
Multiagent Telerobotics:
Matching Systems to Tasks

A Thesis
Presented to

The Academic Faculty

by

Khaled Subhi Ali

In Partial Ful�llment
of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

June 1999

Copyright c 1999 by Khaled Subhi Ali



Multiagent Telerobotics:
Matching Systems to Tasks

Approved:

Ronald C. Arkin

Albert N. Badre

Jessica K. Hodgins

Alexander C. Kirlik

Sven Koenig

Date Approved



Preface

A multiagent telerobotic system (MTS) is a system that allows a human to control a

group of robots. Multiagent robotics has certain desirable properties when compared

to single-agent robotics, and telerobotics has desirable properties when compared

to autonomous robotics. Whether the combined �eld of multiagent telerobotics will

inherit those advantages, however, remains to be shown. Until now, no comparison

of the performance of di�erent multiagent telerobotic systems in terms of tasks has

been conducted. Therefore, there were no guidelines to aid developers building a

MTS for a particular task.

This research compares the performance of di�erent classes of mobile behavior-

based multiagent telerobotics systems in relation to the kinds of tasks they are

performing. The systems are compared in terms of safety, e�ectiveness, and ease-

of-use, for applications representing classes of tasks in a newly-developed taxonomy

of mobile multiagent tasks. This taxonomy categorizes the tasks in terms of the

relative motion of the agents. Four di�erent task classi�cations from this taxonomy

were studied.

A methodology for evaluating the performance of robot systems for the tasks was

adapted from standard experimental procedures, and a series of experiments was

conducted, in which over a hundred human participants were used to control real

robots. The end result of the experiments is a knowledge base relating the systems

to the tasks. The systems were ranked in terms of their safety, e�ectiveness, and

ease-of-use for each task. Additionally, where possible, more general results were

identi�ed, relating the type of system to the type of task. These results should guide
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future MTS developers to build safe, e�ective, and easy-to-use systems.
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Chapter 1

Introduction

1.1 Motivations

Multiagent telerobotics is a new and emerging �eld of research. It has the potential

to change the way roboticists solve problems, by combining the power and robustness

of multiagent robotic systems with the exibility of telerobotic systems. The military

is already gravitating toward multiagent robotic systems for scouting missions into

hostile territory and teams of robots in urban territory. Examples of this include

the Unmanned Ground Vehicle (UGV) Demo II project [56] and the Tactical Mobile

Robotics (TMR) project [46]. Providing telerobotic control capabilities for these

multiagent systems allows rapid development and exibility, by allowing a human to

assist the robots in unforeseen situations and those in which fully autonomous robots

are not yet capable enough. Likewise, single-agent telerobotic systems, such as the

Sojourner robot [37] sent to explore Mars, and the Pioneer project [34], which will

send a robot into the Chernobyl nuclear facility to examine its current state, provide

roboticists the ability to rapidly �eld robots in circumstances where the robot's

environment and tasks are not fully known in advance. Both multiagent robotics

and telerobotics, the parents of multiagent telerobotics, have certain features that

make multiagent telerobotics appear appealing to designers and users of robotic

systems. These advantages are described below.
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Multiagent robotics has many desirable properties when compared to single-

agent robotics. Some of these properties include:

� a larger range of possible tasks

� greater e�ciency

� robustness

� lower economic cost

� ease of development

Theoretically, multiple robots should be able to accomplish any task that a single

robot can. Additionally, since groups of robots can cover more ground than a

single robot, there are tasks that multiple robots can accomplish that a single robot

cannot. For instance, a pair of robots could work together on line-of-sight tasks, such

as maintaining a communications channel or surveying. In these tasks, coordinated

actions must be taken at distant locations. A single robot could not accomplish this

task, since it can only be in one place at a time.

Multiple robots may also o�er performance bene�ts. For instance, Balch and

Arkin [12] show how multiple robots provide speedup for foraging and similar tasks.

Furthermore, multiagent robotics o�ers robustness. If one robot malfunctions

or is destroyed, the others can continue the task. This is a prime advantage for

military robots, which may be under attack from enemy forces or damaged while

clearing �elds of landmines.

Finally, a single robot system for a particular task may need to be more com-

plicated than each of the individual robots in a multiagent robot system for the

same task. A single robot system will need to handle all aspects of the task, while a

multiagent system can divide the subtasks among the robots, requiring each robot

2



to know only how to accomplish its subtask. Therefore, a multiagent system is often

less expensive and easier to develop than an equivalent single-agent system [16].

Telerobotics also has several desirable properties when compared to fully au-

tonomous robots, such as:

� greater capability

� providing for opportunism

� social acceptance

� appropriateness for one-of-a-kind tasks

� support for robot learning from humans

It is obvious that autonomous robots are still not as capable at many tasks as a hu-

man or a human controlling a teleoperator or telerobot. This allows a telerobot to be

rapidly �elded for a particular job, whereas it might be years before an autonomous

robot could accomplish the task as well.

Furthermore, telerobots o�er a level of opportunism not present in autonomous

robots. The human operator may notice an opportunity that the robot has not been

programmed for. This is especially true for tasks where the exact speci�cations for

a solution cannot be determined in advance, such as in exploration, artistic and

creative tasks, or other poorly de�ned tasks.

Telerobots also tend to be more socially acceptable than autonomous robots. It

seems society may trust a robot under human supervision and control more than one

that retains the �nal authority in the decision-making process. A human operator

can recognize failures and situations where the robot should not follow its program,

possibly averting a disaster.
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Telerobots outshine autonomous robots for tasks that will only be conducted

once, where programming an autonomous robot would be far more costly. Finally,

even humans are not experts in all areas, and they require coaching or teaching for

many jobs. Thus, a robot will never be rid of the need for expert coaching, even if

we assume that it can achieve human competence. Telerobotics provides just such

an appropriate, easy to implement coaching/teaching method.

It appears that multiagent telerobotics inherits some of these desirable qualities

from its parents (multiagent robotics and telerobotics). If this is true, then multia-

gent telerobotics is not only the next logical step for the telerobotics community, but

it is possibly the best solution for many robotics problems. This, however, remains

to be demonstrated through analysis and experimentation.

While a signi�cant amount of research has examined telerobotics with a single

agent [47, 48, 4], very little work has been conducted in the area of multiagent

telerobotics. Therefore, there is little to con�rm that the principles of single-agent

telerobotics will generalize to multiagent mobile telerobotics. Due to the apparent

potential of Multiagent Telerobotic Systems (MTSs), more e�ort needs to be chan-

neled into this new �eld. A few multiagent telerobotics systems [57, 40, 1, 18, 7]

have been developed recently. As is the case with many new �elds, however, each

research e�ort has produced a single system for one particular task. None of the re-

search to date compares the kinds of systems, or states why they are appropriate for

particular tasks. Furthermore, no one has presented guidelines for developing MTSs.

Experiments need to be conducted to determine the appropriateness of various kinds

of MTSs for various classes of tasks. This dissertation's research is intended to help

�ll that need.
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1.2 Terminology

The following terminology is used in the remainder of this section. This terminology,

as well as others used in the remainder of this dissertation, can also be found in

Appendix A.

Multiagent robotics refers to using more than one robot to complete the same

task. The robots may be working on the same or di�erent subtasks, and they are

not required to use the same approach to the task.

The strict de�nition of a telerobot is a robot that determines its actions based

on some combination of human input and autonomous control. A telerobot can use

shared control or strict supervisory control. With shared control, the instructions

given by the human and the robot are combined in some manner to determine the

motion of the robot. With strict supervisory control, the human operator instructs

the robot and then observes the robot as it attempts to autonomously carry out

the instructions. If there is a problem, the human may help out by giving more

instructions. Supervisory control, in the less strict sense of the word, is often used to

refer to shared control, supervisory control, and combinations of the two approaches.

These types of supervisory control are described in more detail in Section 2.2.

In this research, the term telerobot will be used to refer to both true telerobots

and to teleoperators. A teleoperator is a machine that uses direct manual control.

This means that the human operator has complete control over the robot's actions.

Aside from its physical limitations, the robot does not contribute to determining its

motion. An example of a teleoperator is a radio controlled toy car.

A multiagent telerobotic system (MTS) is a group of more than one telerobot

controlled by a human operator.

Behavior-based robots determine their actions through some combination of the

output of one or more simple behaviors. Each behavior takes care of one aspect of
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the task, such as obstacle avoidance.

A mobile telerobot is a telerobot that is capable of moving itself. For instance,

a telerobotic car would be a mobile telerobot, while a telerobot arm that is bolted

down to a table would not.

1.3 Research Questions

The following research question inspired and directed this research. An additional

�ve subsidiary questions arose from this primary question. Initially, it was intended

that this dissertation should answer all of these subsidiary questions in support of

the main question. The research has since focused on the primary question and

three of the subsidiary questions. The rationale for this follows the presentation of

the questions themselves.

1.3.1 Research Question

Given a task, what form of telerobotic system allows a human operator

to safely, e�ectively, and easily control a group of behavior-based mobile

telerobots for that task?

Some MTSs exist already [57, 40, 1, 18, 7] that present methods for controlling

groups of robots, although no one has evaluated each to determine how it performs

in comparison to other types of systems. Additionally, many control techniques

exist for single-robot systems, and these also might be appropriate for controlling

robot teams. It would bene�t both the developers and users of MTSs to know

what sort of control techniques are best for which kinds of tasks. Furthermore, it

is to everyone's advantage, including single-agent teleroboticists and autonomous

roboticists, to have a standard methodology for comparing various robotic system

6



types.

The goal of this research was to discover the relationships between di�erent

multiagent telerobotic systems, when compared regarding their use in di�erent types

of multiagent mobile robot tasks. These relationships should provide a basis for

building safe, e�ective, and easy-to-use MTSs. Safe control indicates that the robots

will not cause unintended harm to themselves, other robots, or objects in their

environment. E�ective control indicates that the human operator will be able to

accomplish the tasks that he intends to do with the telerobots as quickly as possible.

Easy-to-use control indicates that the human operator will be able to accomplish

these tasks with a minimum of stress and cognitive overload.

To discover these relationships, multiagent telerobotic systems were developed

along two di�erent dimensions (described in Section 4.1) and tested for each of these

criteria (safety, ease-of-use, and e�ectiveness). A taxonomy of tasks for multiagent

mobile robot systems was developed and is presented in Section 5.1. Each system

was examined for four classes of tasks in this taxonomy. Experiments were conducted

with real robots to evaluate the telerobotic systems for tasks that represent certain

categories in this taxonomy. Figure 1.1 shows the robots used for one of the tasks.

The results of these experiments were examined to determine which system types

produce the best results for which kinds of tasks. These results can be used by

other MTS developers and users to design or choose safe, e�ective, and easy-to-use

systems.

1.3.2 Subsidiary Questions

How much inuence should the operator have over the actions of the

robot group for particular classes of tasks?

One dimension along which multiagent telerobotic systems can di�er is the level
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Figure 1.1: Real robot teams were used in the experiments. Here we see them at
the start of one of the examined tasks.

of autonomy of the robots. Telerobotic systems with many di�erent levels of auton-

omy are currently in use. While experiments [47] have been conducted to determine

the e�ect of the level of autonomy for single-agent telerobotic systems, to our knowl-

edge, none have examined the e�ect of these systems for controlling multiple robots.

Telerobotic systems di�ering in the amount of autonomy of the robot group were

developed and tested for di�erent task classes. Speci�cally, two points along the di-

mension of autonomy were tested, namely direct manual control and supervisory

control. Details of these systems are given in Chapter 4.

How many robots should the operator control at one time for partic-

ular classes of tasks?

Another dimension involves the number of telerobots that the human operator

controls at a time. The operator could direct each robot individually or control

the entire group of robots at once. Furthermore, subgroups of robots, ranging from
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one to the entire group could be controlled. In this research, the number of robots

controlled at a time was examined in relation to the task classes. In particular, two

points in this dimensional space were considered, namely, individual control and

group control. These systems are described in more detail in Chapter 4.

What form of control should the human operator have in order to

control a group of mobile telerobots for particular classes of tasks?

The human operator needs to control the telerobots by giving them instructions.

But what form should the instructions take? For example, the operator can give

directional instructions, speed instructions, task-related instructions (such as, \Go

to the mailroom" or \Assume column formation"), or instructions to change behav-

ioral parameters. This dimension, however, was not examined in the experiments,

and the rationale for its exclusion appears in Section 1.3.3. Section 4.2 describes

the forms of control used with the systems that were examined.

What form should the interaction between the human operator and

the robot group take for particular classes of tasks?

Once it is decided what kind of instructions the operator should give to the robot

group, there must be some method to give these instructions through the human in-

terface. For example, if directional instructions are to be given, then the instructions

can be given either in terms of an amount to turn (yaw and/or pitch), a direction to

move in, or a location to go to. Similarly, speed instructions can be given in terms

of acceleration, velocity, or a deadline to arrive at a location. Parameter changes

can also be speci�ed in multiple ways. The parameter(s) to change can be given

in terms of parameter names or abstract groupings of parameters. The forms of

interaction used for the experimental MTSs are described in Section 4.2.
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How can multiagent telerobotic systems be evaluated based on the

criteria of safety, ease of use, and e�ectiveness?

Tests were conducted in which a large number of human participants used the

di�erent systems to control a group of telerobots for certain tasks. Measurements

were taken to determine how well each system satis�ed the criteria of safety, e�ec-

tiveness, and ease-of-use. Each system con�guration was tested for each class of

tasks, to determine the dependencies between the task and the multiagent teler-

obotic system.

An experimental methodology that suits this sort of large-scale testing was de-

veloped to evaluate the systems for each task. This methodology combines elements

from multiple �elds, borrowing heavily from the areas of user-interface evaluation

and human-factors studies. This methodology is appropriate for further evaluations,

either of multiagent or single-agent systems.

1.3.3 Comments on Research Questions

Four of the �ve subsidiary questions present dimensions along which multiagent

telerobotic systems can di�er, namely:

� the amount of autonomy of the robots

� the number of robots controlled at a time

� the form of control

� the form of interaction between human and robot

It was initially intended that all of these dimensions would be examined in a series

of four-factor experiments. Further examination, however, revealed that it would
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not be possible to conduct a study this broad and still pay enough attention to each

dimension to generate usable results. The number of system/task combinations

grows exponentially with the number of dimensions being examined. Since the

number of experimental subjects available for testing is e�ectively bounded, it is

better to examine fewer system types. This allows more subjects to be used per

system, which produces more reliable results.

Therefore, only two of the four dimensions were chosen for study, and a series of

two-factor experiments were conducted. The two dimensions chosen for examination

are (1) the amount of autonomy of the robots and (2) the number of robots controlled

at a time. The methodology that is presented, however, is just as appropriate for

studying the relationship of the other two dimensions, or many other dimensions of

telerobotic systems. It is a general methodology for telerobotic system evaluation,

both multiagent and single-agent. Only time and resource limitations prevented

their study here.

1.4 Research Overview

The purpose of this research is to compare di�erent classes of mobile behavior-based

multiagent telerobotic systems in order to determine which one is best for what types

of tasks. Large-scale evaluations were conducted with the systems, comparing them

in terms of safety (both for the robots and their environment), e�ectiveness (in

terms of task completion and speed of completion), and ease-of-use.

Four classes of systems were chosen for examination. These systems varied in

the amount of autonomy the robots possessed and the number of robots the human

operator controlled at a given time. Direct manual control systems and super-

visory control systems were tested. Likewise, individual and group control was

evaluated.
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In order to determine which MTSs perform best for which tasks, it is necessary to

know what types of tasks exist. Additionally, when discussing tasks for multiagent

systems, it is helpful to have a formal means of specifying their nature, such as a

taxonomy. No taxonomy of mobile multiagent tasks previously existed, and so one

was developed. This taxonomy classi�es mobile multiagent tasks in terms of the

relative motion of the robots. The experiments examined four classes of tasks from

this taxonomy: movement-to-coverage, movement-to-convergence, movement-while-

maintaining-coverage, and movement-while-maintaining-convergence.

Over 100 human subjects used the MTSs for tasks representing each of the chosen

task classes. Telerobot evaluations (as well as fully autonomous robot evaluations

with real robots) with this many trials are believed to be unprecedented. This sort

of rigorous examination, however, is necessary to turn robotics into a science. The

end result of these experiments is a knowledge base relating the examined systems

to various tasks in terms of safety, e�ectiveness, and ease-of-use. This knowledge

base includes rankings of the system types for each of the tasks, as well as more

general �ndings relating the levels of the system dimensions to the tasks.

The methodology that was followed for this dissertation's experiments is pre-

sented, both in terms of the current application and in a general manner, so that

it can be used for other robot system evaluations. The general presentation of the

methodology in Chapter 3 includes a few recommendations that were not followed

in the current application. These suggestions are based on the experience gained

from conducting these experiments. If this dissertation's evaluations were to be re-

peated, they would follow the process outlined in Chapter 3, including the additional

recommendations.

