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Autonomy is becoming increasingly important for the robotic exploration of unpredictable
environments. One such example is the approach, proximity operation, and surface
exploration of small bodies. In this article, we present an overview of an estimation
framework to approach and land on small bodies as a key functional capability for an
autonomous small-body explorer. We use a multi-phase perception/estimation pipeline
with interconnected and overlapping measurements and algorithms to characterize and
reach the body, from millions of kilometers down to its surface. We consider a notional
spacecraft design that operates across all phases from approach to landing and to
maneuvering on the surface of the microgravity body. This SmallSat design makes
accommodations to simplify autonomous surface operations. The estimation pipeline
combines state-of-the-art techniques with new approaches to estimating the target’s
unknown properties across all phases. Centroid and light-curve algorithms estimate the
body–spacecraft relative trajectory and rotation, respectively, using a priori knowledge of
the initial relative orbit. A new shape-from-silhouette algorithm estimates the pole
(i.e., rotation axis) and the initial visual hull that seeds subsequent feature tracking as
the body gets more resolved in the narrow field-of-view imager. Feature tracking refines the
pole orientation and shape of the body for estimating initial gravity to enable safe close
approach. A coarse-shape reconstruction algorithm is used to identify initial landable
regions whose hazardous nature would subsequently be assessed by dense 3D
reconstruction. Slope stability, thermal, occlusion, and terra-mechanical hazards would
be assessed on densely reconstructed regions and continually refined prior to landing. We
simulated amission scenario for approaching a hypothetical small body whosemotion and
shape were unknown a priori, starting from thousands of kilometers down to 20 km.
Results indicate the feasibility of recovering the relative body motion and shape solely
relying on onboard measurements and estimates with their associated uncertainties and
without human input. Current work continues tomature and characterize the algorithms for
the last phases of the estimation framework to land on the surface.
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1 INTRODUCTION

Autonomy is the ability of a system to achieve goals while operating
independently of external control (Fong et al., 2018). For a robotic
spacecraft, this typically implies operating independent of ground-
based control, with limited communication windows and time
delays. Autonomy in robotic space exploration is becoming
increasingly important to reach and operate in never-visited-
before environments, where a priori knowledge of that
environment has large uncertainties, where the spacecraft’s
interaction with that environment is more dynamic in nature,
where resources available to the spacecraft are limited, or where the
harshness of that environment impacts and degrades the health of
the spacecraft. Examples include exploring near, on, or below the
surfaces of ocean worlds, such as Europa, Titan, or Enceladus. Even
for previously characterized environments, such as the surfaces of
the Moon or Mars, autonomy is becoming increasingly critical to
improving productivity, increasing robustness, and, eventually,
reducing cost, as evidenced by recent advances in autonomous
landing and surface navigation for theMars 2020mission (Johnson
et al., 2015; Toupet et al., 2020) and upcoming mission studies for
the planetary science decadal survey1, such as the Intrepid lunar
mission concept (Robinson et al., 2020).

Small bodies in our solar system include near-Earth objects
(NEOs), main-belt asteroids and comets, centaurs, and trans-
Neptunium objects such as Kuiper Belt objects. Over 850,000
small bodies have been observed in the solar system, but only
25 have been flown by to date, and as few as seven have been
rendezvoused with. The abundance and diversity (both in the
composition and the origin) of small bodies drive the need for
greater access, which would require more capable and affordable
spacecraft (with higher ΔV) and autonomous operations to reach,
approach, land, move, and sample their surface and subsurface.
Increasing the number of accessible small bodies and reducing
operational costs are among the key benefits. Greater access enables
the study of the population of small bodies. Even exploring a subset
of small bodies, such as NEOs, is relevant tomultiple thrusts, which
are as follows: decadal science, human exploration, in situ resource
utilization, and planetary defense. Common to the aforementioned
thrusts are the following: 1) knowing what is where, 2)
characterizing the bodies’ compositions, 3) understanding their
geophysical (including geo-technical) properties, and 4)
characterizing their environments (Swindle et al., 2019).

NEOs are well-suited targets for advancing autonomy because
they embody many of the challenges that would be representative
of even more extreme destinations while remaining relatively
accessible by small affordable spacecraft (e.g., SmallSats).
Technologies developed for autonomously approaching, landing,
and exploring NEOs would be applicable to other more remote

small bodies. Autonomy is enabling for small-body missions
because it would allow greater access to far more diverse bodies
than the current ground-in-the-loop exploration paradigm. It
enables scaling to missions that would require multiple
spacecraft for their measurements, such as bi- and multi-static
radar measurements. With onboard situational awareness,
autonomy enables closer flybys, maintaining otherwise unstable
orbits, maneuvering in proximity to irregular-shaped bodies, and
safe landing and relocating on the surface. Approaching small
bodies is challenging because of the large-scale changes in the
appearance of the target body and the a priori unknown motion
and shape of the body (mainly for small bodies). Operating near,
on, or inside these bodies is challenging because of their largely
unknown, highly rugged topographies, their poorly constrained
surface properties, and the dynamic nature of the interactions
between spacecraft and the bodies due to their low gravity, all of
which require autonomy for effective operations. As such, we argue
that NEOs are well-suited targets for advancing autonomy, with
feed-forward potential to the more challenging outer solar system
destinations, including the unknown surfaces of ocean worlds. We
argue that autonomy is enabling for small-bodymissions because it
would allow access to more diverse and remote bodies than the
ground-in-the-loop exploration paradigm and would scale to
missions that require multiple spacecraft2. Learning to
autonomously reach and explore such environments serves as a
stepping stone toward more complex autonomous missions. Once
matured, such technologies would have high feed-forward
potential to more challenging exploration, such as a Titan aerial
explorer that canvasses its terrains, dips into its liquid lakes, or
sends probes into its ocean-world interior, an explorer that samples
the plumes of Enceladus’ Tiger Stripes, or an explorer that ventures
into the crevasses of Europa, to name a few.

The work presented here is a step toward advancing
autonomous access to small bodies. The two key contributions
of this article are as follows:

• An integrated estimation framework to enable the autonomous
approach toward, rendezvous with, and eventual landing on
small unexplored bodies. The pipeline leverages a combination
of established (centroid and light-curve) algorithms, new
algorithms developed by the authors (pole/shape-from-
silhouette), and algorithms (feature-tracking, coarse
reconstruction, and 3D dense reconstruction) newly
applied/evaluated in the integrated pipeline3.

1Mission Concept Studies for the Planetary Science and Astrobiology Decadal
Survey 2023-2032, https://www.hou.usra.edu/meetings/pmcs2020/

22018 Workshop on Autonomy for Future NASA Science Missions: Output and
Results - Small body Design Reference Mission https://science.nasa.gov/science-
pink/s3fs-public/atoms/files/NASA%202018%20Autonomy%20Workshop%20Small
%20Bodies%20DRM%20reports.pdf
3The gold standard for state of the practice is to use Shape-Photoclinometry (SPC),
but this requires human input to reconstruct a 3D shape from landmarks. In this
work, we have evaluated photogrammetry-based techniques for the autonomous
pipeline.
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• An assessment of the feasibility of the estimation pipeline in
maintaining uncertainties below the estimate errors in a
realistic mission simulation. This was conducted in a blind
experiment that involved approaching and rendezvousing
with an unknown, artificially generated body from 3,000 km
down to 20 km. The experiment assumes limited a priori
knowledge of the body with large uncertainties from
ground-based astronomical measurements, which
included the body’s initial heliocentric orbit, rotation
rate, and an approximate pole orientation.

Two secondary contributions that resulted from this
investigation are as follows:

• A summary of the results of several trade studies that
compared feature trackers and coarse reconstruction
algorithms for this domain.

• A notional spacecraft design that can be used to
demonstrate an end-to-end autonomous approach,
landing, and surface mobility on small bodies.

The autonomy targeted by this work is onboard goal-oriented
mission operations. In the European Cooperation for Space
Standardization (ECSS), that would correspond to E4
Autonomy (Tipaldi and Glielmo, 2018). While the
aforementioned perception-rich estimation pipeline is a key
capability for the autonomous approach and landing on
small bodies, this functionality would have to be integrated
into a system-level capability that would manage
intent, activities, resources, and system health (Nesnas et al.,
2021). As was pointed out by Tipaldi and Glielmo (2018),
there are strong synergies between architectures used for end-
to-end autonomous spacecraft and those used in robotics, which
have been extensively studied (Alami et al., 1998; Volpe et al.,
2001).

This article is organized as follows: in the next section,
we summarize key autonomy advances in flight with a
focus on small bodies. Section 3 describes the state of the
practice in autonomous approach and landing on small
bodies, followed by a detailed description of our estimation
framework that would enable autonomous approach and
landing. In Section 5, we describe our experimental setup,
which includes a notional spacecraft design and a high-fidelity
simulation of imagery and other telemetry during approach.
We summarize the results of simulating a realistic mission
scenario for approaching an unexplored body. We conclude
with an assessment of the viability of the estimation process in
establishing situational awareness and share plans for future
development.

2 RELATED WORK

Most small-body missions have used some level of
autonomy, but all operated within narrow windows and
under several constraints, with extensive human-in-the-
loop pre- and post-execution of autonomy segments (Nesnas

et al., 2021). Autonomy is used in planetary missions either
when no ground-in-the-loop alternative exists or when the
ensuant actions of an autonomous assessment are
nonconsequential from a risk standpoint. In situations where
missions had to deploy autonomy, they did so within short-
duration windows, with careful ground oversight pre– and
post–autonomy deployment, often applying additional
constraints informed by prior data and ground-generated
models, to restrain the action space of the spacecraft and
maintain a comfortable level of predictability of the execution
sequence.

