algorithm to “pause and think” for a very
long time. Second, the re-sampling induced by multiple filter
updates tends to impoverish the sample set in the vicinity of
the remaining robots (recall the discussion in Section III-B);
as a consequence, more particles must be used to ensure filter
convergence.

In contrast, the algorithm as presented is well suited for
use in the robot control loop (so long as one is careful not
to confuse real robots with their virtual twins). We can, for
example, use the incomplete map to navigate, find frontiers
for exploration [22], [23], or plan a rendezvous with another
robot [12], [13]. It is in this sense that we use the term on-line
algorithm.

IV. IMPLEMENTATION AND EXPERIMENTATION

We turn now to matters of practical implementation, and dis-
cuss three key system components: laser-stabilized odometry,
single-robot particle-filter-based SLAM, and its generalization
to multiple robots.

A. Laser-stabilized odometry

As noted in Section III-A, PF-based mapping algorithms
require very accurate action models, and experience demon-
strates that raw odometry is not sufficient for this purpose.
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Fig. 10. Map generated using the single-robot algorithm; the map is 30 m by 30 m with a resolution of 0.10 m.

Instead, we make use of laser-stabilized odometry, in which
laser range data is used to correct the raw odometry estimate;
this combined lodometric pose estimate exhibits a drift rate
that is an order of magnitude less than that observed using
odometry alone.

The basic algorithm for laser-stabilized odometry is straight-
forward: the robot maintains a local map generated from
recent laser scans, and each new scan is first fitted against
and then added to this map; the lodometric pose estimate is
derived from the fitted scan pose. Since the map is strictly
local (both spatially and temporally), these estimates have
the same basic properties as odometry – an arbitrary origin
and cumulative drift – but are much more accurate. Figure

9, for example, shows an error scatter plot for odometric and
lodometric pose estimates; each point shows the difference
between the estimated change in pose (over some interval) and
the ground-truth change in pose (as determined by the global
SLAM algorithm described in the next section). The errors in
the lodometric estimates are significantly less than those for
raw odometry, particularly for changes in robot orientation. In
the experiment used to generate this plot, the robot travelled
125 m and executed 19 complete rotations before returning to
its starting location; using laser-stabilized odometry, the final
orientation error was less than 5 degrees, versus 110 degrees
for pure odometry.

Note that the use of lodometric pose estimates for mapping
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Fig. 11. Four mapping robots: each robot carries a unique laser-visual fiducial that can be detected and identified at ranges greater than 8m.

does lead to some double counting of data: laser scans are
used once to generate lodometric estimates, and a second time
to generate the map. In practice, this double counting has
minimal impact, as the mapping algorithm uses only a small
fraction of the available laser scans.

B. Single-robot SLAM

The single-robot SLAM algorithm contains many elements
of the standard Monte-Carlo localization algorithm [21] and
is relatively easy to implement. The key challenge lies in
maximizing the per-particle update speed while minimizing
the corresponding storage requirements, so that the filter may
run in real time and in bounded memory with a relatively
large number of particles. As always, the speed and storage
demands tend to conflict, and our implementation favors the
former over the latter.

For each particle, we maintain a complete occupancy grid
map, generally with a resolution of 0.10 m and covering
an area of between 400 and 2500 m2. With an 8-bits-per-
cell representation, this implies that each particle requires
up to 0.25 Mb of storage, or 25 Mb for a filter with 100
particles. Such storage capacities are readily available on
contemporary workstations and high-end embedded systems.
The filter update step requires two ray-tracing operations on
the occupancy grid for each and every particle: one to evaluate
the sensor model and another to update the map. Since these
operations are expensive, we approximate the ray-tracing step
by considering only the ray end-points, and decimate the laser
scans by using only one scan for every 0.10 m of distance
travelled. These approximations improve processing speed by
an order of magnitude or more, thereby allowing real-time
operation.

Figure 10 shows a typical map generated by the single-robot
algorithm, with all three loops correctly closed. Processing
time for this map is 173 s on a 2.4GHz P4 workstation using
200 particles (versus 865 s to acquire the data). The top speed
of the robot was 0.20 m/s.