In summary, the contributions of this work include:

� Rankings of four types of MTSs for four classes of tasks
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� General �ndings relating the levels of system dimensions to task classes

� A methodology tailored for large-scale evaluation of telerobotic systems

� A taxonomy of mobile multiagent tasks

1.5 Dissertation Structure

� Chapter 1 is this introduction. It presents the motivations for conducting this

research, as well as the research questions that guided it.

� Chapter 2 discusses research related to this thesis. Multiagent robotic work

is discussed �rst, and then telerobotic research. Since these two �elds are

well studied, only closely related multiagent and telerobotic work is described.

Next, research in multiagent telerobotics is explored. Since very few projects

have concentrated on multiagent telerobotics, even those systems only re-

motely related to the present work are discussed. The last section of Chapter

2 presents related experimental evaluation of telerobotic systems.

� Chapter 3 presents the methodology for conducting telerobotic system evalu-

ations. This methodology is presented so other researchers can easily use it to

compare their own telerobotic systems.

� The systems compared in the experimental evaluations are described in Chap-

ter 4. This chapter presents the dimensions of MTSs and the corresponding

examined levels along those dimensions. Representative systems for each of

these classi�cations are described. Lastly, the discussion turns to the under-

lying robot architecture for the system types.
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� In Chapter 5, the taxonomy of mobile multiagent tasks is explained. Then, the

experimental tasks used to represent each taxonomic category are described.

� Chapter 6 reviews the experimental design in terms of factors, treatments,

replications, responses, and subjects (these terms are explained in that sec-

tion). This is followed by a detailed description of the procedures followed

during the experiments.

� The techniques used to analyze the data are explained in Chapter 7. Brief

details of each of these techniques are given. These are standard experimental

analysis methods, and more details can be found in most statistics textbooks,

such as [41].

� Chapter 8 reports the results of the evaluations. Additionally, the importance

and generalizability of these results are described.

� Chapter 9 relates a predictive study conducted after the initial evaluations.

This study demonstrated that the results presented in Chapter 8 could be used

to make e�ective predictions.

� The contributions of this research are set forth in Chapter 10.

� The appendices describe lower level details of this work. Appendix A serves

as a glossary for this dissertation. Appendix B presents the details of the

motor schemas and assemblages that were used in the robotic control systems.

Appendix C reports the data values collected during the experiments. The

con�dence intervals and other important values derived from the analysis of

the data are presented in Appendix D. Appendix E relates the distribution

of the types of human subjects used in the experiments. Finally, Appendix
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F presents the forms (consent form, survey, etc.) that were used during the

experiments.
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Chapter 2

Related Work

Multiagent robotics and telerobotics are both areas in which a large amount of

research has been previously conducted. Little work, however, has been done in the

combined area of multiagent telerobotics. Section 2.1 provides an overview of the

work in multiagent robotics, and Section 2.2 provides an overview of the telerobotics

research. After that, the few multiagent telerobotics projects are discussed. Finally,

research in the experimental evaluation of telerobotic systems is described. All of

this work is examined regarding its relation to this thesis.

2.1 Multiagent Robotics

Most research to date in multiagent robotics has focused on either group architec-

ture, resource conicts, origins of cooperation, learning, or geometric problems [16].

E�orts in group architecture have examined issues such as centralization/decentral-

ization, heterogeneity/homogeneity, communication structures, and modeling of

other agents [16]. Work in resource conicts has studied ways to share space, tools,

and communication media. Studying the origins of cooperation involves examining

ways that cooperation results without being explicitly implemented in the system,

both in naturally occurring systems such as animal societies [39], and in robot sys-

tems [5]. Geometric problems include the study of multiple-robot path planning

and formation and coverage behaviors [13, 23]. In studying how many robots an
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operator should control at one time, the research conducted in this thesis deals with

the area of group architectures, but from a di�erent perspective, one that involves a

human in the loop. Some well-known examples of multiagent robot systems include

ACTRESS [10], CEBOT [22], and the work of Mataric [35].

CEBOT [22] was among the �rst mobilemultiagent systems [6]. It was a \cellular

robotic system", with small robots that could dock together to produce a larger

robot. The robots communicated positional information to each other. The CEBOT

research now uses an architecture that has multiple parallel behaviors which are

integrated by vector summation [6].

ACTRESS (ACTor-based Robots and Equipments Synthesis System) [10], is a

multirobot system designed for heterogeneous agents, which focuses on communi-

cations issues. Normally, the robots act independently, but if the need arises, they

\negotiate" with other robots to form a cooperative group to handle the problem.

Mataric [36] has created behaviors for multiagent systems using a subsumption

style architecture [15]. She created homing, aggregation, dispersion, following, and

wandering behaviors, and used them for a foraging task [6].

Rather than giving a detailed discussion of many of the well-known examples

of multiagent robotics, the following sections discuss only the work that is most

closely related to this research. Arkin's schema-based approach [3] (Section 2.1.1)

is an architecture that has been used for multiagent robotics, while Gage's work

[23] (Section 2.1.2) and Balch and Arkin's formations [13] focus on methods for

coordinating the movement of the robot group as a whole. The following discussion

focuses on these systems.
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2.1.1 Schema-Based Multiagent Robotics

Arkin's schema-based approach to behavioral robotics [5, 12, 13] has been used in

a signi�cant number of multiagent robotics systems. In the schema-based approach

[3], each reactive behavior, or motor schema, tries to inuence the behavior of the

robot. Each schema produces a vector in the direction that the schema wants the

robot to go and with a magnitude that reects the importance of going in that

direction. The vectors of all the active schemas are summed and normalized, and

the resulting vector is sent to the robot for execution.

The schema-based approach has been used in multiagent robotics research ex-

amining issues related to communication between robots [5, 9, 8, 12], and movement

in formation [13]. The robots in this thesis use a schema-based approach for reactive

navigation and as the basis upon which teleoperation is built.

2.1.2 Gage's research in control of many-robot systems

Gage [23] looks at the command and control of a system of more than 100 robots

for military-type missions. He is investigating ways to control the movement and

positioning of the robot group as a whole, rather than by controlling the movement

of individual agents. Each individual agent's motion is based on the motions of the

other agents, and is most strongly inuenced by its nearest neighbors. He focuses

on coverage and formation behaviors as a means to accomplish this. A coverage

behavior maintains a spatial relationship which adapts to local conditions to opti-

mize some function, such as the detection rate/range of targets or the probability

of undetected enemy penetration. A formation behavior is similar to a coverage

behavior, except that the group maintains an explicitly speci�ed spacing.

Gage looks at two ways to control group movement. The �rst is to bias the

motion of each agent in the desired direction. The second is to directly control the
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movement of a small number of agents and let the others follow due to a coverage or

formation behavior. In the research conducted in this thesis, an approach similar to

Gage's �rst method is used to control the movement of the robots under supervisory

control. The robots' motion is biased in the direction that the human operator

speci�es. The \operator as a behavior" approach, however, described in [4] actually

served as the basis for the movement control used in this thesis. This technique is

presented in Section 2.2.1.

2.2 Telerobotics

Telerobotics methods can be separated into three types: manual control, super-

visory control, and fully automatic control [48]. In manual control, the human

speci�es all robot motion by continuous input. In supervisory control, robot motion

is caused by either human input or computer generated input. In fully automatic

control, all robot motion is speci�ed by computer input. There are two primary

subsets of supervisory control: supervised autonomy and shared control [48]. With

shared control, the input from the human is sent during execution of a motion and

merged with the closed-loop motion generated by the computer. In supervised au-

tonomy, commands are generated through human interaction, but sent to the robot

for autonomous execution. One of the most common reasons for using any form of

supervisory control is to deal with time delay in teleoperation [47, 48, 55, 50]. Other

common reasons include safety and ease-of-use [47].

A common strategy for developing telerobotic systems is to automate the lower-

level functions while relying on humans to provide the overall guidance and to handle

di�cult situations [48, 47]. Another strategy for developing telerobotic systems is

to automate the lower-level functions and as much of the higher-level functions as

possible [24, 57, 54, 50]. This allows the robot to proceed with its task without
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any input from the human. The human can observe the progress, however, and

intervene if he or she desires. Some of these systems also allow the robot to signal

the operator when it needs assistance [57, 54, 50, 45]. Examples of each type of

these approaches are given in the remainder of this section as well as the discussion

of related Multiagent Telerobotics research.

This section is a discussion of single-agent telerobotics research that is closely

related to this research, and mutliagent telerobotics work is presented in the next

section. Table 2.1 shows how the described research �ts in the telerobotic system

dimension of the amount of inuence that the robots have. Arkin [4], Graves [24],

and Guo, et al, [25] all provide forms of shared control. In Arkin's (Section 2.2.1)

and Graves's (Section 2.2.2) work, the amount of inuence is easily altered. Guo

(Section 2.2.4) provides the operator with a set amount of inuence, allowing the

human to inuence, but not totally control the execution of the predetermined plan.

Noreils [42] (Section 2.2.3) provides the operator with supervised autonomy, such

that the operator has complete control at the planning level, but no control of the

robot's actions at the execution level, although he proposes an interface which would

allow minimal control at the reactive level.

Arkin and Guo allow directional commands to be given. Arkin also allows pa-

rameter modi�cation, while Guo provides speed control. Noreils provides control in

the form of task-related instructions given in his visual programming language.

2.2.1 Arkin's Telerobotics Approach

Arkin presents two methods [4] for teleoperation of a single agent using the schema-

based reactive robotics architecture [3]. The �rst method is to treat the human

operator as a schema. In this method, a teleoperator schema takes the desired gain

and desired direction of movement as input. The teleoperator schema outputs a
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Table 2.1: Locations of the related telerobotics systems in the Amount of inuence
dimension. Since these are single agent systems, the Number of robots controlled at
once dimension is not applicable to them.

Amount of
Designer System human inuence Reference

Arkin Schema-based shared [4]
telerobotics

Graves ASIAGO shared, [24]
inuence changes
dynamically

Noreils Man/Machine not speci�ed [42]
interface

Guo Function-based shared [25]
control sharing

vector in the desired direction of movement with a magnitude relative to the size of

the input gain. This vector is summed and normalized with the vectors from other

active schemas and then passed to the robot for execution.

The second method is to treat the human operator as a supervisor. In this

method, the operator adjusts the values of the gains and internal parameters of

the active schemas. This changes the overall behavior of the robot. This type of

control requires a deeper understanding of the schemas by the operator in order to

be e�ective [4].

One of the robot control techniques used in this research is based on Arkin's work

in single agent telerobotics. The underlying strategy used for directional control is

the same as the �rst method described above, except that it has been generalized

for multiple robots.
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2.2.2 ASIAGO

Graves's ASIAGO (A System for Intelligent Action Generation for teleOperation)

[24] is an action-selection mechanism for a telerobot. It selects actions by fusing

control decisions using a blending approach from a variety of command sources,

including human control. Figure 2.1 is a simpli�ed illustration of the fusion tech-

nique. Each device on the telerobot has a current mode, which speci�es how to

do the blending. The Integrator for each device uses this mode to select an action.

A mode consists of a blending matrix and an input map. The blending matrix is

a matrix of weights that controls how much inuence an input has on a degree of

freedom of the device. The rows of the blending matrix represent individual inputs

from various sources. The columns represent degrees of freedom of the device. The

input map speci�es which input sources map to which row in the blending matrix.

The current mode for a device may be changed during execution. Event Rec-

ognizers monitor the input for speci�c data patterns or conditions, and notify the

Mode Manager when one is observed. The Mode Manager can then change the cur-

rent mode for a device. The mode transition can either be immediate or \faded in",

such that the mode is changed gradually, with the Integrator interpolating between

the weights in the starting and �nishing modes during the change.

This is similar to the control methods in the supervisory control con�guration

used for the research in this thesis, because it treats the human operator the same

as any of the other input devices. The operator's input is combined with the input

from the other sources to produce the action to execute.
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Figure 2.1: The fusion technique in ASIAGO. The operator provides one of the
inputs. See the text for details.

2.2.3 Noreils's Man/Machine Interface

Noreils [42] emphasizes the need for both reexive and planning capabilities for a

mobile robot. He states that reactivity is dependent on the task, and that the con-

�guration of the reactive component must be controlled by the planning component.

He further emphasizes the need for a human in the decision process to guide the

planning for the robot. Noreils feels that the man/machine interface should support

the generation of meta-plans (which are high-level plans composed of lower-level

missions), the creation of visual missions, which are plan steps created with a visual

programming language, and altering information to be sent back to the reactive

level (or functional level) of the robot.

Noreils notes that including a human in the decision process raises many ques-

tions (which are relevant to this thesis research), such as: the level of interaction

between the operator and the robot; what type of information is relevant at the

man/machine interface (MMI) level; and the nature of the interaction between the
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operator and the interface [43]. This dissertation's results provide guidelines for

answering some of these questions for multiagent telerobotic systems in terms of the

task.

2.2.4 Guo's Function-Based Control Sharing

Guo, et al [25], presents a method for combining the input from a human operator

with the input from an event-based planner and applying it to single arm teleoper-

ation. The goal is to develop a planning/control scheme such that the input from

a human operator can be easily integrated without signi�cantly disturbing its au-

tonomous operation. When the operator is �nished, the system resumes autonomous

operation without any replanning.

The planning system is event-based and uses action reference parameters [25]

rather than time. Instead of planning where the arm should be at a certain time,

the planner creates parameters that specify goal locations where the arm should

move to. When the arm achieves that goal, it proceeds to the next step in the plan.

The human operator is allowed to inuence the movement of the arm in a speci�ed

set of dimensions relative to the direction that the autonomous planner is moving it

in: by stopping the arm, slowing down the arm, speeding up the arm, or inputing a

force on the arm orthogonal to the direction the planner is moving it in. When the

operator inuences the arm in an orthogonal direction, it moves in a direction that

is the sum of the velocity vectors of the planner and the operator. This is similar to

the supervisory control component of this thesis's experimental testbed in that the

operator's input is combined with the input from the robot's autonomous controller

using vector addition to produce the action to execute.
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Table 2.2: Related multiagent telerobotics systems. The table shows the MTSs in
respect to the dimensions examined in this thesis.

Number of robots
Amount of controlled at

Designer System human inuence once Reference

Asama, Interface for strict individual, [57]
Yokota, ACTRESS supervisory subgroups,
et al control entire group
Nakauchi RT-Michele not speci�ed individual, [40]

subgroups,
entire group

Adams MASC strict individual [1]
supervisory
control

Dickson AUTOMAN strict entire group [18]
supervisory
control

Ohkawa Ohkawa's supervisory NA [44]
work control

Ishikawa Ishikawa's supervisory individual [28]
work and direct

manual control

2.3 Multiagent Telerobotics

The following sections contain descriptions of the research conducted in multiagent

telerobotics. Most of it di�ers from this research but is included for completeness.

Table 2.2 denotes where these examples �t in the examined multiagent telerobotic

system (MTS) dimensions.

ACTRESS [57], MASC [1], and AUTOMAN [18] are supervised autonomy sys-

tems. These systems range from MASC, which is almost autonomous, to AU-

TOMAN, which allows the user to specify the desired locations and orientations
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for manipulating an object, but not how to move between these locations.

MASC and Ishikawa's work [28] allow the user to control only one robot at a time,

while AUTOMAN requires the user to instruct all the robots at once. ACTRESS

and RT-Michele allow the operator to instruct one or more robots at a time.

2.3.1 Human Interface System for ACTRESS

ACTRESS (ACTor-based Robots and Equipment Synthesis System) [10] is a multi-

agent robot architecture. A human interface system has been developed for AC-

TRESS [57, 54] that allows the human operator to command and monitor the status

of the robots, and provides the robots with a means to contact the operator. The

operator can give task-related commands, such as \push box" or \retreat", to the

robots, by manipulating on-screen mechanisms, such as menus. The robots them-

selves coordinate how the tasks are carried out. The operator can direct one robot

or a group of robots at a time to do these tasks.

The primary focus is to provide the operator with monitoring capabilities for the

robot group, without requiring him to look at each robot individually. The inter-

face provides a means for the operator to determine the status of individual robots,

groups of robots, and the entire system. Status information can be gathered either

by explicit or implicit communication with the robots [54]. With explicit commu-

nication, the agents are asked directly to give information about themselves. With

implicit communication, the system gathers status information by eavesdropping on

the messages passed between the agents.

Simulation tests were conducted to determine the communication load and relia-

bility of information with the di�erent communication strategies. The task required

the robots to move from one point to another, while executing numerous turns. The

following four monitoring methods were examined:
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1. The operator queries each agent at �xed intervals.

2. Each agent reports to the operator at �xed intervals.

3. The agents report when they change direction.

4. The operator eavesdrops on the messages between agents.

Types 1-3 are explicit strategies, while type 4 is implicit. It was found that the

explicit monitoring strategies are more reliable but place a higher communication

load on the system. The implicit strategy did not increase this load, but it did not

provide reliable information about the state of the system. Strategy 3 was found

to be the best compromise between reliability and minimizing communication load

[54].