2.1 Small-Body Cruise and Flyby Operations
In 1999, the Remote Agent Experiment onboard the Deep Space I
mission demonstrated goal-directed operations through onboard
planning and execution and model-based fault diagnosis and
recovery, operating two separate experiments for 2 days and then
later for five consecutive days (Bernard et al., 1999; Nayak et al.,
1999). The spacecraft demonstrated its ability to respond to high-
level goals by generating and executing plans onboard the
spacecraft, using model-based fault diagnosis and recovery
software. On the same mission, autonomous spacecraft
navigation was demonstrated during cruise for 3 months of
the 36-month-long mission, executing onboard detection of
distant asteroid beacons, updating the spacecraft’s orbit, and
planning and executing low-thrust trajectory control. It also
executed a 30-min autonomous flyby of a comet, maintaining
a lock on the comet’s nucleus as it flew by through updating the
comet-relative orbit of the spacecraft and controlling the camera
pointing (Bhaskaran et al., 2002).

In the decade to follow, two missions, Stardust and Deep
Impact, demonstrated similar feats in tracking comet nucleii on
their respective missions to three separate comets (Bhaskaran,
2012). Furthermore, in 2005, the Deep Impact mission performed
the most challenging use of autonomous navigation to date
(Kubitschek et al., 2006). The onboard system guided the
impactor spacecraft during the final 2 h to collide with the 7-
km-wide comet Tempel 1 at a speed of 10.1 km/s. Although not
the purpose of the mission, it was the first to show that a kinetic
impactor could be used to deflect a potentially hazardous asteroid
from hitting the Earth using the same technology. Most recently,
the ASTERIA spacecraft transitioned its commanding from time-
based sequences to task networks and demonstrated onboard
orbit determination in low Earth orbit (LEO) without GPS, using
passive imaging for orbit determination (Fesq et al., 2019).

2.2 Small-Body Proximity Operations
Operating in proximity to and on small bodies has proven
particularly time-consuming and challenging. To date, only
five missions have attempted to operate for extended periods
of time in close proximity to such small bodies: NEAR
Shoemaker, Rosetta, Hayabusa, Hayabusa2, and OSIRIS-REx
(Yeomans et al., 2000; Herfort and Casas, 2015; Lorenz et al.,
2017; DellaGiustina et al., 2019; Kitazato et al., 2019; Ogawa et al.,
2020). Many factors make operating around small bodies
challenging: the microgravity of such bodies, rocks and debris
that can be lifted off their surfaces, outgassing events, their
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irregular topography and correspondent sharp shadows and
occlusions, and their poorly constrained surface properties.
The difficulties of reaching the surface, collecting samples, and
returning these samples stem from uncertainties of the unknown
environment and the dynamic interaction with a low-gravity
body. The deployment and access to the surface by Hayabusa’s
MINERVA (Yoshimitsu et al., 2012) and Rosetta’s Philae (Biele
and Ulamec, 2008) highlight some of these challenges and,
together with OSIRIS-REx, underscore our limited knowledge
of the surface properties. Because of the uncertainty associated
with such knowledge, missions to small bodies typically rely on
some degree of autonomy.

In 2005, the Hayabusa mission demonstrated autonomous
terminal descent of the last 50 m toward a near-surface goal for
sample collection, using laser ranging (at <100 m) to adjust
altitude and attitude (Kubota et al., 2012). This capability was
also employed on the 2019 Hayabusa2 mission, where the
mission used a hybrid ground/onboard terminal descent with
the ground controlling the boresight approach, while the onboard
system controlled the lateral motion for the final 50 m. In 2020,
the OSIRIS-REx mission used terrain-relative navigation for its
touch-and-go maneuver for sample acquisition (Lorenz et al.,
2017). Using a ground-generated shape-model, the spacecraft
matched natural features to images rendered from the generated
model to guide the spacecraft in the last several hours of descent
to reach a precise spot for touch-and-go sampling. This segment
was executed autonomously but with considerable pre-planning
and testing to ensure safety. In 2022, the planetary defense
mission DART is planning to use autonomous targeting to
impact the 100-m secondary body Dimorphos of the Didymos
binary asteroid system, perturbing the secondary body’s orbit
adequately to be observed using ground telescopes (Cheng et al.,
2018). During its terminal approach, the spacecraft will use
onboard perception to distinguish between the two bodies,
lock onto the secondary body, and guide the spacecraft toward it.

For science exploration, surface interaction is needed for
microscopy, seisomology, and sampling. The OSIRIS-REx
mission captured samples from the surface of the asteroid
Bennu using a 3.4-m extended robotic arm in a touch-and-go
maneuver that penetrated to a depth of 50 cm, well beyond the
expected depth for the sample capture, an indication of poorly
constrained surface properties. In addition to sampling, mobility
on the surface (or spacecraft relocation) could greatly enhance the
value of a landed system by exploring distinct regions on the body
(Castillo-Rogez et al., 2012). Proximity and surface operations, in
particular, ones that have additional orientation constraints for
thermal, power, or communication reasons, require six–degree-
of-freedom (DOF) autonomous guidance, navigation, and
control (Riedel et al., 2008; Bayard, 2009; Hockman et al.,
2017). Such capabilities include perception, feature tracking for
motion estimation, 3D mapping, hazard assessment, motion
planning, and six-DOF control. These autonomy-enabling
functions require a system-level executive (Grasso, 2002;
Verma et al., 2006; Fesq et al., 2019) to orchestrate these
functions with the planning, execution, system health
management, and data management, as was demonstrated in
prior studies involving landings on theMoon and on small bodies

(Riedel et al., 2008; Riedel et al., 2010), and for understanding
fundamental trade-offs concerning small-body touch-and-go
sampling (Cangahuala et al., 2011).

Autonomous spacecraft operations, especially in the vicinity of
unexplored bodies and surfaces, are particularly challenging
despite our best efforts to anticipate the execution of pre-
scripted sequences. The unpredictability of the outcome drives
the need for in situ situational awareness and reasoning for
subsequent actions. As technologies in sensing, computing,
and reasoning mature, the viability of autonomous operations
could be realized to a much larger degree in the coming decades.
Consequently, the state of the practice in accessing small bodies
remains largely driven by a ground-operation team of scientists
and engineers, employing autonomous operations only in critical
phases that cannot afford the constraints of ground-in-the-loop
decision-making. Developing and sharing of the capability that
enables autonomous approach, landing, and surface operations
on small bodies would allow the maturing of autonomous
spacecraft capabilities needed for more extreme destinations,
and it would allow scaling in both the number of missions
and the number of spacecraft that can explore the large
number of small bodies.

3 STATE OF THE PRACTICE

The current state of the practice for approaching and landing
on a small body, from first detection by the spacecraft to landing,
is heavily dependent on ground-in-the-loop operations. Despite
the use of autonomous functions, and in some cases, repeated
use of such functions4, all missions to date were primarily
executed in a manner where command sequences are
uploaded and executed in lock step with ground-planning
cycles. The process begins with deep space navigation, which
relies heavily on radiometric spacecraft tracking using a network
of ground antennae (e.g., the Deep Space Network (DSN)).
The remarkable accuracy of radiometric measurements has
been the hallmark of deep space navigation, providing line-of-
sight radial ranging accuracy on the order of a few meters and
Doppler-based line-of-sight velocity measurements on the order
of tenths of millimeters per second. For approaching and
rendezvousing with bodies whose orbits are highly uncertain
(including asteroids, comets, planetary satellites, and trans-
Neptunian objects), optical navigation (using an onboard
camera to image the body) is used as it provides a target-
relative measurement. The data are typically processed on the
ground and combined with the radiometric data, except for the
aforementioned missions, which performed specific phases
autonomously onboard.

Specifically for encounters with small bodies, the approach
phase begins with the first detection of the body, typically several
months prior to the encounter, at distances in the high tens of
millions of kilometers. In this phase, the body is almost always

4Autonomous in-space navigation was used on Deep Space I, Deep Impact, and
Stardust.
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unresolved and simple center-finding techniques are used to
precisely locate the center of brightness. This information, in
conjunction with ground-based radiometric data, is used to
improve the ephemeris of the target body, which, up to this
point, is based entirely on observations from the Earth. The
Earth-based knowledge of the body’s orbit can be anywhere, from
fairly accurate (in the low tens of kilometers) in the case of larger
well-known asteroids to extremely poor (many thousands of
kilometers) in the case of small, dim asteroids and comets
(due to large and unknown outgassing accelerations acting on
them). As the spacecraft continues its approach, trajectory
correction maneuvers are implemented using the refined
knowledge of the target-body ephemeris to specifically target
either a flyby or a rendezvous location. In addition, analysis of
light-curve information from the body can be used to update its
spin rate (periodicity).

As the spacecraft gets closer and the body becomes resolved,
additional information can be gleaned from the data. By tracking
features on the surface, information about the body’s orientation
in space, including the direction of the pole, as well as
determining whether the body is rotating around a principal
axis or tumbling, can be computed. The current and most widely
used method to identify and track surface features is called stereo
photoclinometry (SPC) (Gaskell et al., 2008). SPC relies on using
multiple images of the body to build detailed maplets of the
surface, simultaneously solving for both the topography and the
albedo in a least-squares fit. The method uses a priori information
of the spacecraft’s position and attitude to create the network of
maplets in body-fixed coordinates used for tracking features. The
process becomes iterative; as surface features are precisely located
on the surface, it can be used to refine the position of the
spacecraft, which, in turn, can be used to improve the features
of the surface location, and so on. This process continues
throughout the proximity operation phases to constantly refine
the spacecraft’s orbit, the body-fixed surface-feature locations,
and information about the pole orientation and spin rate of the
body. The refined orbit estimates, which include merging
radiometric and optical data, are also used to plan maneuvers
for proximity operations, including landing, if needed. Finally,
the orbit estimates also improve knowledge of the body’s overall
mass and gravity field.

Although this ground-based methodology has proved very
successful on multiple missions, including Dawn, Rosetta, and
OSIRIS-REx, it is very labor-intensive, requiring large operations
teams for extended durations. By necessity, closing the loop
between receiving navigation measurements and sending
control commands for maneuvers or pointing instruments is
limited by, at a minimum, the round-trip flight time to the
spacecraft, but also the time it takes to process the large
volume of data and generate the ground-based plan.