C. Multi-robot SLAM

The multi-robot SLAM implementation has a great deal in
common with the single-robot implementation described in
Section IV-B. Each particle stores an occupancy grid and a set
of pose estimates: for a team of n robots, there are 2n such
estimates, representing both causal and acausal instances of
each robot. Importantly, the filter does not distinguish between
these two, and acausal instances are simply treated as addi-
tional robots that happen to be driving backwards. The multi-
robot algorithm also uses a number of queues for managing
data from the robots; these are implemented using a set of
files (one for each robot) to which observations are appended.
Causal updates are generated by seeking forwards through
the file; acausal updates are generated by seeking backwards.
Compared with the single-robot algorithm, the multi-robot
algorithm has identical in-memory storage requirements (since
all robots share the same map) and requires worst-case effort
that is 2n times that seen in the single-robot case. It is
likely that the filter also requires more particles to ensure
convergence, but we have not yet quantified this result.

Figure 12 shows the results produced by the multi-robot
algorithm for an autonomous exploration task. The four robots
pictured in Figure 11 were deployed into a 600m2 envi-
ronment at two distant locations, from which they executed
a cooperative, but largely reactive, exploration strategy. All
four robots were identically equipped with odometry, scanning
laser range-finders and retro-reflective markers (for mutual
recognition).

The sequence of events in this experiment can be read from
the encounter diagram in Figure 13.

• The filter is ‘seeded’ with a causal instance for robot
0, which immediately encounters, and generates a casual
instance for, robot 1. These two robots start from ad-
jacent locations in the bottom-right corridor. The map is
subsequently updated using causal data from both robots.

• At time t = 1100, robot 0 encounters robot 2, generating
both causal and acausal instances for the latter. Subse-
quent map updates combine data from four sources: the
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Fig. 12. Combined map for all four robots using the multi-robot SLAM algorithm. One pair of robots starts from the right-top room, the other from the
right-bottom corridor. The map is shown overlaid on the ‘ground-truth’ blueprint.
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Fig. 13. Encounter diagram: each horizontal line represents a robot, each vertical line denotes an encounter between robots (e.g., robot 0 encounters robot
2 at time t = 1100 sec). The ‘bunching’ of vertical lines indicates multiple encounters occurring over a short period of time. Shaded circles indicate the set
of encounters used to merge data from all four robots.

Fig. 14. Individual maps for two of the four robots, generated using the single-robot algorithm.
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causal instances of robots 0 and 1, and the causal and
acausal instances of robot 2.

• At time t = 1250, the acausal instance of robot 2
encounters robot 3; i.e., we take note of an event that
actually occurred 300 seconds in the past, at time t =
950. This encounter generates both causal and acausal
instances for robot 3.

• The experiment proceeds until time t = 3600, at which
time all of the data from all of the robots has been
captured into a single map, and robots 0, 1 and 2 have
returned to their initial locations (robot 3 failed to return
due to a communication failure).

It should be noted that robot 0 never encounters robot 3 during
the course of this experiment. The data from the latter robot
is included entirely as a result of a transitive encounter: robot
0 encounters robot 2, and the acausal instance of robot 2
encounters robot 3.

In the final map, all of the major topological features have
been correctly extracted, and, with the exception of a single
scan mis-alignment on the bottom right corridor, the quality
of the map is uniformly high. The minor differences between
the map and the blueprints are primarily due to errors in
the blueprints. Processing time for this map is 2940 seconds
on a 2.4GHz P4 workstation using 500 particles (versus
3600 seconds to acquire the data). For comparison purposes,
Figure 14 shows the individual maps generated using the
single-robot SLAM algorithm for two robots starting from
very different locations; both maps are incomplete, which is
the expected result for a cooperative exploration task.

V. DISCUSSION AND CONCLUSION

One of the attractive features of this multi-robot SLAM
algorithm is the ease with which it may be implemented.
The basic elements of the algorithm – sensor and action
models, occupancy grids and ray-tracing – are easily adapted
from Monte-Carlo localization, and while the virtual robots do
require some additional book-keeping, the overall complexity
is low. If desired, one can further improve the quality of the
map by post-processing with a local constraint algorithm in
the style of Lu and Milios [24].

There are several possible enhancements to the algorithm
as presented, of which we will mention just one. The current
sensor model assumes that each robot’s observations are inde-
pendent of the pose of all the other robots, and we take care
in the implementation to ensure that this assumption is always
satisfied (by selectively discarding range data, for example).
For those robots that are already in the map, however, we may
be able to relax this assumption, and condition the observations
of one robot on the pose of the others. This dependency
could be usefully exploited during loop closure, as the robots
themselves would form a unique and unambiguous set of
landmarks.
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