This sort of evaluation is important to determine what types of MTSs perform

best. Experiments conducted on real robots would have provided more reliable

information, and additional tasks should be analyzed in the future. These tests,

however, involving multiple systems, are necessary to provide future MTS developers

with a basis to build upon.

More recently, this group has concentrated on methods for an operator to give

instructions to a group of telerobots [52]. They identify four issues that a multiagent

telerobotic system should address:

� Coordination of the robots

� Commanding level

� Operationality

� Cooperation strategies among the robots
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Coordination means how many and which robots are controlled by the operator

at a given time. They state that an MTS should allow the operator to command

either individual robots, the entire group, or subgroups of the robots. Also, the

operator should be able to choose which robots should be included in an action,

or the human interface or the robots themselves may determine the allocation of

the robots based on the operator's choice of coordination [52]. This thesis examines

which of these sorts of coordination methods is most appropriate for which type of

task.

The commanding level can be one of three levels [52]:

� Task level

� Action level

� Direct control level

The task level includes abstract commands such as \Execute Task A". The action

level includes commands such as \Move straight 1m" or \Go to the position (x,y)".

Direct control is the level at which the operator can control the robots' actuators

and devices directly. One of the dimensions that is examined in this thesis, the level

of autonomy of the robots, is related to the issue of the commanding level. The

more autonomous the robots are, the higher the commanding level possible.

Their \principle of operationality" states that the operator should have several

means of input for controlling the robots, such as buttons, menus, and command

line input [53]. Regarding cooperation strategy among the robots, they say that the

human interface and the robots should determine the formation of the robots based

on the requirements of the human's task [52]. This acknowledgement of the task to

the interface design is a central point of this dissertation.

28



Concentrating on one of these issues, Ishikawa et al [28], have developed a graph-

ical user interface (GUI) for the ACTRESS system to allow an operator to choose

which robot he wishes to control. The operator can choose a single robot to operate

under direct manual control, while the other robots operate autonomously. The

operator can easily change the control to another robot using a set of buttons, or

he can allow all the robots to run autonomously.

2.3.2 RT-Michele

RT-Michele [40] is a multiagent interface architecture to support cooperative work

among multiple humans and multiple robots. The system provides a protocol for

allowing communication between any number of robots and humans. It classi�es

communication by whether it is synchronous or asynchronous, and by whether it

is electronic or physical. Physical communication includes the transfer of some

physical object to or from one agent to another. When a human or robot wants to

communicate with another agent, it creates what is called a meeting-environment,

which may or may not be an actual physical space. Then it asks those it wishes

to communicate with to join the meeting. When the other agents \arrive" at the

meeting-environment, they then communicate. This work is not concerned with

how to communicate with and instruct the robots once all the parties are present

at the meeting. The important thing seems to be the protocol for setting up these

meetings.

2.3.3 MASC

MASC (Multiple Agent Supervisory Control) [1] is a supervisory control system for

multiple robots that permits the human supervisor to interact at various levels in

the perceptual processing. The human allows the robots to work autonomously,
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and only interferes when they are unable to carry out their task. The operator is

provided with a display of the sensory input to a robot at all levels of abstraction,

from the raw sensor data to processed data. The human can correct corrupted data

or process decisions which could cause the robot to enter an incorrect state. The

operator can inspect and correct data for individual robots, but not the group as a

whole. In addition, a robot may ask for assistance from the human operator.

The operator can only work with one robot at a time. Since the operator's job

is to monitor for incorrect data, then he must constantly or regularly inspect the

data for each robot, repeatedly switching between robots. This type of constant

monitoring of multiple data sets seems likely to cause cognitive overload for the

supervisor.

2.3.4 AUTOMAN

AUTOMAN (AUtonomous robot-Team Object MANipulation) [18] is a control hier-

archy for object-based task-level control of a team of robots. It is used for a team of

two free-ying robots for the task of manipulating a free-ying object. AUTOMAN

consists of three levels: User Interface, Strategic Control, and Dynamic Control.

The Dynamic Control level �rst computes the desired accelerations and internal

forces for the object to be manipulated. Then it computes the necessary external

forces and accelerations on the object. These are passed to the robots' controllers.

The Strategic Control level steps through the subtasks of a complex task (such as

docking), making appropriate decisions and commanding the Dynamic Control level.

The User Interface is a graphical iconic display of the object and workspace that

allows the human operator to specify object-based task-level commands. The user

uses a mouse to indicate a desired object to capture, transport, dock, or release,

and the locations to do each. The object-oriented style of human control probably
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makes the robot group easier to control, since the operator does not need to focus on

the actions of each robot. Evaluations should be conducted comparing this control

style to other more conventional methods.

2.3.5 Ohkawa's et al Control Through Rewards

Ohkawa et al [44] have developed an interesting method for a human operator to

control a group of robots. The method is meant to be used when the robots' task

can be divided into subtasks, where each subtask can be completed by one of the

robots. In this system, each robot selects which subtask it wants to do. The

human then assigns rewards based on the selections that the robots make. The

robots evaluate their previous choices based on these rewards, using Q-learning,

and change their behavior. Thus, the human \controls" the robots by causing them

to do reinforcement learning to improve their method for selecting subtasks. While

this is an interesting technique, the operator's control of the robots, and the tasks

for which it is appropriate, are rather limited.

2.4 Experimental Evaluation of Telerobotic Sys-

tems

Very little work [7, 54] analyzing the performance of multiagent telerobotic systems

was encountered. Some research [12, 2] has considered performance analysis for

multiagent (non-telerobotic) systems. The literature on telerobotic system evalua-

tion, however, is more closely related to this research than the literature on the the

evaluation of multiagent systems, and so the former is discussed here.

Most of the work on telerobotic system evaluation has focused on how well the

human/machine system copes with time delay. Some researchers have considered
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other issues, such as the nature of the feedback to the operator [20] and the form of

operator interaction with the interface [19].

None of the experimental evaluations of robotic systems that use real robots,

however, have been conducted on as large a scale (in terms of the number of trials

and participants) as the experiments conducted in this dissertation. While perfor-

mance evaluations of this scale on real robots are very time consuming, they are

crucial to advance the state of robotics to a science. Small scale evaluations do not

provide good statistical guarantees of correctness, and studies in simulation cannot

be guaranteed to produce results that are valid in the real world.

2.4.1 Hannaford

Hannaford presents performance measures for evaluating telerobotic systems, such

as completion time, force performance, and error rate [26]. He advises conducting

task segmentation analysis. This involves computing performance measures sepa-

rately for the di�erent phases of a task, because often di�erent kinds of performance

are important for the di�erence phases. He separates the tasks used for teleopera-

tor evaluation into two classes: generic tasks and application tasks. Generic tasks

are idealized, simpli�ed tasks that are intended to test speci�c capabilities, while

application tasks are designed to resemble real-world tasks as much as possible.

The experiments conducted for this dissertation used generic tasks to focus on the

speci�c task classes.

2.4.2 Bejczy

Bejczy notes that the training cycle greatly e�ects the performance of the operator.

He suggests the following system for training operators for telerobotic evaluation

experiments [14]. The �rst cycle should be used to familiarize the operator with
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the system and task, and for a novice operator, this cycle should be repeated at

least twice. During the second training cycle, performance measurements are made

so that the operator understands the measures against which the performance will

be evaluated. The real performance evaluations can then be conducted. Each cycle

and its repetitions should be separated by at least one day.

Unfortunately, training cycles of this length were not possible in the experiments

conducted in this thesis. The operator, however, was informed of the performance

measures, as Bejczy suggests. The training cycle that was used tried to insure that

all participants had the same amount of prior experience with the system, and is

described in Section 6.4.

2.4.3 Skubic

Skubic integrated a system for performance analysis into his Telerobotics Construc-

tion Set (TCS) [49]. The performance analysis system is based on the General

Systems Performance Theory (GSPT) [30]. This allows comparison of the perfor-

mance of various subsystems that are included in telerobotics systems constructed

with TCS. The performance analysis of this dissertation's research is di�erent from

Skubic's analysis, in that Skubic was comparing di�erent modules of one telerobotic

system to each other, while this research focuses on MTSs as a whole when compared

for di�erent tasks.

2.4.4 Draper

Draper and others [19, 20, 31] at Oak Ridge National Laboratories have done exper-

iments analyzing the performance of various manipulator systems under di�erent

conditions. One experiment [19] investigated options for camera controls on ma-

nipulator systems. The performance of two di�erent systems was compared for a
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manipulation task in which a camera provided feedback. In the �rst system, the

camera was controlled by conventional manual controls. For the second system, a

combination of voice input and automation was used to control the camera. The

results indicated that the manual control system had longer task completion times,

yet required fewer camera position changes.

In another set of experiments [20], they compared the performance of three

brands (Meidensha BILARM 83A, Central Research Laboratories Model M-2, and

GCA PaR SystemsModel 6000) of manipulator systems under di�ering forms of con-

trol. In particular, these experiments compared the di�erences between master/slave

systems with and without force reection, as well as the di�erence between mas-

ter/slave systems and switchbox-controlled systems on three brands of manipulator

systems [20]. They found no signi�cant di�erence between the M-2 with and without

force-reection. The BILARM completed tasks faster without force-reection, but

produced more errors in this mode. Master/slave systems had lower task completion

times than switchbox controlled systems, without a signi�cant change in the error

rate.

Another study [31] examined the performance of three manipulator systems

(Central Research Laboratory's Model M-2, an advanced servomanipulator (ASM),

and a Meidensha Prototype-2 (P-2)) as part of their in-cell maintenance systems for

use in future nuclear fuel reprocessing facilities. The evaluation was based on the

completion time for the task. The P-2 performed the worst, and the times for the

M-2 and ASM were not signi�cantly di�erent from each other.

These experiments are similar in nature to the ones conducted in this thesis.

Each of Draper's experiments, however, studied human control of manipulators

rather than mobile robots. These evaluations were conducted on a smaller scale

than this dissertation's experiments, but they are important nonetheless. This sort
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of formal evaluation is necessary to provide future developers with developmental

guidelines.

2.4.5 Kirlik

Kirlik [29] compared the performance of two telerobotic systems that di�ered by

dividing the operator's responsibility between di�erent numbers of operators for a

reconnaissance task. The task involved piloting a simulated helicopter and supervis-

ing four other simulated helicopters, while searching for various objects in the task

environment. One system put all of the observation and control responsibilities on a

single operator, while the other divided them between two operators. Novice users

tried both systems, and their performace was compared with that of an expert one-

person crew. The expert one-person crew and novice two-person crews performed

comparably, and both performed better than novice one-person crews [29]. This

evaluation di�ers from this dissertation's experiments, since it is more an evaluation

of the e�ects of the number of operators on performance than the e�ects of di�ering

system types.
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Chapter 3

Methodology

There is no formal method for evaluating robot systems currently in widespread

use. Typically, robot systems are evaluated by using a proof-of-concept technique,

in which the system is shown to be capable of accomplishing a particular task.

Sometimes, two di�erent robot systems are compared against each other for a given

task [19, 20]. Even with these tests, however, a more formal approach should be

taken to choose which types of systems to compare and for what type of task. One

notable exception, in which a formal approach is used for robot evaluation, is the

work by Sukhatme [51], which concentrates on a method for deriving evaluation

criteria for robots traversing rocky terrain and compares robots that di�er in their

physical characteristics.

Large-scale evaluations of di�erent types of systems are necessary to advance the

�elds of robotic and telerobotics to a more scienti�c stage. A methodology that suits

this sort of large-scale testing was used for this research. This approach combines

elements from multiple �elds, borrowing heavily from user-interface evaluation and

human-factors studies. This section describes how to apply this methodology to

robotics studies. The typical methodology for comparison of systems used in other

�elds such as user-interface evaluation has been changed to suit the nature of robotics

research. The primary changes involve di�erent approaches to choosing the types of

systems and tasks to examine. A more formal method is presented for selecting the

system and task types than the task analysis and functional analysis [27] typically
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used in user-interface evaluations, or the typically ad-hoc methods of robotics.

The following sections present step-by-step instructions for conducting evalua-

tions of di�erent types of telerobotic systems. While the experiments conducted as

part of this research using this methodology compare multiagent mobile telerobotic

systems, the approach is not speci�c to multiagent or mobile robot systems. It can

be used just as easily for single-agent systems and manipulator arms. Furthermore,

with a little modi�cation, this procedure could be used for evaluating autonomous

robot systems.

In the remainder of this section, o�set in text boxes, an example appli-

cation presents an evaluation of possible Mars rover systems.

The overall procedure for comparing telerobotic systems can be broken into the

following basic steps, each described in more detail in the following sections.

1. Determine the evaluation criteria.

2. Decide what types of systems to compare.

3. Formulate tasks for the systems.

4. Conduct experiments with real robots to compare the systems for the tasks.

5. Analyze the data collected from the experiments to determine how each system

performed.

3.1 Determine Evaluation Criteria

The evaluation criteria provide a formal method for determining what data to collect

during the experiments and how to use them to compare the systems. This step can

be broken into three substeps:
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1. Determine the criteria.

2. Decide what data/events represent those criteria.

3. Decide how to combine the data into a single quantitative value.

The �rst step for evaluating telerobot systems is to determine what sort of criteria

to evaluate them by. For instance, is safety important, or should the systems be

judged based on their e�ectiveness, ease of use, cost, or some other measure? This

decision depends on what is important to the developer.

Evaluation Criteria: For the Mars rover example, we will compare

the systems by their power e�ciency and safety. Safety is important to

Mars rovers, because if the robot is damaged, it is di�cult and often

impossible to repair it. The greater the power e�ciency, the fewer

batteries that are required to power the robot. Since batteries are

heavy, they contribute greatly to the cost of transporting the robot to

Mars, which depends largely on the weight of the robot. Therefore,

greater power e�ciency means lower transportation costs.

Once the evaluation criteria are determined, methods for measuring them must

be determined. In other words, for each criteria, it must be determined which events

or other data can be collected during an experimental evaluation to determines how

well a system meets that criterion. For instance, if one measure is e�ectiveness, is

task completion time important or the distance the robots travel, or how well the

robots accomplish the task, or some combination of multiple kinds of data? The

types of data may be di�erent based on the needs of the experimenter. In all cases,

however, the metrics should be objective and measurable.
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Events Representing the Criteria: To determine the safety in our

example, we can count the number of collisions between all robots and

obstacles and the number of times the robots unintentionally slip into

pits. The power e�ciency can be determined by summing the voltage

change of the robots' batteries between the start and completion of the

task.

Next, the designer must determine how the data for each judgment criteria will

translate to a single quantitative representation of that criteria, so that di�erent

systems can be compared against each other. In some instances, this may be very

simple. For example, if only one type of data, such as the number of collisions,

is being used to determine the safety of the systems, then no transformation is

necessary, and systems with fewer collisions can be considered safer.

A Single Quantitative Value: In the example, the voltage change

from all batteries is the only measure used to determine power e�ciency,

so lower voltage changes directly indicate more e�cient systems.

If, however, multiple data types are used to determine one criteria, a means

for combining the data into a single quantitative measure must be determined.

For example, if both task completion time and the distance traveled are used to

determine the e�ectiveness of the systems, then there must be some way to combine

the two measures into a single value. If the two measures share the same units, then

they could just be added together (or one multiplied/divided by the other), or, more

likely, it might be appropriate to weight and/or scale them before combining, since

they might not be of the same importance or on the same scale. If, the measures

use di�erent and non-compatible units, such as seconds and feet in the previous

example, it will be necessary to convert them to some dimensionless unit �rst. This

conversion could be one-to-one, or it might involve scaling and weighting, depending

on the units involved and their relative importance in the eyes of the experimenter.
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Furthermore, high values might indicate good systems using one measure, while low

values indicate good systems with another measure, making it necessary to invert

and scale one of the metrics.

A Single Quantitative Value: For Mars rovers, falling into holes is

probably more dangerous (since the robot might not be able to climb

back out of the hole) than colliding with obstacles, so we will determine

the safety measure as follows:

safety = (number of collisions) + 2 � (number of falls)

Here, lower values represent safer systems. Ideally, this formulation

should be based on a more reliable analysis of the relative importance

of collisions and falls, but this analysis is su�cient for the example.

The appropriate method for combining multiple data types can only be determined

by the experimenter. The important point is that whatever methods are used, they

should produce a single quantitative value to represent each of the chosen criteria.

In summary, there are three steps in determining how to compare systems. First,

criteria to judge the systems are determined. The experimenter then decides which

measurable events and data best reects that criteria for his purposes. Finally,

if there are multiple data types for any single criterion, then a formula must be

determined to combine the data into a single quantitative measure.

3.2 Determine Which Systems to Examine

The next step is to determine what types of systems to compare. If the purpose

of the evaluation is to compare a set of already existing systems, then this step

is complete. When the purpose is not to compare existing systems, however, but
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instead to determine the best type of system in general, a more formal approach is

appropriate. In this case, these steps should be followed:

1. Decide the system dimensions.

2. Determine points along those dimensions.

3. If multiple dimensions are used, then cross1 the dimensions to produce the

system types.