With the increase in sensing, computation, and algorithms,
mature autonomous systems could significantly reduce the
operational duration of the proximity and surface phases and
increase their productivity. An autonomous spacecraft would
always use the most recent information and reason about and
reconcile that information onboard to establish situational
awareness across the approach through the landing phases to

guide the spacecraft’s actions. All the processes currently
performed on the ground, that is, estimating the spacecraft’s
orbit relative to the target and the body’s spin rate, pole
orientation, and coarse shape, need to be transferred to the
spacecraft. The spacecraft then needs to assess all hazards
associated with proximal interactions, landing, and surface
mobility, if planned. Such hazards arise from topography, rock
types and distribution, ejecta/plume, surface stability (slope and
sinkage), line-of-sight occlusions, and thermal traps (hot/cold).

4 APPROACH

4.1 Assumptions
The problem of changing the paradigm from ground-in-the-loop
to autonomously approaching and landing on a small body,
including operating on the surface of the microgravity body, is
both compelling and challenging. The large-scale changes
perceived across millions of kilometers, the sharp shadows
imposed by a rugged airless body, the a priori unknown and
irregular shape of the body, the rotation and nutation of the body,
and the impact of an irregular gravity field on the spacecraft all
but make this problem intractable.

To advance the art, we list the assumptions for our
autonomous estimation framework.

• Principal-Axis Body Rotation: We assume that the body
primarily has a principal-axis rotation without substantial
nutation (i.e., the body is not tumbling). As expected, the
vast majority of asteroids are found to have a uniform
rotation around their maximum moment of inertia, as it
is the minimum energy rotation state of a body (Burns and
Safronov, 1973). To date, this assumption held for the
bodies that spacecraft have rendezvoused with (Itokawa,
67P, Eros, Ryugu, and Bennu). However, on the small-size
scale, there is a set of fast-spinning, tumbling bodies that do
not currently have a clear theoretical explanation for their
existence or persistence (Scheeres, 2016). These bodies
would be challenging to rendezvous with. We will
address adaptations of this estimation pipeline to such
bodies in future work.

• Small Sun-Phase Angle Approach: We assume an approach
with a relatively small angle (<20°) off the sun-body line
with the Sun behind the spacecraft and the target body. This
allows the body to be nearly fully illuminated from the
spacecraft’s vantage point, minimizing major shadowed
regions of the body. This is justified because the
approach can be controlled as part of the planned
trajectory and is commonly used in practice. Our team is
working to relax this assumption.

• Availability of an initial low-fidelity relative orbit: We
assume the availability of initial estimates with large
uncertainties of the target-relative orbit based on
navigating the spacecraft to this particular point. This is
usually available from ground-based observations.

• Availability of spacecraft attitude knowledge: We assume
that the spacecraft attitude knowledge is available
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throughout the approach and landing phases using standard
star-tracking techniques. Multiple measurement sources
inform the spacecraft attitude in addition to the star
tracker: the target-body location in both the narrow- and
wide-FOV cameras as well as inertial sensing (in the relative
sense only), which are fused onboard using an attitude
estimation algorithm. However, in situations where the
spacecraft loses attitude knowledge, which can sometimes
occur in safing events, there are procedures to recover

attitude, such as putting the spacecraft into a sun-cone
mode, where the panels are on the Sun to maintain
power, but the spacecraft spins to maintain stability
without attitude knowledge. Once the spacecraft regains
its three-axis stability from the star trackers, it can resume
the execution of the estimation pipeline. The estimation
pipeline does not impose requirements on maintaining a
view of the target throughout the approach and landing
(i.e., strict target-pointing constraints). However, we

FIGURE 1 | Multi-phase single-spacecraft and target body estimation framework (A) with details of the autonomous orbit determination process (B).
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designed our notional platform to have a great degree of
“attitude flexibility” to limit such constraints (see Section
5.1 for more details).

4.2 Multi-Phase Estimation Framework
To enable the autonomous approach, rendezvous with, and safe
landing on a small body, we developed the multi-phase
estimation framework (Figure 1) that relies on onboard
optical and inertial sensing. At the start of the approach, the
framework is seeded with prior orbit estimates and associated
uncertainties from navigation results up to that point. The
framework then uses one or two parallel pipelines, one for
each of its two boresighted, radiometrically calibrated cameras.
The narrow-FOV camera, typically 5°–10°, is used for distant
approach, while the wide-FOV camera, an order of magnitude
wider, is used for close approach, landing, and surface mobility.
The two cameras allow for staggering the estimation pipelines by
an order of magnitude in the body-image span and generate
redundant measurements. The body-image span denotes the
maximum width in pixels that the body subtends in the image
at a given distance, which is a scale-invariant metric of body size,
body distance, and camera optics that we use to inform
transitions across phases. The overlap in the sensing and
estimation across the phases provides multiple sources of
knowledge and redundant measurements that have to be
reconciled to establish robust situational awareness. The
autonomous situational awareness pipeline consists of five
phases that estimate the following: the 1) spin rate
(periodicity), 2) pole orientation (rotation axis), 3) initial
shape, 4) refined shape and 3D mapping, and 5) hazard
assessment for landing. In addition, orbit determination is
performed continuously throughout all phases.

4.3 Determining Relative Orbits
To determine the trajectory of the spacecraft relative to the target
and other parameters of interest (e.g., the target’s orientation and
gravity parameters), we use a standard batch state-estimation
algorithm that is informed by optical-based measurements (both
centroid measurements and feature tracks when the target is
sufficiently resolved) and any available a priori information (e.g.,
maneuver models). Estimation of the spacecraft’s orbit
parameters (i.e., orbit determination or OD) is a continuous
process from initial acquisition of the body after launch until the
spacecraft completes its orbital operations, but the process
becomes target-relative once the body becomes detectable in
images during the early stages of approach.

With only centroid measurements, the relative orbit begins as
weakly observable due to a lack of information concerning the
system’s scale (i.e., spacecraft distance to the target and the size of
the target); however, as the data arc becomes longer, the
combination of information from the measurements and the
state dynamical model yields a complete estimate of the
spacecraft’s relative orbit5. Estimation of the system’s scale can

be specifically improved in the presence of well-modeled
maneuvers. Uncertainty will generally be largest in the
boresight direction due to the nature of the optical measurements.

When the body-image span becomes large enough to resolve
surface features, feature tracks are fed into the state-estimation
algorithm. A feature is the projection of a surface landmark onto
the camera’s 2D plane, and a landmark is its corresponding 3D
location on the surface relative to the body’s inertial frame.
Feature tracks enable the estimation of the target’s orientation
(i.e., the spin rate and pole) and the scale of the body (via the
estimated feature positions). To help ensure that an accurate
solution is being computed, we run multiple filter variations in a
filter bank, where the solutions can be compared against one
another in order to check for solution consistency. Filter-bank
variations include the types of measurements used in each cycle
(i.e., whether centroids, tracked features, or both types are used)
and landmark modes used (i.e., in our case, whether a drift model
for landmarks is used or not). Solutions that differ in a statistically
significant manner indicate an anomaly in the modeling of one or
more filters. This filter-bank approach is important to ensuring
successful transitions across phases, from centroid-only solutions
to feature-only solutions, which is necessitated when the body
becomes too large in the image plane to support the extraction of
an accurate centroid measurement. This phase transition is also
critical for effective close-proximity operations around the target,
which is a precursor to landing. Figure 1B summarizes the orbit-
determination process that combines estimates of the spin, pole,
visual feature tracks, initial visual hull, and models of the
dynamics and the camera(s) to estimate the body’s motion
and its 3D landmarks.

In a batch state-estimation process, there is a computational
limit on the size of each data arc (which is the combination of the
length of the arc and the number of features therein). Shorter data
arcs allow for a larger number of features to be included, but they
also reduce the robustness of the estimation, especially in the
presence of biased or statistically anomalous data. To stay within
the computational limit, we use a feed-forward approach to
balance the length of the arc with the number of features
(down-selecting to higher-quality, persistent, and geometrically
distributed features/landmarks). In this approach, we use data arc
priors (estimates and associated uncertainties) to properly
constrain the solution and increase robustness. Geometrically
diverse landmarks help preserve the orientation and scale
information of the full feature set.

While landmarks are typically fixed in the body’s inertial
frame, feature drift in the image impacts the estimates of
landmark locations on the body’s surface. We model
statistically significant drift, such as the one resulting from
moving shadows. Our primary drift model estimates a
constant angular velocity in the target’s body-fixed frame for
each landmark. This angular velocity is expected to be small
relative to the rotation rate of the body, but the model helps
remove deterministic biasing associated with feature drift. An
alternate model estimates the drift as a translational velocity;
however, this model suffers from strong correlations with the
spacecraft’s impulsive maneuvers, which can strongly degrade
filter performance in some situations.

5The data arc is the collection of measurements used in a single batch estimate to
produce a trajectory update.
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4.4 Estimating the Body Centroid
The first closed-loop measurement with the target body is that of
the body’s centroid, which can be used as soon as the body is
detected in the narrow-FOV camera. Depending on the size of the
body and the camera optics, the spacecraft would typically be tens
of millions of kilometers away from the body. Because of the
camera optics, the reflected light from the sub-pixel–sized body
would appear as a point-spread function across several pixels in
the focal plane. By setting the proper camera exposure, both the
target body and the background star field would be observed. A
centroid brightness-moment algorithm (Owen, 2011) is applied
to search windows around the predicted target and star locations
based on ephemeris data to estimate the body and stars’ initial
centroids. The window sizes are typically 10 × 10 to ∼100 × 100
pixels. A Gaussian function is then fit to the initial target location
and each star location in the image, resulting in an accuracy of
0.01–0.05 pixels for the stars and ∼0.1 pixels for the body
(Bhaskaran, 2012).

As the body’s signature in the image grows, the brightness-
moment algorithm (Owen, 2011) gets used without the Gaussian
fit. Estimates of body centroids are subsequently used as priors for
the center of mass in orbit determination. In most cases, the
center of brightness does not represent the center of rotation as
the target body is unlikely to be uniform in shape and density. As
the body size grows in the image, the accuracy of the brightness
centroid decreases, and the pipeline transitions to relying more
on feature tracking to estimate the pole center.