4. Create representative systems for each system type.

First, decide on the system dimensions to be examined. There are many di-

mensions in which telerobot systems may di�er, e.g., homogeneity/heterogeneity,

the amount of autonomy the robots have, the underlying control architecture, or

the number of robots present. The ways in which telerobot systems may di�er is

potentially unlimited. Choose an appropriate number of these dimensions to ex-

amine, based on what is important to the nature of tasks to be examined. The

number of chosen dimensions should preferably be small (one to three), because the

number of system types to be tested increases exponentially with the number of

dimensions. If a �nite number of human subjects are available for testing, greater

numbers of system types (due to more dimensions) reduce the number of subjects

used for each system, which provides less of a statistical guarantee for the results of

the experiments.

1Factors (or dimensions) are said to be crossed when every level of one factor appears with each
level of every other factor [41].
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System Dimensions: For the Mars rover example, we will consider

two dimensions: the number of robots in the system and whether or

not the robots are holonomic. Holonomic vehicles can move in any

direction at any time, i.e., they can start o� in any direction and can

change directions instantaneously. Greater numbers of robots might

cost more to transport, but they might require less power overall. The

system should also be more robust, since if one robot breaks, the others

can continue working. Holonomic vehicles seem more likely to be safer,

as they can maneuver better, but it is possible that the operator may be

able to avoid dangerous situations without the extra maneuverability.

Next, for each of the chosen dimensions, determine at which points to examine

them. For example, if the number of robots in the system is being evaluated, choose

a few di�erent points on this dimension, such as 1, 5, and 10 robots, or maybe 1, 2,

3, 4, and 5 robots. The actual choice of points must be based on the judgment of the

system designer, but the following suggestions may be helpful. If only a few points

can be examined due to time limitations on the experiments, then it is often useful to

examine points that di�er signi�cantly, such as the extreme values for the dimension

(if such extremes exist), to gain some understanding (possibly incorrect) of the range

of possible results. At other times it may be more appropriate to examine points

commonly used in existing systems. For example, if the type of underlying control

system is being varied, then instances of well known control architectures might be

used.
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Points Along the System Dimensions: For the number of rovers,

we will examine 1, 2, and 5 robots. One robot is the minimum value,

as well as the commonly chosen point. Using two robots will indicate

if any bene�ts can be gained by multiple robots, while still keeping low

the number of robots that need to be transported to Mars. Examining

�ve robots will provide some indication of how any performance change

due to multiple robots scales as more robots are added. For the second

dimension, the two points are non-holonomic vehicles and kinematically

holonomic vehicles.

If multiple dimensions are being examined, then crossing them yields the di�erent

system types to be compared. Crossing the dimensions is e�ectively like taking their

cross-product, thereby producing every possibly combination of the points along the

di�erent dimensions. In other words, if dimension A has points a1 and a2 and B

has b1 and b2, then crossing dimensions A and B will yield points a1b1, a1b2, a2b1,

and a2b2. So, if there are two dimensions, with n1 points in the �rst and n2 in the

second, then there are n1 � n2 di�erent system types to compare.
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Cross the Dimensions: There are six system types to examine in our

Mars rover example, derived by crossing the two dimensions as shown

in the following table:

Number
of robots

Holonomicity

1

2

5

Holonomic Non-holonomic

H1

H2

H5

N2

N5

N1

This notation (H1, N1, etc.), will be used in the remainder of this

example to denote the system types, e.g., H1 indicates a system with

one holonomic robot.

The designer must create a system or systems to represent the system types.

Either a separate systemmust be developed for each type, or one exible architecture

can be created that is recon�gurable to represent each of the system types. The

human-interfaces for the systems should be as easy to use as possible, to minimize the

e�ects of the interface implementation on the experimental results. It is impossible

to prevent the implementation of the system interfaces from a�ecting the results,

just as it is impossible to know what type of human-interface is easiest to use. By

following acknowledged human-computer interface principles, however, this e�ect

can be minimized. Some examples of these principles, which are described in more

detail in [27] and other human-factors textbooks, include:

� User-centered design: Produce what is best for the user, rather than what is

easiest to implement.
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� Providing a system model: Give the user a mental model regarding the func-

tionality and sequencing of the system.

� Consistency: Similar things should be presented or done in similar ways.

� Simplicity: Break complex tasks into simpler subtasks.

� Feedback: Let the user know what happened when he/she performs an action.

User-interface studies can be used to improve the di�erent possible interfaces for

each system type. This is an iterative process in which human users try various

interface styles for one or more tasks and performance measurements are taken.

The user-interfaces are then re�ned based on the results to improve their ease-of-

use.

In summary, there are four steps to determine which systems to compare. A

reasonable number of dimensions along which the systems may di�er should be

determined �rst. Next, the designer should select a subset of points along those

dimensions to examine. The systems to be considered include all of the possible

combinations of the points in the dimensions, which are produced by crossing the

dimensions. Finally, representative systems (or one recon�gurable system) for each

of the system types need to be developed.

3.3 Establish Tasks for Comparing the Systems

Speci�c tasks should then be determined for the evaluations. If there is a particular

set of real life tasks that are of interest to the experimenter, then these can be used.

If, on the other hand, the designer does not have speci�c tasks in mind2, then either

2This could be either because the experimenter is doing general research on systems and tasks,
such as was done in this dissertation, or because the designer produced a solution and is now
searching for a problem for it to solve, which, unfortunately, is not that uncommon of an approach
to research.
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commonly used telerobot tasks (such as inserting pegs into holes) can be chosen or a

more formal approach can be taken to determine the tasks. The following discussion

describes just such a formal approach. Note that this method is not necessary if the

experimenter has speci�c tasks in mind that he wants to examine.

First, determine a taxonomy of robot tasks to use. Either use an existing tax-

onomy or create one. Not many taxonomies exist for robot tasks, and therefore

it will probably be necessary to create a taxonomy of task types. The taxonomy

should classify the tasks based on the qualities of the tasks that are important to the

experimenter. For instance, if the systems being evaluated are multiagent mobile

robotic systems, as in this research, then a taxonomy classifying the movement of

the robots relative to each other might be most appropriate. A taxonomy of this

sort is presented in Section 5.1, and can be used if mobile multiagent robot systems

are being evaluated.

A subset (possibly the entire set if it is small) of the taxonomy should be chosen

for examination in the evaluations. For each of these task categories in this subset,

an experimental task must be chosen to represent the category. This is because the

systems cannot be used for a task category, but must be used for an actual task.

There are two types of experimental tasks that can be used: application and generic

tasks [26]. Application tasks are designed to imitate real world tasks as closely as

possible, while generic tasks are idealized and simpli�ed to test speci�c capabilities

and are usually subtasks of real world tasks. Repairing a broken machine, foraging,

and scouting a potential battlezone are examples of application tasks, since they

are entire applications that someone might actually want a telerobot to perform.

Inserting a peg in a hole, moving from point A to point B, and climbing stairs are

generic tasks, since they are not tasks that are useful in isolation, but are performed

as part of other applications, and test a speci�c capability of the telerobot/human
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team. Generic tasks are more appropriate for evaluating the task classi�cations

of a taxonomy, because application tasks are more likely to involve multiple task

classi�cations, one for each subtask. Generic tasks, on the other hand, can be

designed to �t only the desired classi�cation.

In summary, if the experimenter has particular tasks that he wants to examine,

those tasks can be used in the evaluations. Commonly used tasks from telerobotic

research can be used if the designer wants to compare his system to others for a

recognized benchmark task. If, however, a more general evaluation is desired, then

the experimental tasks should be chosen to represent classes of a task taxonomy.

Experimental Tasks: In our rover example, we will assume that there

are two primary tasks that the system will be used for, and, therefore,

the experimenter wants to examine these particular tasks. The �rst

task is gathering Martian rock samples and depositing them at a base

station. In the experimental task, the task is completed when the robots

have gathered 20 rocks. The robots are initially at the base station, and

the rocks are scattered around the environment. Additionally, there are

small pits in the environment that the robots will have to avoid. The

second task involves moving the base station. In the experimental task,

the robots must move to the base station, and then push it through an

obstacle �eld to a designated location.

3.4 Conduct Experiments

One experiment should be conducted for each of the task types being examined.

Each experiment evaluates all of the di�erent system types for one of the tasks.

A factor is a predictor, or independent, variable to be studied in an investigation.

For instance, in an investigation of the e�ect of price on product sales, price is the
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examined factor. A factor level is a particular value for that factor. If price is the

factor, then $50 would be one of many possible factor levels. In our situation, the

factors are the system dimensions and the factor levels are the points along those

dimensions. An experimental treatment is a combination of one level from each

factor in an experiment. So, if one factor being examined is price (with levels $50

and $100) and another is size (with levels small and large), then each of the four

combinations of price and size ($50/small, $50/large, $100/small, and $100/large)

is a treatment. In a one-factor experiment, the factor levels are the treatments.

The individual system types, produced by crossing the system dimensions, are the

treatments for these experiments.

Factors, Factor Levels, and Treatments: Since there are two tasks

to be examined (gathering Martian rocks and moving the base station),

two experiments will be conducted. Each experiment will compare the

six systems for each task. The factors, factor levels, and corresponding

treatments for both experiments are shown in the table on page 44.

Each experiment has two factors (corresponding to the system dimen-

sions), the number of robots and whether the robots are holonomic or

not. The factor levels correspond to the examined points along the di-

mensions: 1,2, and 5 for the number of robots dimension, and holonomic

and non-holonomic for the holonomicity dimension. The experimental

treatments correspond to the possible combinations of levels: H1, H2,

H5, N1, N2, N5.

A replication is a repeat trial for the same treatment, typically with di�erent

experimental units (human subjects in this case). For each of the treatments, the

same number of human subjects should be used. The number of human subjects used

for each treatment is the number of replications of the experiment. Unfortunately,
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it is not possible to know in advance how many replications should be conducted

to guarantee that statistically signi�cant di�erences will be found. This can be

estimated by means of the power approach or estimation approach3 [41], but both of

these approaches require a good estimate of the sample variance, which, put simply,

is the amount that the data values from each human subject di�er. It is impossible

to know what sort of sample variance to expect unless very similar experiments have

been conducted before. If a prior experiment is being validated, then its variance

can be used to estimate the number of replications to conduct. Since experiments of

the sort conducted in this dissertation have not been conducted previously, it is not

possible to know how many replications are needed to provide statistical guarantees.

In this case, there are two reasonable courses of action. The �rst is to conduct as

many replications as time permits. The greater the number of replications, the

less likely it will be that two types of systems will be found to be statistically

equivalent when they are not. The second strategy is to conduct a small number of

initial replications, and then use the variance from this experiment to estimate the

number of replications needed. This strategy is more time consuming, but provides

better statistical guarantees.

The treatments should be tested with human participants and real robots. To

prevent any bias due to the participant gaining experience or a preference to one

particular system, each participant should be used in only one replication and for

one treatment. Therefore, the number of participants needed will be equal to the

product of the number of treatments and the number of replications.

3A detailed explanation of these approaches can be found in most experimental design texts,
and is beyond the scope of this dissertation.
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Replications: For the rover example, we will conduct 8 replications.

Since there are six treatments, this means that 48 human subjects are

needed. Unless the variance of the data is high, this probably should

provide enough replications to notice any di�erences between the per-

formance of the systems, while still keeping the total number of partic-

ipants tractable.

An experimental block is a grouping of experimental treatments, with every

treatment occurring once. In temporal blocking, which is used in this thesis, one

replication is conducted on all treatments in the block before the next replication is

begun on any treatment. The number of replications of the experiment corresponds

directly to the number of blocks. A block is simply a grouping of the treatments,

specifying the order in which the treatments are examined. For these evaluations,

the systems should be examined in blocks consisting of the set of all the system

types. That is, one participant should attempt the task with the �rst system, then

another participant should use the second system, and so on, until all of the systems

have been used, as opposed to testing one system multiple times and then another

system multiple times, and so forth. This comprises the �rst block, and then, the

second block is begun. The �gure in the boxed text of the example shows a blocking

example.

The purpose of conducting the experiments in blocks is to prevent any bias

towards one system due to any change in procedure by the experimenter. As an

example, consider a comparison of two systems with 10 replications, where System-

1 is �rst tested 10 times, and then System-2 is tested 10 times. If there was any

slight change (intentional or not) in the experimental procedure between the start

and �nish, then most of the trials with System-1 would have been conducted with a

di�erent procedure than those for System-2. This could a�ect the results. Blocking
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the systems ([System-1, System-2], [System-1, System-2], etc.) helps to insure that

any change in procedure will a�ect the results for each system similarly.

Blocking: The six treatments for the Mars robot experiments (one

experiment for each of the two tasks) will be blocked as shown in the

following chart. The squares and arrows show the temporal order in

which the trials with each system will be conducted (see page 44 for

an explanation of the notation for the system types). The entire chart

represents one experiment. Each row represents a block. Since eight

replications will be conducted, there are eight blocks in this experiment.

H1 N1 H5 N5 H2 N2

H1 N1 H5 N5 H2 N2

H1 N1 H5 N5 H2 N2

Block 1

Block 2

Block 8

The same experimental procedure should be followed for each participant. The

experimenter should use a �xed script when talking to the subjects, to make sure

that each receives the same information. The purpose of the experiment should be

explained to the participant, and he should be told that the system is being tested

and not himself. The participant should be taught to use the system that he will be

using for the experiment, both by an explanation and demonstration of the controls

by the experimenter, and then by actually using each control himself. After the

participant has had a �xed amount of time to experiment with the controls, he
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should be asked to attempt a sample task, which is di�erent from the experimental

task.

The amount of training and practice time that the participant receives can a�ect

his performance with the system. Experts may use the system and perform di�er-

ently than novices. If expert level users are desired, then Bejczy [14] recommends

the following training procedure. Training should take place in two cycles, each

with numerous repetitions. The �rst cycle is to familiarize the participant with the

system and the task, and the second is to familiarize him with the nature of the

performance measurements that will be taken. According to Bejczy [14], these cy-

cles should be separated by at least one day. In many cases, with the large number

of participants suggested for this evaluation method, time restrictions will prevent

extensive training of the participants. Also, novice level performance may be an

important consideration if the system might be used by non-experts. In such cases,

it will likely be best to make sure that the participants are initially all novice users

who have never used the system before. Then, each of them should be given a

short training period to familiarize them with the use of the system. As long as the

training period is the same for each participant, then they will have approximately

the same expertise.

When the real task is explained to the participant, he should be informed of

both the goals (what needs to be done to accomplish the task) and the performance

guidelines (not hitting obstacles, �nishing as fast as possible, etc.). These guidelines

will typically correspond to either the metrics that will be used to compute values

for the evaluation criteria, such as the number of collisions, or the requirements of

the task, such as staying within certain boundaries. If there are multiple guidelines,

then the participant should be told of their importance relative to each other.
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Goals and Guidelines for the Human Subject: The goals for the

rover example are to collect 20 rocks (for the �rst task) and to move the

base station (for the second task). The guidelines for the task might

be to avoid hitting obstacles and falling into crevices, and to complete

the task as e�ciently as possible with respect to power.

Finally, the participant should attempt the experimental task. During the task,

the data which will be used to determine values for the evaluation criteria should be

collected. If possible, then it is best to have these data values collected automatically

by the system. When this is not possible, the experimenter will need to collect these

values manually, such as observing the trial and counting the number of collisions.

Data: The data that should be collected for the rover experiments

includes the number of times any robot bumps into an object or falls

into a pit, and the change in voltage of all the robots' batteries from

the beginning to the end of the task.

3.5 Analyze the Data from the Experiments

There are a few statistical techniques that investigate the relationship between pre-

dictor variables (system dimensions in this case) and a response variable (an eval-

uation criteria in this case), such as ANOVA (ANalysis Of VAriance), regression,

and t-tests. ANOVA analysis, however, is the appropriate method to use for these

evaluations. Regression analysis concentrates on predicting the value of the response

variable from the predictor variables [41], while the ANOVA analysis concentrates

on determining the relationships. Additionally, regression requires that the values

of the predictor variables be quantitative, while ANOVA allows qualitative types

(such as holonomic/non-holonomic), and the ANOVA model does not require any

assumptions about the nature of the statistical relationship between the predictors
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and responses [41]. ANOVA analysis is therefore more appropriate than regression

for this type of evaluation. T-tests can be used if only two systems are being com-

pared. If more than two systems are being compared, which may be the case with

this sort of evaluation, then the ANOVA technique is most appropriate [32]. Since

the ANOVA method can compare two systems as well as greater numbers, it is as a

general approach for this methodology.

To determine how di�erent systems compare to each other based on the judgment

criteria, perform a single-factor ANOVA analysis on the data gathered for that

criteria. This allows the systems to be ranked from best to worst for that particular

criteria. If more than one criteria is being used, then a separate analysis should be

performed for each, producing one ranking for each criteria. Remember, that since

each experiment considered only one task, this ranking is also only for that task.

A brief description for how to perform the single-factor ANOVA analysis is given

in Section 7.1, and Figure 3.1 shows the process used to produce the system rankings.

Further details can be found in most statistical textbooks, such as [41]. The Box-Cox

and Tukey multiple-comparison procedures are described in more detail in Chapters

7.1.1 and 7.1.3 respectively. In short, the Box-Cox procedure insures that each

data set follows a normal distribution and that the variance of all the data sets is

approximately the same. The Tukey multiple-comparison procedure insures that an

entire group of comparisons has the level of statistical signi�cance that is desired,

rather than just each individual comparison.

The factor for this analysis will be the type of system, so all the di�erent system

types will be the factor levels, disregarding the fact that they may be from di�erent

system dimensions. In other words, rather than considering the two dimensions as

separate factors (as they are later in a multi-factor ANOVA analysis on the data),

this method considers all the treatments as levels of one factor. The single-factor
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ANOVA analysis indicates whether there is any actual di�erence in the means of the

data values, or if any apparent di�erence is due to noise. The ANOVA analysis can

then be used to produce con�dence intervals4 around the means, thereby indicating

what the system rankings are.

4A con�dence intervals indicates, with a particular certainty, that the true mean value for that
evaluation criteria is somewhere in the interval. More details on con�dence intervals are found in
Section 7.1.3.
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Start

Use Box-Cox procedure
to determine and apply
an appropriate
transformation (if needed)
to insure normality and
constancy of error variance.

ANOVA table
Produce single-factor

Are
factor-level
means equal?
(Use F-test)

Produce Tukey
multiple-comparison
confidence intervals.

Produce rankings
from confidence
intervals.

Stop

Stop

Yes

No

Figure 3.1: Flowchart of the process to produce the system rankings.
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Collected Data: The following values represent the number of colli-

sions and falls for the Mars rock collecting task of the rover experiment.

The system types are listed in the left column, and the data values for

the eight replications are listed across each row. These values are arbi-

trary, and were not collected from a real experiment, but they will be

used to demonstrate the analysis procedure.

Number of collisions

H1 1 0 2 5 0 0 1 1

H2 0 1 2 1 2 2 0 2

H5 2 2 3 1 0 0 3 1

N1 1 1 1 0 1 2 2 2

N2 0 0 5 1 5 4 2 2

N5 5 4 6 1 2 2 1 2

Number of falls

H1 0 1 1 1 1 1 2 0

H2 1 1 0 0 1 2 1 0

H5 3 2 1 0 2 1 0 2

N1 1 1 1 1 2 1 1 0

N2 2 2 1 0 2 2 3 1

N5 1 1 2 1 2 1 1 1
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Transforming the Data: Since the safety measure is determined by

safety = (number of collisions) + 2 � (number of falls)

the resulting safety values are shown in the following table.

Safety Data

H1 1 3 4 7 2 2 5 1

H2 2 3 2 1 4 6 2 2

H5 8 6 5 1 4 2 3 5

N1 3 3 3 3 5 4 4 2

N2 4 4 7 1 9 8 8 4

N5 7 6 10 3 6 4 3 4

Using this data, the single-factor ANOVAanalysis will be demonstrated

for the safety criteria for the Mars rock collecting task. The safety

analysis for the task of moving the base station and the power e�ciency

analysis for both tasks is performed similarly.

The Box-Cox procedure (Chapter 7.1.1) indicates that a transformation

of Y 0:4 is needed to insure normality and constant variance of the data

sets. After applying this transformation, the data is as follows:

Transformed Safety Data

H1 0 2.9016 3.8967 6.1934 1.6800 1.6800 4.7514 0

H2 1.6800 2.9016 1.6800 0 3.8967 5.5086 1.6800 1.6800

H5 6.8217 5.5086 4.7514 0 3.8967 1.6800 2.9016 4.7514

N1 2.9016 2.9016 2.9016 2.9016 4.7514 3.8967 3.8967 1.6800

N2 3.8967 3.8967 6.1934 0 7.4044 6.8217 6.8217 3.8967

N5 6.1934 5.5086 7.9494 2.9016 5.5086 3.8967 2.9016 3.8967
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Single-Factor ANOVA Table and F -Test: The single-factor in this

analysis is the system type, with levels H1, H2, H5, N1, N2, and N5.

The following table is the single-factor ANOVA table for the trans-

formed data.

Sum of degrees of Mean

Source Squares (SS) freedom (df) Square (MS) F �

Factor A 45.93 5 9.185 2.439

Error 158.2 42 3.766

Total 204.1 47

The procedure for determining the appropriate test for equivalence of

sample means is described in Chapter 7.1.2. The decision rule (using

a 95% level of con�dence) that is generated by this procedure is as

follows:

If F � � 2:50,

then conclude that all treatment means are equal,

else conclude that all treatment means are not equal.

Using this rule, we can determine if the treatment means are all equal

or not. F � is obtained from the ANOVA table. In this instance, F � =

2:439, so we conclude that the treatment means are not all equal.
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System Ranking for Safety: The next step is to determine the

con�dence intervals for the means, in the manner explained in Chapter

7.1.3. The con�dence intervals are as follows:

System Mean Lower Boundary Upper Boundary

N1 2.6379 1.4052 3.8706

N2 2.3783 1.1456 3.6110

N5 3.7889 2.5562 5.0216

H1 3.2289 1.9962 4.4616

H2 4.8664 3.6337 6.0991

H5 4.8466 3.6128 6.0782

The following ranking can be determined from these intervals, by not-

ing that systems with overlapping con�dence intervals are statistically

equivalent (as explained in Chapter 7.1.3).

1. N2

N1

H1

N5

2. N1

H1

N5

H5

H2

This indicates that the results for systems N2, N1, H1, and N5 are sta-

tistically equivalent, and that N1, H1, N5, H5, and H2 are statistically

equivalent, but N2 performed better than both H5 and H2.

If more than one system dimension was examined, a multiple-factor ANOVA
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analysis can also be performed to detect any main e�ects, which would indicate

more general �ndings related to one level of a system dimension. In other words, a

main e�ect would indicate that one particular level of a system dimension is better or

worse than the other levels for this dimension, regardless of what levels are chosen

along the other dimensions. In this case, the system dimensions are used as the

multiple factors for the ANOVA analysis. Figure 3.2 shows the process to �nd main

e�ects, and Section 7.2 describes how to conduct this analysis, and explains what

main e�ects and interactions are. In short, an interaction is a varying inuence on

the data values for one factor by the di�erent levels of another factor. A main e�ect

indicates that data values of one or more levels of a factor are always greater (or

lesser) than that factor's other levels, regardless of the settings of the other factors.

More details, and background information can be found in [41].
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Produce multi-factor

Yes

No

Yes

No

Figure 3.2: Flowchart of the process to produce the general �ndings.
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Two-Factor ANOVA Table and Test for Interactions: The Box-

Cox procedure has already been performed on the safety data values

(page 58), and the following two-factor ANOVA table is generated from

the transformed data. The two factors in this analysis are the number

of robots and the holonomicity of the robots.

Sum of degrees of Mean

Source Squares (SS) freedom (df) Square (MS) F �

Factor A 22.79 1 22.79 6.052

Factor B 15.31 2 7.655 2.032

Interaction 7.822 2 3.911 1.038

Error 158.2 42 3.766

Total 204.1 47

If there are no interactions between the two factors, then we can search

for main e�ects (explained in Chapter 7.2) The test for interactions is

If F � � 3:24,

then conclude that no interactions are present,

else conclude that interactions are present.

The F � value for this test is obtained from the \F �" column and \In-

teraction" row of the two-factor ANOVA table, and is 1.038. This

indicates that no interactions are present, and we can look for main

e�ects.
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General Findings for Safety: The process for determining the tests

for factor main e�ects is described in Chapter 7.2. The tests are:

If F � � 3:24,

then conclude that no Factor A (number of robots) main

e�ect exists,

else conclude that a Factor A main e�ect exists.

and

If F � � 4:09,

then conclude that no Factor B (holonomicity) main e�ect

exists,

else conclude that a Factor B main e�ect exists.

The F � value for the Factor A and Factor B tests are obtained from the

two-factor ANOVA table. These values are 2.032 and 6.052, indicating

that no main e�ects are present due to the number of robots used, but

a main e�ect due to the holonomicity may be present.

A multiple-comparison procedure must be used to insure that the entire

family of comparisons conducted to determine main e�ects retains the

95% level of con�dence. The Tukey multiple-comparison procedure

described in Chapter 7.2.2 indicates that Factor B e�ects do in fact

exist with a 95% family con�dence level. Since there are only two levels

for this factor, we can examine the means to �nd the main e�ect, and

deduce the general �nding that holonomic vehicles were signi�cantly

safer than non-holonomic vehicles, regardless of the number of robots

used.
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3.6 Summary

Formal evaluations are needed to further transform the �eld of telerobotics into a

science. Currently, few researchers perform extensive evaluations on their systems.

This chapter presented an evaluation methodology for comparing telerobotic systems

for various tasks.

There are �ve main steps to evaluate telerobot systems. First, evaluation cri-

teria by which to compare the systems are determined. This is composed of three

substeps: deciding which traits of a system (such as safety and e�ectiveness) are

most important to the design, determining which events or data inuence those

criteria, and determining a means to produce a single quantitative value for that

criteria. These decisions are dependent on the purpose of the telerobotic systems to

be developed.

The second step involves determining which types of systems to evaluate. The

evaluations should decide upon a few system dimensions and speci�c points along

those dimensions. The di�erent system types to examine are produced by crossing

the di�erent dimensions and considering all the possible combinations.

Tasks to use the systems for are then created. If there are no speci�c applications

that the experimenterwants to test, then a more formal approach involves examining

the classi�cations of a task taxonomy (or some subset of it). If the latter method is

used, then experimental tasks must be developed to represent each of the taxonomic

classi�cations.

A set of experiments is then conducted, with one experiment per task. In each

experiment, multiple human subjects use each of the systems for a task with real

robots. The same procedure should be used with each human subject, including

identical instruction and training.

Finally, the data collected from the subjects' attempts is used to determine
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the systems' performance. System rankings can be produced with a single-factor

ANOVA analysis. General �ndings related to one or more levels of a system di-

mension may be found with a two-factor ANOVA analysis if more than one system

dimension was examined.
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Chapter 4

Multiagent Telerobotic System

Descriptions

Multiagent telerobotic systems (MTSs) can di�er in many ways. For instance, they

can di�er in the amount of autonomy the telerobots are provided with, the hardware,

the number of telerobots controlled at one time, the form of control, and the nature

of the interaction between the human operator and the telerobots. In addition,

each of these dimensions can have many di�erent levels. For example, the level of

autonomy of the telerobots can be direct manual control or one of numerous levels

of supervisory control. There is a potentially in�nite number of di�erent MTSs that

can be created.

For this research, MTSs that di�er along two dimensions were examined. These

dimensions are the amount of autonomy that the telerobots are provided with and

the number of robots that the human operator is controlling at a time. Four systems

are examined in this thesis, di�ering in those two dimensions. Section 4.1 establishes

the dimensions and the respective points on those dimensions. Section 4.2 describes

the four systems. The underlying robot architecture of the systems is described in

Section 4.3.
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Figure 4.1: Individual control. The operator controls one robot at a time, switching
control between the robots.

4.1 System classi�cations

One di�erence between the multiagent telerobotic systems examined is the number

of robots controlled by the operator at one time. Individual control and entire group

control were tested. Another possibility that was not examined is subgroup control,

where the operator chooses a subset of robots to send commands to. Table 4.1 shows

the dimensions and their corresponding points that were examined.

With Individual control, the human operator controls one robot at a time,

switching between robots, as shown in Figure 4.1. This does not mean that the

robots cannot execute any previous instructions while the operator is controlling

one of the other robots. It simply means that the operator can issue instructions to

only one robot at any one time.

For Group control, the operator gives instructions to the entire group of robots

at all times, as shown in Figure 4.2. Any instruction given to the robots is received
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Figure 4.2: Group control. The operator controls all of the robots at once.

and executed by all of the robots. Therefore, the operator cannot single out a

particular robot or subgroup of the robots for special instructions.

The other di�erence between MTSs that was considered is the level of autonomy

of the telerobots. Direct manual control and supervisory control systems were com-

pared. With direct manual control, the human speci�es all robot motion through

continuous input [11]. The operator must continually send motion commands (or

set the controls to continually send them) to make the robot move, since there is no

additional inuence to the telerobots motion caused by a computer. An example of

a mobile telerobot using direct manual control is a radio-controlled toy car.

Sheridan [47] de�nes supervisory control in two ways. In the strictest sense,

supervisory control means that one or more human operators are intermittently pro-

gramming and continually receiving information from a computer that itself closes

an autonomous control loop through arti�cial e�ectors and sensors to the controlled

process or task environment. Sheridan states, in a less strict sense, supervisory
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Table 4.1: The Four Systems and the Dimensions They are Derived From

# of robots
controlled

at a time Group

Individual Direct Manual Individual Supervisory Individual

Direct Manual Group Supervisory Group

Direct Manual Control Supervisory Control

Level of Autonomy

control means that one or more human operators are continually programming and

receiving information from a computer that interconnects, through arti�cial e�ectors

and sensors, to the controlled process or task environment. The primary di�erence

between these two di�erences is when the human gives instructions to the teler-

obots. In the strict sense, the human instructs the robots, then lets them execute

the instructions autonomously, and then repeats the cycle. In the less strict sense,

the human commands the robots continuously, and these instructions are combined

with the output from a computer. The Supervisory control systems used in the

experiments conducted for this research allowed the user to choose whether or not

to intermittently or continuously instruct the robots. Therefore, they �t somewhere

between these two de�nitions.

Backes [48] gives a simpler and more inclusive de�nition of supervisory control

that is robot speci�c. He de�nes supervisory control by saying that robot motion

may be caused by either human inputs or computer generated inputs.

For this dissertation, the term supervisory control means that a human oper-

ator can a�ect the motion of a robot, either by continuous or intermittent program-

ming, while the computer also inuences the motion of the robot. Furthermore, the

human continuously monitors the feedback from the computer.

These two factors, the level of autonomy and the number of controlled robots,
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were crossed to produce four types of systems for examination. Therefore, as shown

in Table 4.1, the systems used in these experiments include:

� Direct Manual Individual control

� Direct Manual Group control

� Supervisory Individual control

� Supervisory Group control

4.2 Representative systems for each classi�ca-

tion

For each of the four classes of systems considered, a representative system was

developed. This section describes the control techniques and the details of the

human interface for each of those systems, and the following section describes the

underlying architectural details.

4.2.1 Direct Manual Group Control

The Direct Manual Group control system allows the user to control the group of

mobile robots in a strict teleoperative sense. That is, the robots are not running any

low-level behaviors, and thus, they do not contribute to determining their motion.

The operator can give instructions to the robots in terms of a compass direction

and speed for travel. Any instructions are sent to all of the robots in the group at

the same time. The user cannot single out an individual robot or subgroup of the

robots for special instructions.
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In the experimental testbed, an on-screen joystick, depicted in Figure 4.3, is used

to input the direction and speed (the formation toggle buttons shown in this �gure

are discussed in Section 4.2.3). The joystick is marked with the compass directions

N, E, S, and W. The operator uses a mouse to position this joystick. Clicking

anywhere in the white circle of the joystick with the left mouse button sets the

joystick, drawing a line from the center of the joystick to where the user clicked, and

sending a corresponding movement command to the robots based on the direction

and distance from the center of the joystick to the location clicked (shown in Figure

4.4). The farther the distance from the center, the greater the magnitude of speed

command that is sent to the robots. For instance, if the user clicks in the section of

the circle between the North and East markers and close to the edge of the circle,

the system will send a command to the robots to move northeasterly at close to the

maximum speed allowed.

Once the joystick is set, it will remain at that setting inde�nitely and continue

to send the same movement command to the robots until the user clicks again in

the joystick window. To clear the joystick, the user can click with the middle mouse

button anywhere in the white circle of the joystick. This erases the line on the

joystick and stops sending movement commands to the robots. With the Direct

Manual control systems, this causes the robots to stop.

4.2.2 Direct Manual Individual Control

The Direct Manual Individual control system is similar to the Direct Manual

Group control system, except that the operator gives commands to only one of the

robots at a time instead of the whole group, manually switching between the robots.

Just as in the Direct Manual Group system, the robots are not running any

autonomous behaviors, so only the operator's commands contribute to the motion
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Figure 4.3: The on-screen joystick and the formation toggle buttons. The joystick
is used for giving the robots directional and speed information in terms of compass
directions. The formation toggle buttons are used for switching between di�erent
formations. The joystick is available for use in all four of the systems tested, while
the formation toggle buttons are available only in the Supervisory Group control
system.
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Figure 4.4: The on-screen joystick allows the operator to the instruct the robots to
move at a particular velocity (both direction and speed).
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of the robots. The operator gives instructions in terms of a compass direction

and speed, just as in Direct Manual Group control. A robot will continue to

execute previously given direction and speed commands even after the operator has

switched the control to another robot, but it cannot receive commands unless it is

the operator's speci�ed focus of attention.