4.5 Estimating Periodicity (Spin Rate)
Estimating the spin rate (i.e., “periodicity”) of the target body can
start as soon as the body is detected and continues until surface
features get resolved in the images and feature-based orbit
determination generates stable results. While in theory, one
can continue to estimate periodicity as long as the full extent
of the body remains visible in the camera’s frame, there are
diminishing returns and negative effects as the body grows in the
image, such as perspective distortion and non-collimated light
from the body. For targets that have been sufficiently observed

from ground telescopes prior to launch, an initial estimate of the
spin rate may exist. For other targets, such as comets, the spin
rates may not be well constrained by ground observations because
of the difficulty in discriminating between internal light reflection
within their coma and variations in reflected light from their
surfaces (Scheeres, 2016). In either case, onboard algorithms
would be needed for validating and/or refining estimates of
the spin rate to a sufficient accuracy for subsequent algorithms
within the autonomous approach pipeline. During distant
approach, the spacecraft has plenty of time to capture many
images over several rotations to refine the light curve estimates.

The principle of onboard period estimation is based on the
well-established technique of light-curve analysis (refer to
Warner et al. (2009) for a more detailed description), which
extracts the principal period of fluctuating intensity of the
reflected light from a rotating body. Advanced light-curve
inversion techniques have also been used to estimate crude
shapes of the body (Kaasalainen et al., 2001). Various
algorithmic techniques have been used to extract the principal
period of rotation from a light curve, including simple “peak
detection,” Fourier transforms, and regression methods
(Waszczak et al., 2015). We adopt the robust and highly
accurate Fourier regression method, in which an nth order
Fourier series is fit to the time-series intensity, δ(τ), the data
being as follows:

δ(τ) � A0 +∑n
k�1

A1,k sin
2πkτ
P

( ) + A2,k cos
2πkτ
P

( ), (1)

where P is the principal (first harmonic) period and Ai,k

are coefficients to be fit. Since this functional form requires
zero-mean fluctuations with a constant bias and amplitude, in
practice, when fitting data over a longer time-series, other
correcting terms may be included to remove effects such as
the increasing brightness or the varying observation phase.
Also, due to the bilobate nature of asteroid shapes, the first
harmonic period of a Fourier fit can sometimes correspond to
twice the true rotation period, but simple logical checks can be

FIGURE 2 | Example of a light-curve analysis for a simulated radial approach of comet 67P, starting from 35,000 km and approaching at 15 m/s with a 5o solar
phase angle and a Hapke reflectance model (Hapke, 2012). (A) Raw light curve, showing increasing brightness during approach. (B) Periodicity estimation by Fourier
regression, showing raw data (normalized), error bars, and two different-order Fourier models. (C) Evolution of relative-period uncertainty over time for three different
imaging frequencies.
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used to detect and correct for this (see Warner et al. (2009) for
more details).

Figure 2 shows an example of the period estimation process
for a simulated approach of comet 67P. The left plot illustrates
how the increasing mean brightness must be corrected for long
integrations. The center plot illustrates how different-order
Fourier models may be used to better fit the data. In general,
higher-order Fourier models can produce a much better fit to the
light-curve data (and more accurate period estimates) but require
more data and computation. A 2nd-order fit is generally more
robust and sufficient for capturing the first harmonic. Finally, the
right plot illustrates the decay of period uncertainty as the
spacecraft approaches the body for different imaging
frequencies. In practice, with autonomous image processing,
image frequencies may be well below 1 min, generating
estimates with a relative error in the order of 10–5 (e.g., less
than 1 s in a 12-h period) by the time images are sufficiently
resolved for subsequent silhouette analysis.

This technique relies on the existence of shape–albedo
asymmetries in the body, which tend to be significant for
small asteroids. For example, highly irregular bodies like
Itokawa can fluctuate in magnitude by over 100%, but even
nearly cylindrically symmetric bodies like Bennu and Ryugu
tend to vary by more than 10% due to local variations in
topography. Thus, the exact distance at which a robust light
curve can be estimated depends on the size and asymmetry of the
body and the “photometric capabilities” of the camera; but
generally, we have found that the period can be estimated
with sufficient accuracy for subsequent algorithms when the
body is only a few pixels (or less) in the body-image span.

4.6 Estimating the Pole Orientation (Axis of
Rotation)
For bodies that have a stable spin around their principal axis of
inertia, their pose evolution is entirely given by the pole
orientation and the spin rate, as the body’s prime meridian
(Owen, 2011) (PM) can be arbitrarily defined. Since the
uncertainty in the spin rate from Phase 1 is sufficiently small6,
this problem is reduced to estimating the pole orientation, which
is defined by the angles of right ascension (α) and declination (δ)
(RA and Dec). We start estimating the pole orientation when the
body spans tens of pixels, before distinct surface landmarks are
sufficiently resolved in the image. We use the body’s silhouette to
both estimate the pole and construct an initial shape.

Shape-from-silhouette techniques have been extensively
studied in the computer vision community and have been
used to extract shapes from images and video streams
(Laurentini, 1994; Cheung et al., 2005a; Cheung et al., 2005b).
They have also been used in ground-based spacecraft operations
(e.g., during the Rosetta mission (Lauer et al., 2012; de Santayana
and Lauer, 2015)). However, using the silhouette also has some
limitations. First, the resultant shape, known as the visual hull,

does not represent the true shape of the body as it cannot observe
two-dimensional concavities, such as craters (Laurentini, 1994).
Rather, it is the maximal shape encompassing the true shape of
the body. Second, there is an inherent ambiguity in estimating the
pole of a spinning object, which results from the bi-stable illusion
of two likely pole orientations for any given set of silhouettes: one
being the true pole and the other being an illusory pole that is a
reflection of the true pole across the observation axis. This
illusion, for which humans are biased to interpret the pole
rotation as an above-equator, clockwise pole rotation, is
known as the “ballerina effect” (Troje and McAdam, 2010).
Third, the use of silhouettes degenerates when the observation
axis aligns with the body’s rotation pole and the body nears
axisymmetry around that pole, since changes in the observed
silhouette of the body diminish as the body rotates. Despite these
limitations, the strong signature of the body’s silhouette against
the dark sky, together with its stable rotation, provides valuable
information to establish and constrain knowledge of the body’s
rotation and shape at large distances. Ambiguities and
degeneracy, should they occur, would be resolved using
subsequent observation geometries and/or in the target-
tracking phase of the pipeline.

To find the pole using the body’s silhouette, we use a multiple-
hypotheses ray-casting method that searches the (α, δ) domain
for the most likely pole. In this method, a 3D ray is cast from the
camera to each pixel of the body using the estimates of the pole
center and the distance from the camera to the body. For a given
hypothesis of pole angles (αi, δj) in the search domain, a 3D ray
for each body pixel is rotated from its initial observation to a
subsequent one, using the rotation rate and times of observations.
The rotated ray is then projected back onto the camera and
checked against the new observation for consistency. Re-
projected rays that do not intersect the body in the newly
observed image are discarded. The process is repeated for each
body pixel and through its full rotation. After a full rotation, the
re-projected silhouette, formed by the intersecting viewing cones,
is compared to the observed silhouette for overlap. Eq. 2 defines
the overlap error metric, ϵ, between the silhouette of the projected
visual hull based on the pole hypothesis (Sh) and the observed
silhouette (S0), where A denotes the area in pixels.

ϵ(Sh,S0) � A(S0 ∪Sh) −A(S0 ∩Sh)
A(S0) (2)

As the hypothesized pole converges toward the true pole, the
overlapping error, ϵ, goes to zero. We claim that the likelihood of
the pole is correlated with the overlap error. We define a heuristic
for pole likelihood as shown in Eq. 3, whereL is the pole-estimate
likelihood function.

L(α, δ) ∼ 1
ϵ(Sh,S0) (3)

To identify viable poles, we use a maximum-likelihood-
estimation approach to locate global maximal regions and
subsequently estimate their corresponding local maximum.
These pole hypotheses are used as priors in the orbit
determination process, which refines the pole estimates and

6The accuracy of the rotation rate estimate is on the order of 0.001°, the equivalent
of a less than a second in a twenty-five-hour period.

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 6508859

Nesnas et al. Autonomous Small Body Approach

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


helps disambiguate illusory ones. We performed sensitivity
analyses with respect to the sun-phase angle (i.e., the angle
between the sun–body line and the spacecraft–body line7).
Results show that the algorithm can accurately estimate the pole
at sun-phase angles up to ±90° when approaching the body at zero
latitude. Ongoing work is underway to analytically formulate the
relation between the overlap error and pole likelihood and to
characterize the uncertainty of pole estimates at different latitudes.
More details on this algorithm can be found in the study by
Bandyopadhyay et al. (2021). This method estimates the pole
without unnecessarily generating multiple visual hulls. As such,
it is a more efficient alternative than our original method that
generated a visual hull for each hypothesized pole orientation
(Bandyopadhyay et al., 2019; Villa et al., 2020).

4.7 Estimating the Initial Shape (Visual Hull)
As a byproduct of the silhouette-based pole-estimation algorithm,
we extract a global shape model by carving out those volume
elements (voxels), from an initial volume, which do not fit within
the set of body silhouettes as seen from the estimated camera
poses. By the nature of its construction, the visual hull does not
represent the true shape of the body, as previously discussed.
Nonetheless, it still presents a useful bounding volume for

subsequent shape modeling, an approximate surface on which
to project image features to estimate their 3D landmarks, andmay
indeed be close to the true shape, if the body is largely convex. The
quality of the observed visual hull greatly depends on the relative
orientations of the Sun, the spacecraft, and the pole (i.e., the phase
angle and observation axis) and, as such, is susceptible to the
aforementioned degenerate conditions. Large distortions can
occur if the pole is highly inclined with respect to the Sun or
the spacecraft. For example, in the limit as the pole, Sun, and
observation axes align8, only half of the body receives sunlight
and is ever observed. As such, only the equatorial silhouette of the
body is visible, leaving the visual hull in the orthogonal direction
(the pole direction) completely unconstrained. Thus, care must be
taken in the interpretation of the visual hull as a proxy for the
body shape. By controlling the approach vector and, hence,
varying the observer’s latitude, some degeneracy can bemitigated.