The operator uses the same on-screen joystick that was used in the Direct

Manual Group control system to give instructions to the robots. He also has a

set of toggle buttons (Figure 4.5) that is used to tell the system which robot should

receive the current instructions. Whichever toggle button is currently depressed

indicates which robot is currently the focus of attention. Each toggle button is

labeled with the number of the robot as well as a color. The icons representing the

robots on the screen are color coded for these colors. Similarly, the real robots used

in the experiments each had a colored object on its antenna, similarly color coded.

When the user switches control from one robot to another, the line on the joystick

showing the current movement command changes to the last command given for the

robot that has been selected.

4.2.3 Supervisory Group Control

With the Supervisory Group control system, the robots are running low-level

behaviors to handle obstacle avoidance and to avoid collisions between robots. The

details of these behaviors are given in Section 4.3. The user has three methods for

controlling the motion of the robots, and as with Direct Manual Group control,

any instructions given to the robots go to all the robots in the group. No robot or

subgroup of robots can be singled out for di�erent instructions than the others.

The �rst method for controlling the robots' motion is the on-screen joystick

described above, that allows the operator to give direction and speed commands.
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Figure 4.5: Robot Selection Box. The human operator uses this box to indicate
which robot he is currently sending commands to. Robot selection is used during
both of the Individual control systems (Direct Manual Individual and Super-
visory Individual). In this �gure, there are 4 robots that are active (highlighted),
and Robot 1 is currently the focus of attention (button depressed), and will therefore
receive any new commands given by the user.
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With the Supervisory control systems, however, the speed instructions do not

translate directly to the speed of the robots, but instead represent a gain value,

or the amount of inuence that the joystick's directional command will contribute

to the actual direction that the robots move. This is explained in more detail in

Section 4.3.

The second method for controlling the robots is by setting a waypoint or a path

of waypoints for the robot to follow. During the robot execution, a map, displayed

on the operator's workstation monitor, shows the task environment in low detail,

as well as the locations of the robots within that task environment. An example of

this layout is shown in Figure 4.6. As the robots move, their changes in position

are marked on this layout. This representation is not guaranteed to show the exact

locations of the robots, but shows the best estimate of their locations based on

dead-reckoning performed by each robot. The operator can use the mouse to point

and click on the layout to set a waypoint. The robots will then try to move to the

corresponding location of that waypoint in the real world. The operator can also set

additional points, one after the other, to create a path. The robots will move from

waypoint to waypoint in order, as shown in Figure 4.7. The robots follow the path

as a group. Therefore, if any robot reaches a waypoint before the other robots, then

that robot waits until all of the robots have arrived before continuing to the next.

Because all of the robots cannot actually be in the same location at the same time,

a waypoint is considered achieved when the center of mass of the group of robots is

within a certain threshold distance of it.

Clicking in the layout with the left mouse button sets an initial waypoint at the

real world location corresponding to the location in the map where the operator

clicked. If a waypoint path has already been set, then clicking with the left mouse

button clears the earlier path and sets a new initial point. After the initial waypoint
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has been set, clicking with the middle mouse button sets additional ones, thereby

creating a path of waypoints. If an initial point has not been set, then clicking with

the middle button will create one. Finally, clicking with the right mouse button will

clear the entire path.

The third method for controlling the robots is to declare spatial formations that

the robots should try to maintain while they are moving. There are four di�erent

formations that the robots can be instructed to assume. These are line, column,

diamond, and wedge. Additionally, the robots can be commanded to assume no

formation. The underlying formation control code was developed as part of the

UGV Demo II project [13]. When moving in formation, if one robot slows down for

some reason, such as when an obstacle is in its way, the others will slow down to

wait for it, so as not to cause the group to stray too far from the desired formation.

Figure 4.8 shows an example formation. The human operator uses the set of toggle

buttons below the joystick (Figure 4.3) to instruct the robots to assume a desired

formation.

4.2.4 Supervisory Individual Control

In the Supervisory Individual control system, the robots run low-level behaviors

to avoid obstacles and other robots, just as in the Supervisory Group control

system. With the Supervisory Individual control system, however, the robots

are controlled on an individual basis, just as in the Direct Manual Individual

control system. The operator uses the same toggle buttons (Figure 4.5) to indicate

which robot is currently the focus of attention. Similarly, the operator can use the

on-screen joystick (Figure 4.3) to give the robots direction and speed instructions,

although only to one robot at a time. The human can also set waypoints and paths

of waypoints for the robots to follow in the same manner as with the Supervisory
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Figure 4.6: On-screen depiction of the task environment. The layout shows a low-
detailed two-dimensional line-diagram of the task environment. This example from
one of the tasks used in the experiments shows the walls of the room, the starting
positions of the robots, and the current positions of the robots. The operator uses
this layout when giving waypoint instructions.

79



(a)

(b)

Figure 4.7: Waypoint control. In (a), the operator has set a path of waypoints, and
the robots are moving towards the �rst waypoint. In (b), the robots have achieved
the �rst waypoint in the path, and are moving to the second.
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Figure 4.8: Formation control. The robots try to maintain a spatial formation
speci�ed by the operator. The operator has just switched the robots from a column
formation to a line formation.
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Group control system, except that each robot has its own individual waypoints,

and its path is shown on the layout in the same color as the robot (each robot has

its own separate color in the layout).

4.3 Underlying Robot Architecture

These multiagent telerobotic interfaces have been incorporated into the Mission-

Lab system [33]. MissionLab is a system for specifying, simulating, and executing

multiagent mobile robot missions. MissionLab takes high-level speci�cations and

executes them with teams of real or simulated robot vehicles. It provides tools for

quickly creating behavior-based robot programs, which can then be run either in

simulation or on hardware without altering the control software. The architecture

for MissionLab is shown in Figure 4.9. Those components shown in gray already ex-

isted as part of the MissionLab system, while the non-gray components were added

as part of this research.

The underlying control architecture for the robots uses a schema-based reactive

architecture [3]. In the schema-based approach, each reactive behavior, or motor

schema, tries to inuence the behavior of the robot by producing a vector in the

direction consistent with the behavior's goals and with a magnitude that reects

the importance of going in that direction. The vectors of all the active motor

schemas are summed and normalized, and the resulting vector is sent to the robot for

execution. Each schema has a speci�c behavioral function. For example, the avoid-

static-obstacle schema tries to move the robot away from obstacles by producing

an output vector pointed directly away from the obstacle and with a magnitude

based on the current distance of the robot from the obstacle, with smaller distances

producing greater magnitudes. More than one schema is usually used at once. The

inuence from each of these speci�c behaviors combines to create a more complex
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Figure 4.9: System architecture for MissionLab including the added multiagent
telerobotic interface. The components shown in gray already existed in MissionLab,
and the non-grayed components were added to accommodate this research.
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behavior.

The telerobotic control systems used in this research use avoid-static-obstacle,

avoid-robot,move-to-waypoint [3],maintain-formation [13], and teleauton-

omy [7] schemas. The avoid-static-obstacle schema was described above. The

avoid-robot schema functions the same as the avoid-static-obstacle schema, ex-

cept that it only produces vectors pointing away from other robots. The move-to-

waypoint schema produces a vector with a �xed magnitude equal to a preset gain

gain value and a direction toward the next waypoint. The maintain-formation

schema tries to keep the robots in a speci�ed formation. The teleautonomy schema

takes an input in the form of a compass direction and speed from the on-screen joy-

stick and produces an output vector to move the robot in that direction and with

that speed. The details on how each schema works are given in Appendix B.

Schemas are often grouped together, and the outputs from each schema in the

group are summed and normalized to produce a motion vector for the robot. These

groupings are called assemblages. A short description of each assemblage of schemas,

and how each schema is used in the assemblage, is given here. In theDirectManual

control systems, both Individual andGroup control, the teleautonomy schema is

the only active schema. Therefore, the vector generated by this behavior is passed

directly to the robot for execution. In reality, it goes through the summing and

normalization step, but there are no other vectors to sum it with. Each robot is

running its own teleautonomy schema. With the Direct Manual Group control

system, the same direction and speed information that the operator last entered

into the on-screen joystick is passed to the teleautonomy schema on each robot.

With the Individual control system, each robot's teleautonomy schema receives

a di�erent and individual direction and speed from the joystick, based on what the

user last entered for that robot.
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In the two Supervisory control systems, there are multiple schemas active that

are common to both Individual and Group control. Avoid-static-obstacle and

avoid-robot schemas keep the robots from colliding with each other and objects

in the environment. The teleautonomy schema is active, allowing the user to

direct the robots to move in a particular compass direction, either individually or

as a group, depending on the form of control. Amove-to-waypoint schema is also

active. If the user gives waypoint commands, then this schema uses the waypoint (or

the �rst waypoint in a series of waypoints) as the goal location and outputs vectors

normally. When the robot reaches this waypoint, the goal location is changed to the

next waypoint in the path. When the operator has not set any waypoints for the

robots to follow, then the gain for themove-to-waypoint schema is set to zero, so

the output vector does not inuence the motion of the robots. In the Supervisory

Group control system, a maintain-formation schema is also used. This produces

output normally if the user has set a formation for the robots to use. When the user

has chosen \No Formation", then the gain for this schema is set to zero.

Regardless of whether Individual or Group supervisory control is being used,

each of the robots has their own set of the schemas running. The avoid-static-

obstacle and avoid-robot schemas for a robot receive their input from the percep-

tual schemas running on that robot. Themove-to-waypoint,maintain-formation,

and teleautonomy schemas receive input both from the individual robot that it is

running on and from the user interface. When using Individual control, however,

these last three schemas each receive di�erent user input, while they receive the

same user input under Group control.

Although the schema-based architecture is used by the robots in the experiments,

the results should be applicable to all behavior-based telerobots. Nothing about

the telerobotic system con�gurations or the tasks used in the experiments depends
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strictly upon the schema-based approach. Any system in which similar behaviors

can be generated should be usable for this research.

4.4 Summary

This dissertation examines four multiagent telerobotic systems. These systems dif-

fer in terms of the amount of autonomy that the telerobots have and the number

of robots that the human controls at a time. For the amount of autonomy, Di-

rect Manual and Supervisory control were considered. Individual and Group

control were examined for the number of robots controlled at a time. Therefore,

the four systems that were compared are Direct Manual Individual control, Di-

rect Manual Group control, Supervisory Individual control, and Supervisory

Group control.

Human interfaces and control systems were developed for each of these systems.

The robot control systems were created as part of the MissionLab system and use a

schema-based reactive architecture.
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Chapter 5

Experimental Tasks

The goal of the experiments conducted for this dissertation is to determine which

system types perform best for which kinds of tasks. To do this, one must know what

types of tasks exist and choose tasks to represent each of these classes. A literature

search did not �nd any existing mobile multiagent task taxonomies. Therefore, one

has been developed. This taxonomy is presented �rst, and then the experimental

tasks are described.

5.1 Taxonomy of Mobile Multiagent Tasks

Examining multiagent mobile robot (and animal) tasks led to the discovery of com-

monalities that serve as the basis for this new taxonomy, which categorizes tasks in

terms of the relative motion of the agents. It should be noted that the taxonomy

makes no attempt to separate the tasks by other di�erences, such as the reasons the

robots move to particular locations, manipulation or surveillance of the world that

the robots do (either while moving or at the goal locations), or the decision making

process that leads to a particular movement. The examined Multiagent Telerobotic

Systems (MTSs) di�er in the way they allow the human operator to specify the

movement of the robots. Therefore, the task classes were chosen to di�er in terms

of the type of movement of the robots relative to each other. The identi�cation of
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these task classes was strongly inuenced by the work of Gage [23] on the identi�-

cation of formations for moving large groups of mobile robots (Section 2.1.2). It is

quite possible for other taxonomies, yet to be developed, to be used with the testing

methodology described in Chapter 3.

Figure 5.1 shows the taxonomy. There are three ways of classifying the relative

movement of the agents. The �rst classi�cation is whether the task is a coverage

or convergence task. Coverage (Cov)1 tasks require that the robots spread out to

cover an area evenly or to cover as much area as possible, as shown in Figure 5.2(a)

and Figure 5.2(c). These tasks usually require that the robots maintain a uniform

distribution over the area covered. Often the purpose of this coverage is to maximize

the sensor capabilities of the entire group. Some examples of coverage tasks include:

� foraging/search

� surveillance/reconnaissance

� grazing/cleaning

� communication relaying

� barrier/sweep tasks

Convergence (Conv) tasks require the robots to gather together or move while

grouped together. In these tasks, the robots often converge to help each other with

a di�cult job that is easier to do in numbers. Figures 5.2(b) and (d) are examples

of convergence tasks. Some examples of this class of tasks are box pushing and

multi-arm manipulation, in which multiple robots may be able to push or handle

the object more easily than one. Similar examples from nature include retrieving

1The abbreviations for each classi�cation method are appended together to denote a task cat-
egory, as shown in Table 5.1.
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large prey [21], and gathering for protection, both in amorphous groups such as

ocks of birds or �sh, and in defensive circles, as demonstrated by elephants, bison,

and quail [17].

The second classi�cation type considered is whether the agents are moving to

positions of coverage/convergence or moving while maintaining these positions rela-

tive to each other. In movement-to (Mt) tasks, the robots are either in the process of

spreading out to cover an area or gathering in for convergence, as shown in Figures

5.2(a) and (b). In movement-while-maintaining (Mw) tasks, the robots are mov-

ing while trying to stay spread out or grouped together, such as in Figures 5.2(c)

and (d). A multiagent box-pushing task is an example that demonstrates both a

movement-to subtask and a movement-while-maintaining subtask. In the �rst part

of box-pushing, the robots gather on one side of the box from various locations so

that they will be able to push it (movement-to-convergence). After the robots are

gathered on one side of the box, then they move while staying grouped together to

actually push the box (movement-while-maintaining-convergence).

The third classi�cation type in the taxonomy is whether or not the agents have

known or prede�ned positions relative to each other that they should try to move

to or maintain. With known-positions (K), the robots try to move to or maintain

a prede�ned location relative to the other robots. For instance, in some military

formations, each soldier or vehicle has a particular location within the formation.

With unknown-positions (U), a particular robot can be anywhere in the world, so

long as the group as a whole satis�es the other movement restrictions (such as

coverage or convergence).

Certain types of coordinated group movement do not �t neatly into any encom-

passing category. In this taxonomy, these types of movement are categorized simply
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(a) (b)

(c) (d)

Figure 5.2: Classes of Tasks. (a) Movement-to-coverage, (b) Movement-
to-convergence, (c) Movement-while-maintaining-coverage, (d) Movement-while-
maintaining-convergence.
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Table 5.1: Categories in the Mobile Multiagent Task Taxonomy.
Task Category Abbreviation

movement-to-coverage-with-known-positions MtCovK

movement-to-coverage-with-unknown-positions MtCovU

movement-to-convergence-with-known-positions MtConvK

movement-to-convergence-with-unknown-positions MtConvU

movement-while-maintaining-coverage-with-known-positions MwCovK

movement-while-maintaining-coverage-with-unknown-positions MwCovU
movement-while-maintaining-convergence-with-known-positions MwConvK

movement-while-maintaining-convergence-with-unknown-positions MwConvU

other-movement-types O

as other movement types (O). An example is movement that is scripted, both spa-

tially and temporally, such as a football play. Not only do the separate players each

have a particular path they are supposed to run in relation to the other players,

which could be explained by known positions, but they have temporal restrictions

about when they should be at each position.

Table 5.1 shows the nine task categories in the taxonomy and abbreviations for

each. These abbreviations can be used to indicate which movement type a group of

robots are executing, where:

Group name = Category abbreviation(robot list)

For instance, A =MtCovU(1,2,3,4) denotes that group A consists of robots 1 through

4, which aremoving-to-coverage-with-unknown-positions. The utility of this notation

is demonstrated below.

Some applications do not �t neatly into a single class, but are composed of

sequences of subtasks that �t into these classes. For instance, foraging by ants (or

robots) may involve subtasks of several classes. While searching, the ants spread

out, thus moving-to-coverage (MtCovU). Once a large food source is found by one

ant, more ants follow the chemical trail left by the �rst (MtConvU). Carrying a large
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piece of food back to the nest may require the help of several ants moving together

as a group (MwConvU).

Some tasks require a large group of robots to split into subgroups, with each

subgroup doing something di�erent. In this case, the task classi�cations in this tax-

onomy should be applied in a recursive manner. Each subgroup should be considered

a single agent, and the relative motion of the collection of subgroups should be classi-

�ed using the taxonomy. Then the relative motion of the robots within a subgroup is

examined and classi�ed. Figure 5.3 shows an example in which the subgroups (when

considered as individual entities) are moving-to-coverage-with-known-positions, yet

the robots within each subgroup are moving-while-maintaining-convergence-with-

known-positions. This behavior is applicable to soldiers (or robots serving as sol-

diers), with the soldiers in each subgroup staying close to protect each other, and

the two subgroups spreading apart to maximize sensor capabilities. We can denote

this behavior as follows:

Group =MtCovK(A;B)

A = MwConvK(1; 2; 3; 4)

B = MwConvK(5; 6; 7; 8)

It is possible to carry this process further, considering this entire robot group

(Group) as a subgroup in a larger group of robots (not shown in the �gure), and

these larger subgroups might be exhibiting some other type of movement in the

taxonomy.