Forbes has shown that a discrete number of silhouette
observations yield a finite error in the visual hull estimation
and decrease with improved vantage point coverage (Forbes,
2007). In this application, the error in the visual hull of the
rotating body is constrained by the body-image span and the
frequency of imaging. Onboard autonomy enables more frequent
imaging and processing, only constrained by available computing
time but not by communication constraints. This enables an

FIGURE 3 | Pole likelihood evaluated at 10° (A) and 0.5° (B) intervals at a distance of 826 km from the body. (C,D) Performance of shape-from-silhouette as a
function of the body-image span (D) and errors in the reconstructed visual hull (i.e., Hausdorff distance) at 826 km.

7A zero sun-phase angle is when the Sun is directly behind the spacecraft along the
approach line toward the body. 8The pole points both towards the Sun and the spacecraft approach vector.
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arbitrarily low visual hull estimation error, up to the image
pixelation limits. But even at large distances where the body
spans fewer pixels, higher-resolution visual hulls could be
constructed using sub-pixel silhouette techniques. Eq. 4 shows
the relation between the visual hull estimation error and the
sampling frequency, where Dpx is the body diameter in pixels, ωB

is its spin (rotation) rate, and δpx is the maximum visual hull
estimation error, in pixels. KS is a correction factor to account for
the body’s non-sphericity (KS � 1 for a sphere, otherwise KS < 1).
Here, we chose KS � 0.25. Changes in the approach latitude and
body-apparent size are considered negligible over a single
rotation-period time frame. This equation can be used as a
guideline (or as an actual control law) for the appropriate
imaging frequency for the autonomous system.

fS � ωB

2 cos−1 Dpx/(Dpx + 2KSδpx)( ) (4)

Once we identified the pole (or multiple candidate poles), we
use the voxel-carving algorithm defined by Forbes (2007) and
Bandyopadhyay et al. (2019) to generate an initial visual hull.
Voxels are volumetric elements organized in a three-dimensional
grid that represent a discretized shape. Multi-resolution voxels
can be used to reduce the memory footprint. Voxels projected
onto the camera plane that lie outside the body’s silhouette in all
images of a full rotation are carved out. To resolve the status of
voxels belonging to the image foreground only in some of the
images, an octree-based search is performed. Voxel size is
adaptive and increases with image resolution.

Figure 3 shows the results of estimating the pole and the visual
hull from simulated images of comet 67P. We empirically
verified that at an apparent 55-pixel body-image span, for a
global search resolution of (Δα � 10°, Δδ � 10°) followed by a
0.5° regional resolution within ±3° of the coarse resolution peak, the
pole accuracy was within 2° from the true pole. To characterize the
accuracy of the reconstructed visual hull at different distances/
resolutions, we reproduced the Rosetta spacecraft trajectory,
simulating more frequent images of 67P using high-fidelity
rendering (Section 5.2) with a nonzero sun-phase angle for the
entire approach (Castellini et al., 2015). We constructed
independent visual hulls at 20 intervals from 104–103 km, each
covering a single rotation imaged at the pixelation limit frequency,
fS. The error between the reconstructed shape and the ground truth
uses the mean Hausdorff distance (Oniga and Chirila, 2013). The
Hausdorff distances are the minimum distance between the
reconstructed vertices and those of the ground-truth model. The
meanHausdorff distance is a widely usedmetric for reconstruction
accuracy. Normalizing by the ground-truth diameter gives a
dimensionless parameter for comparison across different bodies.
Figures 3C,D show the monotonically decreasing root mean
square error of the Hausdorff distance relative to the true shape
at 826km. As expected, the nonobservable concavities show the
largest errors in dark red.

4.8 Feature Tracking
This phase starts when surface landmarks become sufficiently
resolved in the camera image to be distinguishable from one

another and trackable over multiple frames. Recall that features
are the 2D image reprojection of their corresponding 3D
landmarks. Feature tracking has been extensively studied in
the computer vision and robotics communities, resulting in
the maturation of several feature-extraction approaches
(corner detectors and feature descriptors), followed by either
optical flow tracking or descriptor matching. Both classical
machine vision and machine learning techniques have been
used extensively in terrestrial applications, with a few that
have been used in space applications.

For this application, salient visual features are tracked across
multiple images, and their tracks in the image planes are used for
orbit determination (see Section 4.3) to refine estimates of the
body’s motion parameters (relative trajectory and rotation) as
outlined in Figure 1B. Using the camera model and distance
estimates, 2D features are ray-traced to the visual hull to generate
an initial set of corresponding landmarks. Then, using estimates
of the spin rate, pole orientation, initial visual hull, visual feature
tracks, and their initial corresponding 3D locations as input,
together with models of the dynamics and camera model(s), the
orbit determination filter updates the body-relative motion
parameters and feature/landmark locations. Updated post-fit
estimates are used to identify and remove outliers, and the
process is repeated until the residuals are within a user-set
tolerance. The orbit determination and landmark refinement
process continue from this point onward until landing.

Critical to feature tracking is the quality of the visual features.
Their ideal characteristics for orbit determination are as follows:
1) they can be tracked over many observations, 2) they can be
recovered after a full-body rotation, following being eclipsed by
the body during the second half of the rotation (a.k.a. loop
closure), 3) they have a low positional error, 4) they have a
Gaussian error, 5) they have few outliers (features with a large
positional error), and 6) they are evenly distributed across the
body. Achieving these characteristics is exceedingly difficult for
small bodies because of the following:

1) lighting changes that cause dramatic changes in visual
appearance as the body rotates and which are accentuated
by the absence of an atmosphere to diffuse light,

2) low-contrast features from typically low-albedo bodies,
3) self-similar features from an often consistent albedo,
4) concentrated features on the body that occupies only a small

fraction of an image; the concentrated features on the body
represent a narrow view-port surrounding the spacecraft,
making geometry-based outlier rejection more
challenging, and

5) large-scale changes from the start of the approach down to the
surface.

Despite their substantial maturity for Earth-based
applications, feature-tracking algorithms face specific
challenges for small bodies, which warrant further
examination. In the study by Morrell (2020), we compared
state-of-the-art open-source feature-tracking algorithms, which
included an optical-flow approach (KLT with Shi–Tomasi
features (Tomasi and Kanade, 1991)), to feature-descriptor
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approaches ranging from local histograms (scale invariant feature
transforms; SIFT (Lowe, 1999)), to wavelets (speeded up robust
feature; SURF (Bay et al., 2006)), to binary string encoding with
varying local sampling methods (oriented FAST rotated BRIEF;
ORB (Rublee et al., 2011)), to binary scale- and rotation-invariant
methods (binary robust invariant scalable keypoints; BRISK)
(Leutenegger et al., 2011), to features that operate in the
nonlinear scale space (compared to SIFT/SURF feature finding
in the Gaussian scale space) (Accelerated-KAZE9(AKAZE)
(Alcantarilla and Solutions, 2011). Table 1 summarizes the
metrics and results from that analysis.

For each algorithm, we used the assumption of a principal-axis
rotator, the estimate of the spin rate, and constraints to avoid
features on the body boundary. Such prior information is used to
filter outliers. The analysis showed that there is a trade-off
between the duration that a feature is tracked for and the
accuracy with which it is tracked. SIFT, for example, has
many features that are mostly accurate, but hardly any
features that last for more than 44° of body rotation. In
contrast, the KLT optical-flow method has many features with
long tracks, but these features tend to drift with only a few low-
error features. Feature descriptors, such as SURF and BRISK,
could handle gradient variations and lighting changes, but
they tend to fail with sharp changes in the shadow-dominant
appearance from surface topography and boulders. BRISK
has slightly longer average feature tracks than SIFT but
has more erroneous features. A key finding here is that none
of these algorithms adequately met all the required
characteristics. The reason for this is primarily due to the
change in lighting as the body rotates. See the study by
Morrell (2020) for more details.

Key findings from the analysis of the feature-tracking
algorithm for small bodies include the following:

1) Current methods cannot provide ideal characteristics for
feature tracking; hence, the choice of method should
consider the downstream use (i.e., how they will be used in
orbit determination)

2) For improved performance, with the changing lighting, each
component of feature tracking needs to be considered:

a) Extraction (localization) of features
b) Matching of features, including feature description
c) Outlier rejection for sets of matched features
d) Loop closure to recognize when features are re-observed

Some work has been done to learn descriptors for this domain
to improve robustness to lighting and perspective changes. A
convolutional neural network (CNN) was trained to match image
patches through the lighting and perspective changes of a rotating
body using a set of randomly generated bodies (see Section 5.2).
After training, the network was evaluated on the real imagery of
comet 67P. The feature-matching performance outperformed
both SURF and BRIEF (Calonder et al., 2010) after
approximately 400 training epochs (see Harvard et al. (2020),
Villa et al. (2020) for more details). While these results are quite
promising, further development to couple matching with feature
extraction is needed to evaluate the overall performance, as
feature extraction remains susceptible to tracking moving
shadows.

Ongoing work on classical feature descriptors includes the
use of adaptable filter parameters for the rotation rate and the
body-image span and then comparing them to neural
network–based equivalents. In our Experiment Section
(Section 5.3), we use a subset of state-of-the-art feature
trackers, with acknowledgement of the trade-offs that are
required in doing so. Specifically, we evaluate the long
feature tracks of optical flow with their larger errors and the
short tracks of SIFT with their smaller errors.

4.9 Establishing a Coarse Shape
After tracking features for one full rotation, the orbit
determination algorithm generates a set of post-fit 3D
landmarks (Section 4.3). These landmarks and the pole-from-
silhouette (Pfs)-generated visual hull are then used to generate a
true coarse shape. The goal of this watertight mesh shape is to
produce an initial gravity model and seed the dense 3D
reconstruction, which is later used to identify candidate
landing sites. As the spacecraft approaches the body, the
number of landmarks gradually increases, from a few up to
thousands. The key challenges for coarse mapping are
handling sparse features at the start of this phase, managing
holes due to missing information, and dealing with large
shadowed regions of the body, where few landmarks, if any,
are detected.

TABLE 1 | Comparison of persistence and accuracy of state-of-the-art feature trackers on images of a principal-axis rotating small body at a body-image span of 150 pixels
and a delta rotation of 1.25° per frame.

Algorithm Average #
of features/frame

Average track
length

Track <19° Track >44° Error <2
pixels

AKAZE 31.4 20.6 32% 8% 62%
BRISK 40.0 18.2 44% 4% 92%
KLT 22.0 38.8 13% 49% 54%
ORB 41.5 16.3 51% 2% 86%
SIFT 43.1 16.4 48% 1% 97%
SURF 13.9 17.2 51% 4% 74%

“Track” refers to the number of frames tracked for a given feature. Error is the maximum error over a track.

9KAZE means wind in Japanese. This word was used to symbolize the nonlinear
processes that govern air flow on a large scale.
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To handle the aforementioned challenges, we investigated
leading approaches for generating meshes from landmarks. The
selected algorithms can all generate watertight meshes even with
regions devoid of landmarks. We focused on the impact of the
number and distribution of landmarks on the quality of the
generated meshes. Table 2 summarizes the characteristics of the
selected algorithms, and Figure 4 shows their corresponding results.

Screened Poisson surface reconstruction is a widely used
algorithm that requires the surface normal of landmarks to
form a continuous vector field to generate an isosurface. The
vector field is an approximation of the gradient of the indicator
function, a binary function that identifies points inside the body,
which is derived by solving a Laplace equation. Powercrust and
Tight Cocone both rely on the construction of the 3D Voronoi

diagram and use the Voronoi vertices to approximate the
landmark normals. Powercrust uses the intersection of the
internal and external maximal balls, located on the
approximated medial axis, to define the surface. Alternatively,
Tight Cocone uses the principle of co-cones to construct the
Delaunay triangulation and then peels the convex hull to fill holes
and enforce a watertight mesh. Spherical conformal mapping
introduces an additional constraint, enforcing a genus-0
reconstruction, an assumption which is consistent with known
small bodies (i.e., no doughnut shapes or ones with open interior
holes). The algorithm enforces this by first mapping the 3D
features to the surface of a sphere. The Delaunay triangulation
is then constructed to determine feature connectivity, which is
applied to the original model to construct the surface.

TABLE 2 | Summary of coarse 3D mapping methods.

Algorithm Desired inputs Desired outputs

Can use
sparse
features

Amenable to
incremental

data

Does not
require
normals

Interpolates Generates
isometric
mesh

Generates
watertight
shape

Screened Poisson surface reconstruction Kazhdan
and Hoppe, (2013)

N N N Y Y Y

Powercrust Amenta et al. (2001) N N Y Y N Y
Tight Cocone Dey and Goswami, (2003) N N Y N Y Y
Spherical conformal mapping Choi et al. (2016) N N Y N Y Y
Visual hull deformation Y Y Y Y Y Y

FIGURE 4 | Comparison of 3D coarse mapping algorithms with varying numbers of landmarks. (A) Mean Hausdorff distance. (B) Error in volume relative to the
ground truth. Example of coarse reconstruction of comet 67P with 100 landmarks with colored histograms of distance to the ground truth. (C)Ground truth, (D) shape-
from-silhouette model, (E) Poisson surface reconstruction model, and (F) spherical conformal mapping model.
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Figure 4 compares the performance of these algorithms using
comet 67P for differing numbers of landmarks. All these
algorithms converge toward a similar result with a higher
number of landmarks. However, with a smaller number of
landmarks, the Poisson and Powercrust methods perform
poorly due to interpolation of new vertices that are not
consistent with the ground truth. An example of the results
produced by each algorithm at 100 points is shown in Figure 4.

While we have shown that watertight shapes can be
constructed to a reasonable degree of accuracy with a large
number of landmarks, an algorithm that can incrementally,
continually, and efficiently refine the shape of the already
watertight visual hull, starting with sparse landmarks and
extending to dense landmarks, would be ideal because it
would incorporate all prior measurements. A method to
continually and efficiently deform the visual hull is being
investigated, starting with few landmarks. The visual hull can
also be used as an outer bound on the mesh generation process to
reject outlier landmarks and limit interpolation (such as in
Poisson reconstruction). The most suitable implementation for
our estimation pipeline for coarse mapping is still under
investigation as the choice will depend on accuracy metrics for
subsequent dense matching and the ability to efficiently
incorporate new landmarks.

4.10 Refining the Shape for Selecting Viable
Landing Sites
While a coarse model is sufficient for establishing an initial
gravity model for closer approach, a finer shape model is
needed for improved gravity and surface models to identify an
initial set of candidate landing sites. Such a model requires a
denser 3D reconstruction of the body shape. To produce this
refined shape, we generate dense depth information for all pixels

in a set of reference images and fuse them into a 3D mesh. Depth
information is generated using a multi-view stereo approach,
where corresponding pixels are matched over multiple images,
and the body-relative motion of the camera among the images is
used to triangulate the depth. A critical prerequisite to dense
mapping is an accurate estimate of the spacecraft’s trajectory
relative to the body. This is only possible after numerous, highly
reliable, and evenly distributed features have been tracked during
close approach.

Out of the numerous approaches to multi-view stereo, we
implemented a pixel-wise Bayesian depth-estimation approach
(called REMODE (Pizzoli et al., 2014)), with the ability to seed
the estimation with initial guesses from the 3D to the 2D
projection of the coarse 3D model. Depth is estimated for a
set of reference frames (e.g., every 15° of body rotation) and is
projected out to 3D points using the camera model. The set of
these 3D point clouds can be used to further refine the relative
spacecraft trajectory through alignment of the overlapping parts
of the point cloud using an iterative closest point method (Besl
and McKay, 1992). The set of point clouds can then be merged
into a combined 3D representation using a signed-distance field
with the Voxblox algorithm (Oleynikova et al., 2017). From the
signed-distance field, the fast-marching-cubes algorithm
(Lorensen and Cline, 1987) is then used to extract a mesh,
with further post-processing required to make the mesh
watertight.

The dense mapping approach can be applied on a global scale,
to provide a higher-resolution shape to select candidate landing
sites, and at a higher resolution on a local scale, to assess geometric
hazards at candidate sites. While these approaches generated
promising results with accurate knowledge of the trajectory (see
Figure 5), the approaches are sensitive to the accuracy of the relative
trajectory, placing requirements on the maximum uncertainty levels
permissible before entering this phase.

FIGURE 5 | Example performance of dense 3D mapping algorithms on comet 67P at a body-image span of 1000 pixels (at a distance of 50 km for a 4.3 km body
diameter) at a delta rotation of 0.25° per frame (i.e., a 30-s imaging interval). (A) Down-sampled accumulation of point clouds from depth reconstruction using REMODE
(Pizzoli et al., 2014). (B) Filtering of the point clouds into a signed-distance field from which a mesh is extracted (using Voxblox (Oleynikova et al., 2017)).
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4.11 Identifying Candidate Landing Sites
Perhaps the most scrutinized and manually controlled event in
past small-bodymissions has been the touch-down or landing site
selection. In current missions, this process can take many months
and thousands of hours. Fundamentally, the surface environment
of small bodies presents, by far, the highest level of uncertainty
and risk to the spacecraft. Since the topography and surface
properties of small-body surfaces can vary wildly, great care
should be taken to evaluate all potential risks to the spacecraft
before landing is attempted.

To identify candidate landing sites, we have to consider all
potential hazards associated with the surface environment,
including stability of the spacecraft on the surface, the thermal
environment, potential for dust contamination, entrapment, and
poor visibility of the Sun (for power) or Earth (for
communication). Some risks may be mitigated through careful
design of the spacecraft (see Section 5.1). Others depend on the
shape of the body, the global orientation of the landing site, and
the local surface properties. Here, we focus on three key potential
hazards that the spacecraft will have to reason about: the surface
stability, thermal environment, and line-of-sight constraints, all
of which require a detailed 3D map on the scale of the spacecraft.
Both map resolution and uncertainty of the map can be improved
using both narrow- and wide-FOV cameras by maneuvering the
spacecraft in proximity of the body prior to landing.

• Surface stability: We use the coarse-shape and gravity
models to exclude steep-sloped regions where the

platform would not be stable on the irregular gravity-
field body, thus focusing subsequent high-resolution
observations on largely flat or low-sloped regions. The
spacecraft design and concept of operations drive the
slope-stability requirement (see Section 5.1 for details).

• Thermal environment: Characterizing thermal hazards
autonomously from a SmallSat is challenging because it
requires either a large thermal-IR imager or
computationally intensive thermal–physical models.
However, if the spacecraft has a directional radiator to
reject heat by facing the cold sky, one can consider a
conservative approach to identify and avoid highly
concave (“hot traps”) areas on the surface, where a view
of the sky may be occluded (i.e., ambient occlusion).

• Line-of-sight occlusions: Similarly, the line of sight of the
Sun is important for power and illumination for imaging
and that of the Earth is important for communication, at
least, for a portion of the day. We use the pole orientation
and the shape model to compute the diurnal visibility maps
of the surface for known Sun and Earth positions.
Autonomous spacecraft may be designed to be tolerant
of short-duration occlusions for science investigations.

Figure 6 illustrates the risks associated with the surface
stability, thermal environment, and line-of-sight solar
occlusions for comet 67P assuming zero obliquity (i.e., the Sun
is at 0° latitude). Our initial conservative strategy is to convolve
these cross-discipline risks to identify candidate landing sites,

FIGURE 6 | Illustration of the landing-site hazard assessment and selection process. (A) Spatially distributed risk metrics computed for a coarse global model, with
local refinement in promising regions. (B) Convolution of multiple risk metrics into a cumulative risk metric to identify safe candidate landing sites.
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imposing allowable thresholds on each independent metric.
Ongoing research is investigating a more sophisticated strategy
for decision-making and actions.