Only the �rst two classi�cation methods were examined in this study, i.e., the dif-

ferences between coverage and convergence, and movement-to and movement-while-

maintaining. All of the experimental tasks are in the unknown-positions category2.

2The experimental methodology presented in Section 3 is just as appropriate for examining these
four task types in the known positions category. Time restrictions did not allow this, however.
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5 6

7 8
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Start

Figure 5.3: An example of the taxonomy applied recursively. Subgroups A and B,
are moving apart from each other (moving-to-coverage). The robots in subgroups
A and B exhibit both exhibit movement-while-maintaining-convergence within that
subgroup.

Therefore, the experiments consider four di�erent classes of tasks, including:

� movement-to-coverage3

� movement-to-convergence

� movement-while-maintaining-coverage

� movement-while-maintaining-convergence

Examples of these four classes of tasks are shown in Figure 5.2.

3Henceforward, the su�x with-unknown-positions will be omitted from the task classi�cations
for brevity, since all of the experimental tasks had unknown-positions.
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Table 5.2: Representative Tasks for Each Taxonomic Class.

Task Class Representative Task

Movement-to-Coverage Sentry Positioning
Movement-to-Convergence Gathering to Perform Work

Movement-While-Maintaining-Coverage Dragging a River Bottom
Movement-While-Maintaining-Convergence Patrolling

5.2 Experimental Tasks

In order to compare the di�erent MTSs for each taxonomic task class, experimental

tasks must be chosen to represent each one. Table 5.2 lists the four tasks which

were chosen. These experimental tasks are generic by nature (i.e., they are ideal-

ized, simpli�ed tasks designed to test a speci�c capability [26]), with each requiring

movement that closely represents its class. They have been given names and de-

scriptions, however, imitating real-life applications to make them more interesting

to the participants, namely Sentry Positioning, Gathering to Perform Work,

Dragging a River Bottom, and Patrolling. In all instances tested, there are

four robots in the group. Likewise, in all cases, the human operator is given the

same two guidelines: to complete the task as quickly as possible and with as few

collisions as possible.

The Sentry Positioning task represents the movement-to-coverage class of

tasks. Here, the human operator pretends that the robots are sentries, and he

must move them from a starting location to positions spread out across an area to

be guarded. The oor of the laboratory is divided into four quadrants, as shown in

Figure 5.4. Initially, all four robots are in one of the quadrants. The operator's job

is to move the robots so that there is exactly one robot in each of the four quadrants.

Three obstacles are placed at predetermined locations to provide greater di�culty.
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Figure 5.4: Sentry Positioning Task. The oor is divided and marked into quad-
rants for this task. (a) and (b) show approximate locations for the robots at the start
and end of the task, respectively. The black dots represent robots. The photograph,
(c), shows the initial setup of the robots and obstacles.
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TheGathering to PerformWork task represents themovement-to-convergence

class. This task is the opposite of the Sentry Positioning task, but uses the same

quadrants and obstacles. Initially, there is a robot in the center of each of the four

quadrants, each supposedly performing some work or monitoring machines in its

area. The operator is told that one of the robots has discovered a malfunctioning

machine at its location and has requested the help of the other three robots in �xing

the machine. The operator's job is to move the robots such that all four robots are

within the broken machine's quadrant at the same time, so that they can proceed

to repair the machine (Figure 5.5).

TheDragging a River Bottom task represents themovement-while-maintaining-

coverage class of tasks. In this task, the operator pretends that he is directing a

group of boats down a river as they drag the bottom in search of something. The

rectangular laboratory is used to simulate the river. Initially, the robots are spread

out evenly in a line across the width of the \river". Each of the robots is in a

lane marked on the oor that travels downstream, as shown in Figure 5.6. There

are obstacles scattered about the \river". The human's job is to move the robots

downstream (from one side of the laboratory to the other), and across a �nish line

at the far end of the \river", without letting any robots stray from their respective

lanes.

The Patrolling task represents the movement-while-maintaining-convergence

task class. The operator pretends that the robots are military scouting vehicles,

and his job is to direct them through the path of their patrol route. The lab is

again divided into four quadrants, as shown in Figure 5.7. Initially, all four of the

robots are inside one of the quadrants. The human operator has to move them, as

a group, through the other three quadrants in a particular order, and then back to

the starting area. The order in which the quadrants should be visited causes the
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Figure 5.5: Gathering to Perform Work Task. The oor is divided and marked
into quadrants for this task. (a) and (b) show approximate locations for the robots
at the start and end of the task, respectively. The photograph, (c), shows the initial
setup of the robots and obstacles.
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Figure 5.6: Dragging a River Bottom Task. The oor is divided and marked
into lanes for this task. (a) and (b) show approximate locations for the robots at
the start and end of the task, respectively. The photograph, (c), shows the initial
setup of the robots and obstacles.
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robots to take a square path around the laboratory. Because the robots represent

military vehicles, they have to stay close together during the patrol so that they can

protect each other. In terms of the actual task, this means that as the operator is

moving the robot group into a quadrant, none of the robots can proceed on to the

next quadrant until all four are within this quadrant. As in the other tasks, there

are obstacles placed in the task area to provide an extra challenge.

5.3 Summary

A taxonomy of mobile multiagent tasks was developed. This allows researchers

to know what type of task they are evaluating their system for and if it is the

same task type that other researchers have used. Additionally, a taxonomy helps

experimenters to formally choose which tasks to evaluate and makes sure that no

type is unintentionally ignored.

This dissertation's experiments examine four categories from the developed tax-

onomy, namely movement-to-coverage, movement-to-convergence, movement-while-

maintaining-coverage, andmovement-while-maintaining-convergence, all with unknown-

positions. Experimental tasks were chosen to represent each of these classi�cations.

These tasks are Sentry Positioning, Gathering to Perform Work, Dragging

a River Bottom, and Patrolling, respectively.
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Figure 5.7: Patrolling Task. The oor is divided and marked into quadrants for
this task. (a) shows the locations of the robots at the start. The robots take the
path shown in (b) around through the quadrants, to end in the starting area again.
The photograph, (c), shows the initial setup of the robots and obstacles.
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Chapter 6

Experimental Design and Procedure

The goal of the experiments was to determine, for each task, which multiagent

telerobotic system is safest, most e�ective, and easiest to use. There were two

desired results from each of the experiments:

� system rankings for each task

� general relationships between system dimensions and tasks

The �rst result is rankings of the systems in terms of the performance criteria (safety,

e�ectiveness, and ease-of-use) for each task. That is, for each task, there are three

separate rankings, one for each of the three criteria. The second desired result

includes more general �ndings relating the nature of the system to the performance

for a task class. For example, one such �nding is that individual control is more

e�ective than group control for the movement to coverage class of task, regardless

of whether supervisory or direct manual control is used. Chapter 7 explains how

these results were generated from the experimental data. This chapter describes the

experiments themselves, including the nature of the data and how it was collected.

6.1 Factors, Treatments, and Replications

The tests consisted of one two-factor experiment (see Chapter 7) for each of the four

classes of tasks. The independent variables (i.e. those which can be manipulated by
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Factors (independent variables)

A: Level of autonomy

a1: direct manual control

a2: strict supervisory control

N: Number of robots controlled at one time

n1: individual control

n2: group control

Responses (dependent variables)

Safety:

number of collisions

Effectiveness:

completion of task

task completion time

Ease of use:

number of user actions

Figure 6.1: Experimental factors and responses. Four experiments were conducted,
with one experiment for each of the examined tasks.

the experimenter) for each experiment are the level of autonomy of the robot system

and the number of robots controlled at one time by the human operator (Figure

6.1). Two factor levels were examined for each of the factors. Thus, there were

four treatments (the four system types) examined during each experiment. For each

of the four treatments, six replications were conducted. That is, six participants,

unique to that treatment, used each of the four systems. Therefore, 24 participants

(four treatments by six replications) were used for each experiment. Since four

experiments were conducted (one for each class of task), a total of 96 di�erent

participants were used. For each test, the subject attempted the task with one

of the systems, and certain response values (described in the next section) were

measured.
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6.2 Response Variables for the Experiments

To determine how well the criteria (or response variables) of safety, e�ectiveness,

and ease-of-use are met, certain values were measured during the experiments. Data

values which could be gathered automatically by the operator interface and robot

architectures were collected by that means. Other values, which could not be ob-

tained automatically, were gathered by observation of the actual robots by the ex-

perimenter. Figure 6.1 shows the response variables and the corresponding data

types that were gathered to determine the responses.

To determine the safety of a system con�guration, the number of collisions (ac-

tual contact) between robots and other robots or obstacles was counted. Safer

systems correspond to systems with fewer collisions.

To determine the e�ectiveness of a system con�guration, the task completion

time was recorded, as well as whether the operator was able to successfully complete

the task. There are two ways in which the operator may have failed to complete the

task:

� the task was not completed before the timeout time

� the robots failed to obey the rules of the task (such as staying within their

lanes during the Dragging the River Bottom task)

Systems with faster completion times are regarded as more e�ective systems. For

those systems in which the task was not completed, the timeout period is used as

the task completion time for that trial when determining the mean completion time

for the system. This permits the use of a quantitative value during the analysis,

allowing for a more objective analysis. The drawback to this decision is that it does

not di�erentiate between a task that was completed in just under the timeout period

and one that was not completed. No better alternative was determined, however.
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Another possibility considered was using twice the timeout period for computing

mean completion time when the task was not completed. This distinguishes between

tasks that were completed and ones that were not. It is possible, however, that the

user may have been able to complete the task if given a little more time. This

method may therefore exaggerate the mean completion time. Since the �rst method

(using the timeout period for failed tasks) will keep the mean times closer together,

it is less likely to indicate a di�erence between systems when there really is none.

This more conservative method was chosen.

The number of user actions is used to determine the ease-of-use of a system

con�guration. User actions are mouse-clicks on any of the control windows. Sys-

tems with fewer user actions were deemed to be easier-to-use systems, because those

systems required the human operator to do less work. At the extremes, a system

that did not require the operator to do anything would be easiest to use, while a

system that required the operator to continuously give instructions to the robots

would be the most di�cult to use. As with each of the criteria, other measures

could be used to determine this value. User-interface studies often use a combina-

tion of subjective and objective measures to determine a system's ease-of-use. The

subjective measures, such as asking the user how di�cult it was to use the system,

are valid techniques, but a more objective and scienti�c method was desired for

these evaluations. Other examples of objective measures that are typically used

include the task completion time and the number of user errors. In these experi-

ments, measures such as task completion time were considered more appropriate for

determining other criteria than ease-of-use. Here, the number of mouse clicks was

chosen for the reasons stated previously (i.e., systems requiring the least work by

the human are considered easier to use).
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6.3 Participant Selection and Resulting Popula-

tion

The participants were gathered primarily through the use of postings on electronic

bulletin boards and signs posted in a multidisciplinary student laboratory at the

Georgia Institute of Technology. Additionally, some participants were gathered

through word of mouth. The only two requirements for the participants were that

they be at least sixteen years old and that they have experience using a computer

mouse. Aside from these requirements, anyone who responded was used as a par-

ticipant. Only one potential participant had to be rejected, and that was because

the person had never used a computer mouse.

The resulting participant population was mostly male undergraduate students.

Appendix E contains two tables showing the distribution of subjects across the tasks

and systems in terms of sex, age, education, and experience with mobile robots.

There were relatively few subjects who had prior experience with mobile robots.

Those that had experience were evenly distributed across the four system types,

and nearly evenly distributed across the four tasks. There was no attempt to assign

particular participants to particular systems or tasks. The process of assigning

participants to systems was random, and is described in the following section.

6.4 Experimental Procedure

The same experimental procedure was followed for each subject. Each experiment,

corresponding to a task class, was conducted in its entirety before the next experi-

ment was begun. This is due to the need to change the layout of the environment

for each task. Within each task, however, the tests were conducted in six blocks of
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four, with a block consisting of one replication of each of the four systems. This was

done to minimize any bias due to possible changes in the experimental procedure

over time, as described in Section 3.4. Within each block, the Direct Manual

Individual system was tested �rst, then Direct Manual Group, Supervisory

Individual, and lastly Supervisory Group control. Participants were assigned to

one of the four systems in the order they signed up for the tests, which was random.

The procedure followed during the testing is as follows. A checklist of this

procedure appears in Appendix F.

1. The experimenter explained the purpose of the experiments and told the par-

ticipant that the system is being tested and not himself. When the experi-

menter talked to each of the participants, he used a memorized speech (Ap-

pendix F) to eliminate di�erences in what each participant had been told. The

participants, however, were allowed to ask questions, and the answers to these

questions were obviously not from a memorized script. Also, the participants

were allowed to ask questions at any time during the testing. All questions

were answered to the best of the experimenter's ability, except for questions

asking whether a robot was going to hit an obstacle or not. These questions

were answered to make sure that the participant understood how the system

worked. It is possible that the more inquisitive participants may have had

an advantage over the others, due to a greater understanding of the system.

Since the participants were pseudo-randomly assigned to the systems, however,

based on the order in which they showed up to use the systems, in principle

each system was tried by an adequate mix of inquisitive and non-inquisitive

participants.

2. The participant read and signed a consent form (included in Appendix F)

that has been approved by the Georgia Institute of Technology Institutional
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Review Board.

3. The participant �lled out a survey (Appendix F), which asked general ques-

tions regarding their sex, age, level of education, and experience using a com-

puter mouse and mobile robots.

4. The participant was taught, by explanation and demonstration, to use the

controls for the system that they would be using to control the robots. Each

participant was taught to use the controls for only one of the four types of

systems being tested, since each participant only used one system. The par-

ticipant practiced using the controls on simulated robots for ten minutes. He

was allowed more time at the end of the ten minutes if he still did not feel

comfortable using the system, but no participant wanted to continue practic-

ing.

5. The user tried to complete a sample task, involving navigating a group of

robots from one point to another around a box-canyon, using simulated robots.

6. The real task was explained to the participant. This explanation included

the goal of the task, the timeout period, and the guidelines for the task, as

shown in the script in Appendix F. Each task has a timeout period. If the

human operator did not complete the task within the speci�ed time, then the

robots were stopped, and the task was counted as incomplete. The timeout

period for the tasks was ten minutes, except for the Patrolling task, which

had a twenty minute timeout due to the longer distance that the robots must

travel to complete the task. The guidelines were the same for each task. The

operator was asked to complete the task as quickly as possible and with as

few collisions as possible.
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Figure 6.2: The four robots used in the experiments.

7. The participant attempted the task with four real Nomad 150 robots (Figure

6.2), produced by Nomadic Technologies, Inc. The four robots are homoge-

neous, with the same hardware and control software. The robots are three

wheeled and near-holonomic, since all three wheels turn together. Each has a

ring of sixteen ultrasonic sensors, which were used by the Supervisory con-

trol systems for obstacle avoidance. The robots also have a ring of tactile

sensors, which were unused during these experiments. The control software is

described in Section 4.3.

The experimenter monitored the task to determine when the task had been

completed, whether the timeout period had been exceeded, and to count the number

of collisions between the robots and obstacles or other robots. After the task had

been completed, or timed out, the experimenter informed the participant and shut

down the system.

The participants had to depend on their own sight and the feedback from the
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robots and computer to determine the robots' positions. The participants were

allowed to stand up behind the operator workstation table, but they were not allowed

to come out from behind the table. The obstacles were small enough that the

operator could see the tops of all robots at all times.
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Chapter 7

Data Analysis Techniques

Two methods were used to analyze the data gathered during the experiments. To

produce the system rankings, a one-factor ANOVA (ANalysis Of VAriance) analysis

was conducted. This type of analysis compares the mean values of data frommultiple

sources which di�er in one way (in this case the type of system). To determine if

more general results existed, a two-factor ANOVA analysis was conducted. This

analysis technique compares the mean values from sources that di�er in two ways

(in this case, the level of autonomy and the number of robots controlled). The

following sections explain these two analysis techniques more fully, and explain how

they apply to the conducted experiments. An example analysis is then presented.

7.1 Single-Factor Analysis to Produce Rankings

One of the goals of each experiment was to determine how the di�erent types of

systems compare for the task in terms of each of the three judgment criteria: safety,

e�ectiveness, and ease-of-use. Therefore, three rankings of the four types of systems

are needed for each task, one for each of the criteria. To produce these rankings, we

can compare the means of the data values collected for all of the replications. For

example, to determine the safety of a particular system for a task, the number of

collisions between robots and obstacles or other robots was counted. Since, there

were six replications for each system/task combination (i.e., six di�erent people
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used each system for a particular task), there are six values representing the safety

for each system/task combination. The mean of the six values for one particular

system can be used to compare it to other systems. In this way, rankings can be

produced.