5 THE EXPERIMENT

5.1 Notional Spacecraft Architecture
Safe landing depends on the body/surface characteristics and
on the spacecraft capabilities and vulnerabilities. To address
the latter, we developed a conceptual spacecraft design based on
existing (or near-term projected) SmallSat technologies.
This design allows us to consider realistic guidance,
navigation, and control (GNC) constraints when developing
our autonomous approach, landing, and mobility. The design,
shown in Figure 7, leverages a study of the accessibility of

NEOs using SmallSats (Papais et al., 2020). A key technology for
a SmallSat to rendezvous with an NEO is propulsion.
With a low-thrust ΔV of about 3 km/s, a small population of
100 NEOs larger than 30 m in diameter could become
accessible using solar electric propulsion (SEP). SEP would
require deployable solar arrays, which would later interfere
with landing and mobility on the surface. As a result, we
designed the spacecraft to jettison the SEP engines/solar
panels prior to descent. For repeated landings and robust
surface mobility, we chose spring-loaded omnidirectional
landing legs, which allow the spacecraft to touch down in
any orientation (Hockman et al., 2017). To relax
requirements on resolving slopes on the scale of the
spacecraft, our self-righting spacecraft design would be able
to tolerate tumbling down short slopes on the order of tens of
meters.

FIGURE 7 | (A) Spacecraft architecture for approach and landing on a small body. (B) Internal configuration of notional spacecraft architecture with key
components (or volume allocations). The cubic chassis is protected by eight corner-mounted “legs” for landing on any side.
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5.2 High-Fidelity Mission-Data Generation
Our autonomous approach and landing requires imaging
more frequent by an order of magnitude than what is typically
available from past missions. Frequent imaging is possible
for onboard autonomy because the spacecraft is not constrained
by communication and ground operations. For development and
testing, we used real images and telemetry from prior missions
(e.g., Rosetta’s images of comet 67P) and images synthetically
generated using high-fidelity models of lighting, optics, and
trajectories. Based on the open-source, physics-based rendering
engine provided by Blender Cycles, we developed a framework for
generating and rendering high-fidelity, photorealistic images of
small bodies. The framework is capable of 1) generating realistic
images of terrains across vast scale changes throughout the
approach phase, 2) accounting for multiple light reflections and
scattering, and 3) supporting custom reflectance properties of
regolith-covered surfaces (Figure 8).

5.2.1 Procedural Terrain Generation
When working across large-scale changes (approaching a
kilometer-sized body from millions of kilometers down to the
surface), the 3D mesh of the target body has to support a vast

range of imaging resolutions. To handle such scales, we use a
technique known as procedural terrain generation, which uses
multi-octave noise functions to perturb the surface within a single
facet of the mesh when the camera gets progressively closer to the
body. Such functions can produce multi-octave random noise
and patterns that resemble boulders, craters, and other natural
features typical of small bodies. The algorithmic terrain can be
generated in two ways: either via direct displacement of the facets
in the 3D mesh or by bump mapping, a technique which only
modifies the surface texture to resemble 3D displacements. The
latter is computationally more efficient and produces results that
are sufficiently accurate that they can be used during the feature-
tracking phase. Figure 8C,D show a comparison of two images
rendered with and without procedural terrain generation from a
fixed-resolution mesh of comet 67P using bump mapping.

5.2.2 Multiple Reflections and Light Scattering
To render photorealistic images, we use state-of-the-art ray-
tracing techniques using Blender Cycles software. The software
traces non-collimated rays from a light source, which emulate the
natural paths of photons (e.g., originating from the Sun),
accounting for multiple reflections and scattering and

FIGURE 8 | Comparison between real (A) and synthetic (B) images of comet 67P using the Hapke model. The real image is from Rosetta’s NAVCAM. Synthetic
image of comet 67P with (C) and without (D) procedural terrain generation. Bump mapping is used, in combination with multiple terrain-noise functions. The Hapke
model is used for reflectance.
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potentially modeling refraction through transparent media (e.g.,
water or glass). Finally, the rays reach the observer (i.e., the
camera), where the quantity, distribution, and orientation of rays
render the scene to a high fidelity. When the body occupies a sub-
pixel in the image, we render the body in the image using a
synthetic point-spread function (PSF). As the body grows beyond
a few pixels, we switch to using ray tracing from approach
through landing. Far bodies and background stars are also
rendered using a PSF. To generate the full scene, we merge
the rendered small-body foreground with a separately
rendered star-field background.

5.2.3 Regolith Reflectance Models
The unconventional optical properties of regolith-covered
terrains, such as the Moon, asteroids, and comets, challenge
standard reflectance models, such as the Lambertian and
Oren–Nayar models, which fail to capture their distinctive
behaviors. One dominant effect is the shadow-hiding
opposition effect, which manifests as a surge in brightness
when the sun-phase angle is close to zero with respect to the
observer. We developed custom models in Blender using its
open shading language (OSL) interface. The first is the Hapke
model (Hapke, 2012), a state-of-the-art reflectance model
tailored to the optical properties of regolith bodies. The
second is the commonly used Lommel–Seeliger model
(Fairbairn, 2005).

5.2.4 Camera Model, Calibration, and Validation
Our models include the camera coordinate transformation
relative to the spacecraft, lens model (field of view, distortion,
aperture, depth of field, and chromatic aberration), and camera
model (sensor type (RGB vs. gray scale), image resolution, bit
depth, pixel pitch, exposure time, motion blur, read noise, dark
current, and dynamic range (up to 20 stops)) using Filmic
Blender. When using ray tracing, image exposure is modeled

as a pixel-intensity scale factor and should be calibrated using a
real camera system to properly represent the actual photon
integration time. Figure 8 compares an image rendered using
the Hapke reflectance model and the actual image from the
Rosetta mission (some camera parameters of the Rosetta
mission are not available and a constant, average albedo is
used for the surface in the synthetic image).

5.3 Mission Simulation: Results and
Discussion
To test our estimation pipeline for the autonomous approach, we
designed mission simulation experiments to mimic realistic
approach scenarios. One group from our team was responsible
for generating the artificial bodies using the high-fidelity
simulation described in Section 5.2 and telemetry10 based on
the notional spacecraft described in Section 5.1. A second group
was responsible for executing the algorithms of the various phases
of the pipeline, seeding estimates and uncertainties from one
phase to the next and executing orbit determination across all
phases, as shown in Figure 1. The manual execution of the
individual algorithms was necessary because our framework
consists of several tools and algorithms that are not yet
integrated into a single software implementation. In each
approach scenario, we used a preplanned spacecraft trajectory
and produced trajectory corrections based on estimates and
uncertainties that were computed at the different phases. A
total of two experiments were completed, with the first
primarily used to debug the pipeline. Below are the results
from the second experiment, where 14 image sets were

FIGURE 9 | First image in image sets 1–12 of the experiment.

10Telemetry includes initial navigation data of both the body and the spacecraft
with typical large uncertainties before the start of the approach. It also includes
realistic imagery of the unknown small-body during approach.
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generated, each with hundreds of images, as the spacecraft
approached the target from thousands of kilometers away
down to 20 km away. The results show the recovery of the
body-relative trajectory, rotation, and shape and the
comparison to the ground truth.

Figure 9 shows the region of interest in select images acquired
using the narrow-FOV camera during the approach (for clarity,
we adjust the display size of the pixel in these images). Once the
body is detected in the navigation camera, one of the first
quantities to be estimated is the body’s rotational period, as
discussed in Section 4.5. In practice, this would begin when
the body is sub-pixel in size, more than a million kilometers away.
However, we started our experiment at 3,000 km, where the body-
image span was six pixels across, primarily focusing on validating
spatially resolved bodies. Figure 10 shows the result of the
periodicity analysis for the first two image sets, with a period
estimate of P � 3.728 ± 0.006 h. This initial data set covers
approximately six full rotations and has a very coarse imaging
frequency every 10 min. Thus, the period is only estimated with a
relative accuracy of 10–3. With more frequent imaging and
extensive integration, the light-curve data would reduce this
uncertainty by several orders of magnitude.

Initially, when the body-image span was less than ten pixels,
PfS and SfS were unable to resolve the pole and the visual hull.
However, as the body-image span grew over thirty pixels, PfS and
SfS were able to estimate the possible poles and generate the visual
hulls. Figure 11 shows an example of pole estimation that
generates four pole hypotheses and their corresponding visual
hulls, which results from the observation symmetries described in
Section 4.6. This ambiguity would be resolved in the subsequent
feature-tracking phase.

The analysis of feature tracking in this blind experiment
affirms the aforementioned results of Section 4.8. In general,
optical-flow approaches are able to track features at farther
distances (i.e., smaller body-image span), track more features,
and track features for longer durations (i.e., larger rotational

angles), when compared to feature-matching approaches, such as
SIFT and BRISK. That is why optical flow was selected for the
earlier stages of the approach. However, once more details
become visible in the image of the body (typically, when the
body-image span >150), SIFT and BRISK are able to identify
more features and appear to have lower error. After this point, the
trades continue between choosing longer tracks prone to drift and
shorter tracks with less drift (see Figures 12A–C for a
comparison of the number and distribution of features).
Another finding is the high sensitivity of these feature-tracking
algorithms to the imaging rate. It turns out that there is a
substantial impact on the tracking performance of all
algorithms when the imaging period was decreased from 10 to
2.5 min, as shown in Figures 12D,E. In an autonomous mission,
the imaging rate should be set to limit the rotations per frame in
order to have sufficient similarity and overlap between
consecutive images, which is characterized by a pixels/frame
velocity of feature movement. For this particular data set, the
maximum acceptable velocity was estimated to be 7 pixels/frame
(with a search window of 25 × 25 pixels across four pyramid
levels). The best results were obtained by tuning the algorithms to
track many features and then post-filtering them based on the
expected bounds of feature movement, as dictated by the body-
image span and the rotation rate.

Orbit determination uses the information generated by the
above algorithms to estimate the trajectory of the spacecraft
relative to the unexplored small body and estimate its rotation,
such as the spin rate and the pole, and its associated landmarks.
After the experiment was complete and the ground truth was
revealed to the estimation group, we compared our estimates
during the approach to the ground truth data. Figure 13 shows
the range and transverse estimates, uncertainties, and errors as
well as the body-image span during approach for image sets 1
through 14. As expected from optical measurements, throughout
the entire approach, range errors were at least an order of
magnitude larger than transverse errors. Periodic updates from

FIGURE 10 | Periodicity analysis of the experiment. (A) Raw light curve showing general increase in brightness during approach and discontinuities associated with
maneuvers and changing exposure settings. (B) Periodicity analysis of the light curve from image sets 1 and 2 only. After normalization, a 4th order Fourier fit estimates
the period to be P � 3.728 ± 0.006 h.
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the orbit determination keeps the target within the camera field of
view. Based on estimates at different phases, eight trajectory
correction maneuvers were executed to get closer to the target
and control the approach latitude.

During approach, the estimation framework maintained a
range uncertainty that was an order of magnitude smaller than
range estimates. Thetransverse error remained below 100 m,
which is ideal to ensure that the target remains in the

FIGURE 11 | Pole-from-silhouette (PfS)/shape-from-silhouette (SfS) pole and shape estimation using image set 7.
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camera’s FOV for extended periods. Transverse errors are
routinely smaller than their uncertainty metrics. In the first
phase of the approach, only body-centroid measurements were
used for orbit determination (image sets 1–8; the blue-shaded
area in Figure 13). Estimates in that phase used data arcs that
included all prior centroid measurements. However, when
tracked features were added (image set 9 onward) to the
estimation process, a feed-forward approach, which segments
the data arcs into smaller sets, was necessary to manage the
growth in data from the accumulation of landmarks tracks. In the
feed-forward approach, we use estimates and uncertainties from
the prior segment. To prevent divergence, at the start of each
feed-forward segment, the prior covariance diagonals are
amplified (here, by a factor of two) and then fed into the
current segment. This covariance inflation process is similar to
process noise that is used in a Kalman filter, where prior
information is de-weighted to account for system-modeling
errors. For image sets 9–12 (days 4.8–6.5), the range errors
exceeded range uncertainties but remained within the same
order of magnitude. This may have resulted from optimistic
uncertainties that were fed-forward from the full-arc solution
of image sets 1–8. The periodic inflation of the covariance in the
feed-forward approach provides robustness in such situations, as

evidenced by the bounded uncertainties in the last two image sets
(13–14). To mitigate issues associated with this error–uncertainty
discrepancy in image sets 9–12, it may be useful to utilize the feed-
forward mechanism during the earlier portions of approach
(i.e., image sets 1–8). The large uncertainties, especially those
of the transverse, may have resulted from the higher weighting of
the centroids relative to the landmarks. This is poignant in image
sets 13–14 (the last two segments), where transverse uncertainty
seems to grow and become comparable to range uncertainty.
Uncertainty in the centroid grows with the increase in the body-
image span. Adjusting the weighting of the different sources of
measurements is the subject of ongoing research.

When feature tracking performs consistently and accurately,
the output of the 3D landmarks was able to generate a coarse 3D
model. Results from the 3D shape reconstruction were obtained
using three hundred landmarks. When fewer landmarks are
available, and depending on the concavities of the body, the
visual hull would produce the lowest errors. However, as the
number of features grows to the hundreds, the 3D shape
reconstruction algorithms would outperform the visual hull as
they would generate a true shape of the body. Figure 14 and Table 3
compare the performance of several reconstruction algorithms to
that of the visual hull. Ongoing work is investigating algorithms that

D

E

FIGURE 12 | Example feature distribution for the different algorithms. (A)Optical flow, (B) BRISK, and (C) SIFT. (D) KLT tracking on sequential images with 10-min
imaging. (E) KLT tracking on sequential images with 2.5-min imaging. All other parameters are unchanged.
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can work iteratively as the number of landmarks increases during
approach, starting with the visual hull information.

When compared to the ground truth, estimates and
uncertainties of body rotation parameters showed promising
results for establishing situational awareness for a principal-axis
rotator (Table 4). The pole RA and Dec angles are expressed in

the Earth mean orbital (EMO) frame, to avoid the singularity in
the Earth mean equatorial (EME) frame. Note that estimates of
the pole’s RA and Dec were fairly accurate, but the uncertainties
were too optimistic. Future work will focus on generating more
realistic orbit and pole uncertainties in the orbit determination
framework.

FIGURE 13 | (A) Range and transverse estimates, uncertainties, and errors relative to the ground truth across the entire approach from 3,000 km down to 20 km
(image sets 1–14). (B) Estimated body-image span across the same approach.

FIGURE 14 | Example coarse mapping results from the experiment, using 300 features. (A) Ground truth, (B) shape-from-silhouette model, (C) Poisson surface
reconstruction model, and (D) Powercrust model.
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This work tackles a key challenge toward the autonomous
approach and landing on small bodies, but much work remains
to achieve such a goal in a flight mission. The algorithms presented
herein require further development, refinement,
and characterization. Once matured, the algorithms’
computation load (computational cycles and memory) would
have to be assessed. In the scenario described in this article,
the spacecraft response can be slower because of the slow
dynamics of proximity operations around small bodies.
The guidance, navigation, and control functions require
integration with propulsion, thermal, power, and
communication subsystems and with system-level autonomy
algorithms. Such algorithms manage resources, plan
activities, assess system health, and execute actions. Progress on
these has beenmade under separate efforts, but they require further
development and maturation (Chien et al., 2004; Fesq et al., 2019).
Recent work that investigated closing the guidance loop using
meta-reinforcement learning in a simplified lunar landing scenario
pointed out the potential of applying machine learning not only on
the estimation side but, potentially, on mapping beliefs to actions
(Furfaro et al., 2020).

6 CONCLUSION

We have presented a multi-phase estimation framework for a
notional spacecraft design that would be capable of autonomously
approaching, rendezvousing with, landing, and moving on small
unexplored bodies, whose physical properties (spin rate, pole,
shape, surface, mass distribution, and surface topography) may be
unknown or poorly constrained a priori. Results from a blind
experiment that mimicked a realistic mission scenario showed an
autonomous approach from 3,000 km down to 20 km, with a total
of eight trajectory correction maneuvers, while keeping the body
within the narrow-FOV camera via periodic orbit determination
updates to the estimated trajectory. At the start of the approach,

the body centroid was used to adjust the relative trajectory. Then,
light curves were used to estimate the body’s spin rate to an
accuracy of 22 s or 0.16% of its 3.74 h period. That estimate,
together with the centroid-updated relative ephemeris, was used
to estimate the pole from the silhouette starting at a body-image
span of thirty pixels. Using shape-from-silhouette, four poles and
corresponding shapes formed viable hypotheses. The next phase
used optical flow to track features over a long duration, reaching
body-rotation angles of 120°–160°. The pole hypotheses, shape-
from-silhouette, and feature tracks were then used in the orbit
determination to refine estimates, compute uncertainties, and
disambiguate hypotheses. The estimated relative trajectory
during approach maintained a 3σ uncertainty of more than
one order of magnitude below the estimated range, keeping
the spacecraft safe from the body. Post-fit 3D landmarks were
used to generate a true coarse shape of the body with a mean
Hausdorff error of <11 m or 2% of the 480 m diameter body.

This blind experiment demonstrated the viability of an
autonomous estimation framework to establish knowledge of a
principal-axis rotating body of unknown motion and rotation
parameters. Much work remains to be done to substantially
mature these capabilities, but we consider this step as a promising
start. Ongoing research is focusing on conducting blind experiments
for getting from 20 km down to the surface, which includes dense 3D
reconstruction and hazard assessment for landing based on
algorithms described here. It also includes maturing and validating
the framework on a wider range of bodies to further characterize the
evolution of uncertainty during approach and landing.

Today, small-body missions heavily rely on lengthy ground-
in-the-loop operations that constrain the spacecraft maneuvers
because they rely on stale downlinked data due to communication
delays and time for operations planning. These preliminary
results show promise for the ability to conduct such missions
autonomously in the future. Moreover, it would enable greater
and more affordable access to multiple diverse targets and multi-
spacecraft access to a single target, offering flexibility and

TABLE 3 | Summary of coarse 3D mapping results with 300 features.

Algorithm Mean
Hausdorff distance

(m)

Maximum
Hausdorff distance

(m)

Volume error Center-of-volume error
(m)

Shape-from-silhouette model 10.6 38.5 6.54% 6.40
Screened Poisson surface reconstruction 8.16 39.5 0.41% 5.84
Powercrust 9.33 56.1 5.47% 8.38
Cocone 8.61 59.9 7.85% 6.36

TABLE 4 | Comparing estimated body rotation parameters to the ground truth.

Parameter Units Ground truth value Estimated value and
1σ uncertainty

References frame

Spin rate °/day 2319.46309 2319.464 ± 0.010 —

Spin period hours 3.725 3.724999 ± 0.000016 —

Pole’s RA ° 0.0 — EME Frame
° 90.0 90.38 ± 0.11 EMO Frame

Pole’s Dec ° 90.0 — EME Frame
° 66.56 66.280 ± 0.040 EMO Frame
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robustness given redundant assets. The development of the
framework and simulation tools enable the continued
development, maturation, and testing of autonomous
capabilities under realistic conditions.

Developing autonomous spacecraft to reach and explore the
surfaces of small bodies not only expands access to bodies of
interest to science, planetary defense, in situ resource utilization,
and possible human exploration but also provides an
opportunity to advance space autonomy. For near-Earth
objects, this can be done using SmallSats technologies to
mature autonomy in perception-, estimation-, decision-
making–, and action-rich scenarios. Near-Earth objects
embody many challenges of more remote destinations.
However, the slow dynamics of interacting with such low-
gravity bodies affords time for redundant onboard sensing
(repeated imaging and multiple cameras), processing,
managing uncertainty, reconciling conflicted estimates,
building in situ models, deciding, and taking actions. All this
will occur while operating in adequately challenging
environments from a perception and decision-making
standpoint but with more benign physical interaction and
impact. After all, moving and falling onto the surface of a
microgravity body would be much gentler on the spacecraft
than moving and falling onto the surface of larger bodies. As
such, we consider the development of autonomy for such targets
to be a key stepping stone toward exploring more complex and
challenging destinations.
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