It is necessary, however, to determine if the di�erences between the mean values

representing the safety of each system are statistically signi�cant. That is, we must

determine if the probability that these di�erences could have been a result of random

noise is greater than some predetermined ratio.

As discussed in Chapter 3.5, the single-factor ANOVA model is an appropriate

model [41] for studying the relationship between the predictor variable (in this case,

the type of system) and the response variable (i.e., the safety, e�ectiveness, and ease-

of-use ratings of the systems). In other words, we can use the single-factor ANOVA

model to determine if there are any statistically signi�cant di�erences between the

means for each system, or if the means are probabilistically equivalent, with any

di�erences detected due to noise. If any di�erences between systems are detected,

the single-factor ANOVAmodel will also allow us to determinewhat those di�erences

are. Figure 7.1 shows the process used to produce the rankings of the systems for

each criteria and class of task. The procedures and tests mentioned in this �gure

are explained in the following sections, as well as in [41].

7.1.1 Insuring normality of error values and constancy of

error variance

The ANOVA model assumes normality of error values for each sample (i.e., the

frequency of the di�erences between the measured values and the true mean �t a

normal distribution), and constancy of error variance between samples (i.e., the

magnitude of the di�erences is approximately the same between data sets). If this
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Start

Use Box-Cox procedure
to determine and apply
an appropriate
transformation (if needed)
to insure normality and
constancy of error variance.

ANOVA table
Produce single-factor

Are
factor-level
means equal?
(Use F-test)

Produce Tukey
multiple-comparison
confidence intervals.

Produce rankings
from confidence
intervals.

Stop

Stop

Yes

No

Figure 7.1: Flowchart of the process to produce the system rankings.
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is not the case with the actual data values, then a transformation must be used

to insure these conditions are met. The Box-Cox [41] procedure identi�es a power

transformation of the form Y � (where Y is the data set) to correct for both lack of

normality and non-constancy of error variance. If no transformation is needed to

meet either of these conditions, then the Box-Cox procedure indicates that � = 1.

The Box-Cox procedure was applied to the data from each experiment. If the

procedure indicated that a transformation was needed, then that transformation

was used on the data. Each of the � values determined by the Box-Cox procedure

for the transformation of the experimental data sets is presented in Appendix D.

7.1.2 ANOVA table and test for equality of factor-level

means

For each experiment, Matlab [38] was used to produce a single-factor ANOVA table

using the data. The F � value shown in this table can be used to determine whether

the factor level means are equal or not. F � is de�ned as

F � =
MSTR

MSE

where MSTR is the treatment mean square and MSE is the error mean square

[41]1.

F � follows the F distribution (a standard probabilistic distribution) when H0

holds (H0 is the hypothesis that the factor level means are equal), and does not

follow the F distribution when Ha holds (Ha is the hypothesis that the factor level

means are not equal) [41]. More speci�cally, F � is distributed as F (r � 1; nT � r)

1A discussion of the derivation of MSTR and MSE is beyond the scope of this dissertation.
Furthermore, it is not necessary to know how these values are derived to conduct the analysis for
these experiments, as most statistical software packages will generate these values from the data.
Readers who desire a further explanation of these values are referred to [41].
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when H0 holds, where r is the number of factor levels and nT is the total number of

replications conducted across all factor levels. In these experiments, the factor levels

were the four types of systems, so r = 4, and there were 6 replications conducted

for each of the factor levels, so nT = 24.

The appropriate decision rule [41] to control the level of signi�cance2 at � is:

If F � � F (1� �; r � 1; nT � r),

then conclude H0,

else conclude Ha.

where F (1 � �; r � 1; nT � r) is the (1 � �)100 percentile of the appropriate F

distribution.

For the tests conducted on the data from these experiments, � was chosen to be

0.05, thereby ensuring that if we conclude Ha, then we can be 95% certain that the

factor level means are really not equal. By consulting a table of F distributions, we

�nd that F (0:95; 3; 20) = 3:10. So, if the F � value indicated in the ANOVA table

is less than or equal to 3.10, then we conclude that the factor level means are not

signi�cantly di�erent. This result would indicate that the systems all performed

equivalently for that particular class of task. If the F � value is greater than 3.10,

then we conclude that the factor level means are signi�cantly di�erent. This would

mean that at least one of the systems performed di�erently than the others for that

task class. The F � values derived from each experimental data set are presented in

Appendix D.

7.1.3 Determining the con�dence intervals

If the F-test indicates that the systems do not all perform equivalently for the task,

then the next step is to determine how each system ranked relative to the others.

2� is the level of signi�cance. If an � value of 0.05 is used in the decision rule, and Ha was
concluded, then we can state, with 95% certainty (1-�), that Ha actually is true.
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This involves conducting multiple comparisons between the factor level means. The

Tukey multiple comparison procedure [41] was used to insure that the entire family

of comparisons retained the 95% con�dence, rather than just each individual com-

parison. This procedure is used to produce family con�dence intervals, which are

the same around each sample factor level mean. The con�dence interval for each

mean indicates that, with 95% certainty, the true factor level mean lies within that

interval.

The con�dence intervals for each estimated treatment mean (i.e. the sample

mean for each treatment), Y i�
3, has the limits

Y i� � 1

2
TsfD̂g (7.1)

where

T =
1p
2
q(1� �; r; nT � r)

with q being the studentized range distribution (a standard probabilistic distribu-

tion), and �, r, and nT de�ned the same as in the decision rule in Section 7.1.2.

When the number of replications for each treatment are the same, then

sfD̂g =
s
2

n
MSE

with MSE being the error mean square (which can be found in the ANOVA table)

and n being the number of replications per treatment [41]. For this research,

T =
1p
2
q(1� �; r; nT � r)

=
1p
2
q(1� 0:05; 4; 24 � 4)

=
1p
2
q(0:95; 4; 20)

= 2:800
3The dot notation (e.g. �1�

) indicates a summation of all the values of the variable along that
index.
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and

sfD̂g =

s
2

n
MSE

=

s
2

6
MSE

=

s
1

3
MSE

Therefore the con�dence intervals for each experiment are

Y i� �
1

2
(2:8)

s
1

3
MSE

or

Y i� � 0:808
p
MSE (7.2)

where the MSE value is di�erent for each set of experimental data, and can be

obtained from the ANOVA table for that data set.

The rankings of the four types of systems can be generated from these con�dence

intervals. If and only if the con�dence intervals for two or more factor levels do

not overlap, then those factor levels are considered di�erent. Figure 7.2 shows

an example set of con�dence intervals and the resulting ranking of the systems.

Appendix D presents the con�dence intervals for the experimental data sets in which

the F test did not �nd all the means equivalent.

7.2 Two-Factor Analysis to Identify Principles

A second goal of the experiments was to determine, where possible, general results

relating a system dimension to a class of task. These �ndings would relate the levels

along one of the two dimensions (amount of autonomy and number of robots con-

trolled at a time) with the task class, regardless of the level of the other dimension.
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Ranking

1.   System A
      System B
2.   System C
3.   System D

(b)

System A

System B

System C

System D

System Type

Mean Value

(a)

Figure 7.2: Con�dence intervals and rankings. (a) shows a set of possible con�dence
intervals, and (b) shows the ranking of systems that would be derived from these
intervals.
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Response

b1

b2

Factor B

Factor A
a1 a2

Response

b1

b2

Factor B

Factor A
a1 a2

Response

b1

b2

Factor B

Factor A
a1 a2

(a) (b) (c)

Figure 7.3: Factor Main E�ects. The vertical axis shows the response value, the
horizontal axis shows the level of Factor A, and the two di�erent lines represent the
level of Factor B. (a) shows a situation in which there are no main e�ects. In (b),
factor B shows a main e�ect, and in (c), both factor A and B show main e�ects.

This corresponds to searching for factor main e�ects in a two factor analysis. A

main e�ect is the di�erence between a factor level mean and the overall mean for

all levels of that factor [41].

Thus we look for situations where all of the factor level means for one factor

are higher than the corresponding factor level means for the other dimension. For

instance, Figure 7.3 shows three examples, two of which demonstrate main e�ects.

Figure 7.3(a) does not exhibit any main e�ect, since there is no factor level that has

a higher response than the other level for the same factor, regardless of the level of

the other factor. Figure 7.3(b), however, shows a main e�ect in factor B, because,

regardless of what level factor A is at, factor level b1 shows a higher response than

factor level b2. Figure 7.3(c) shows a main e�ect in both the A and B factor, since

factor level b1 shows a higher response than factor b2, regardless of the setting of

factor A, and factor level a2 shows a higher response than level a1, regardless of the

setting of factor B.

The procedure [41] used to determine if factor main e�ects were present is de-

scribed in the following sections. Figure 7.4 shows the decision process that was

used.
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Stop

Start

Use Box-Cox procedure
to determine and apply
an appropriate
transformation (if needed)
to insure normality and
constancy of error variance.

Are

important?
main effects

(Use F-test)

Are

(Use F-test)

interactions
present?

ANOVA table
Produce two-factor

Try simple transformation
of data.

Are
interactions
still important?

Stop

Yes

No

Use Tukey multiple-
comparison procedure to
simultaneously determine
if main effects exist.

Stop

Use factor level means
to determine factor effects.

Yes

No

Yes

No

Figure 7.4: Flowchart of the process to produce the general �ndings.
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The Box-Cox procedure is used �rst on the data to determine if any transforma-

tion was needed, and then determine the appropriate transformation (of the form

Y �, where Y is the data set, and � is determined by the Box-Cox procedure), to

ensure normality of the data for each treatment and constancy of error variance

between treatments (see Section 7.1.1).

Matlab [38] was then used to produce a two-factor ANOVA table for each of the

three criteria, and for each task type. This table has three F � values. The �rst

is used to determine if there is a column main e�ect. This would indicate a main

e�ect due to the number of robots being controlled at a time. The second F � value

is for the row main e�ect, indicating whether there is a main e�ect due to the level

of autonomy of the robots. And the third F � value indicates whether there are

interactions between the factor e�ects.

Interacting factor e�ects exist when the factor e�ects are not additive. Figure

7.5(a) shows factor e�ects that do not interact, and Figure 7.5(b) shows factor e�ects

that do interact. In Figure 7.5(b), we see that Factor B has no e�ect on the response

when Factor A is set at a1, but it does have an e�ect when Factor A is set at a2.

This varying inuence of Factor B at its di�erent levels indicates that Factors A and

B interact, which is called an AB interaction. Interactions can be detected visually

when the lines in the graph are not parallel.

More speci�cally, two factors interact when not all treatment means, �ij, can be

expressed according to

�ij = �
��
+ �i + �j

where �
��
is the overall mean response value for all treatments, �i is the main e�ect

for factor A when at level i, and �j is the main e�ect for factor B when at level

j. When there are important interactions between factor e�ects, one should not

ordinarily examine the e�ects of each factor separately in terms of the factor level
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Response

b1

b2

Factor B

Factor A
a1 a2

(a)

Response

b1

b2

Factor B

Factor A
a1 a2

(b)

Figure 7.5: Demonstration of Interactions between Factor E�ects. (a) does not show
any interaction, while (b) does.

means [41]. Therefore, if there are interactions, no general results can be identi�ed.

In certain cases when interactions are identi�ed, a simple transformation may

be used to remove or reduce the e�ect of the interaction until it is negligible. An

example is factor e�ects that act multiplicatively, rather than additively:

�ij = �
��
�i�j

instead of

�ij = �
��
+ �i + �j

This interaction can be removed by applying a logarithmic transformation:

�0

ij = log �ij

�0

��

= log �
��

�0

i = log�i

�0

j = log �j

This results in the following:

�0

ij = �0

��

+ �0

i + �0

j
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The interaction is transformable and, thus, unimportant. In this case, the analysis

can proceed with the transformed data.

7.2.1 F-Tests for interactions and main e�ects

The F � value corresponding to interactions in the ANOVA table is derived from

F � =
MSAB

MSE

whereMSAB is the AB interaction mean square andMSE is the error mean square.

Large values of this F � indicate the existence of interactions. The appropriate

decision rule [41] to control the level of signi�cance at � is

If F � � F [1� �; (a� 1)(b� 1); (n� 1)ab],

then conclude H0,

else conclude Ha.

where a is the number of levels of factor A, b is the number of levels of factor B, n

is the number of replications conducted per treatment, H0 indicates that there are

no interactions, and Ha indicates that interactions exist.

Since � = 0:5 was used in this analysis,

F [1� �; (a� 1)(b� 1); (n� 1)ab] = F [0:95; 1; 20] = 4:35:

So, if the F � value for interactions in the ANOVA table is greater than 4.35, then

there are interactions present, and the search for general �ndings relating factors to

the task class cannot proceed unless a simple transformation can be used to remove

those interactions.

If there are no important interactions present, then the next step is to use a pair of

F -tests to determine if any main e�ects are important. The F � value corresponding

123



to columns in the ANOVA table indicates whether there is a main e�ect due to

factor A (the number of robots controlled at a time). This F � value is derived from

F � =
MSA

MSE
(7.3)

where MSA is the factor A mean square. Once again, large values of F � indicate

the presence of factor A main e�ects. The decision rule for controlling the level of

signi�cance at � is

If F � � F [1� �; a� 1; (n� 1)ab],

then conclude H0,

else conclude Ha.

where H0 indicates that the factor A main e�ect is not important, and Ha indicates

that the factor A main e�ect is important.

Similarly, the F � value corresponding to rows in the ANOVA table indicates

whether there is a main e�ect due to factor B (the level of autonomy of the robots).

This F � value is derived from

F � =
MSB

MSE
(7.4)

similar to Equation 7.3, except substituting MSB (factor B mean square) for MSA.

The decision rule is

If F � � F [1� �; b� 1; (n � 1)ab],

then conclude H0,

else conclude Ha.

Since both a and b were 2 in this research, the F-test values are identical. So

F [1� �; a� 1; (n� 1)ab] = F [1� �; b� 1; (n� 1)ab] = F [0:95; 1; 20] = 4:35:

Appendix D presents the F � values for the AB interaction, factor A e�ect (column

e�ect), and the factor B e�ect (row e�ect) for each set of experimental data.
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7.2.2 Tukey multiple comparison procedure to test for main

e�ects

Since more than one comparison is being made for factor main e�ects, a multiple

comparison procedure must be used to determine whether the family of comparisons

maintains the � level of signi�cance. So, the F -tests for main e�ects simply serve

to indicate whether further testing is needed.

If the F -tests indicated that the main e�ects were important, then the Tukey

multiple comparison procedure is used to conduct the simultaneous tests. This

procedure is similar to the Tukey procedure described for single-factor ANOVA tests.

In this research, however, there is no need to determine the con�dence intervals.

Since there are only two levels for each factor, if a di�erence is indicated, then the

factor level means indicate which is greater. The test procedure [41] is described

below.

The test statistic, q� will be used in the decision rule to determine main e�ects.

To test for a factor A main e�ect,

q� =

p
2D̂

sfD̂g
(7.5)

D̂ and sfD̂g are de�ned as follows:

D̂ = Y i�� � Y i0��

where Y i�� and Y i0�� are the total calculated mean values for the two di�erent levels

of factor A, namely Individual and Group control.

sfD̂g =
s
2MSE

bn
(7.6)

The decision rule for determining factor A main e�ects is
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If jq�j � q[1� �; a; (n� 1)ab],

then conclude H0,

else conclude Ha.

where H0 indicates that no factor A main e�ect is present, and Ha indicates that

one is present.

Similarly, to test for a factor B main e�ect, compute q� with Equation 7.5, except

use the following D̂ and sfD̂g.

D̂ = Y
�j� � Y

�j0� (7.7)

where Y
�j� and Y

�j0� are the total calculated mean values for the two di�erent levels

of factor B, namely Direct Manual and Supervisory control.

sfD̂g =
s
2MSE

an
(7.8)

just as in Equation 7.6, except replacing b with a. Similarly, with the decision rule,

replace a with b:

If jq�j � q[1� �; b; (n� 1)ab],

then conclude H0,

else conclude Ha.

As mentioned earlier, in this research, both a and b, the number of levels of

factors A and B respectively, are 2. Therefore, the q value to be tested against is

the same in both cases, namely:

q[1� �; a; (n� 1)ab] = q[1� �; b; (n� 1)ab] = q[0:95; 2; 20] = 2:95

If a factor A main e�ect is present, then we can look at the means for the factor

levels, Individual and Group control, to determine which performs best for this

task, based on the particular criteria (safety, e�ectiveness, or ease-of-use) currently
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being examined. If a factor B main e�ect is present, we determine, in the same

way, whether Direct Manual or Supervisory control performs best based on the

examined criteria. For example, one result might be that Supervisory control

is safer than Direct Manual control for one type of task, regardless of whether

Individual or Group control is being used.

Some of the F � values for particular data sets in this research indicated that a

main e�ect should be checked for. In this case, the q� value for that test is presented

in Appendix D.

7.3 Example

The following example shows how this process was used to analyze the data for

the movement-to-coverage experiment conducted for this research. As described in

Chapter 5.2, Sentry Positioning was the experimental task for this evaluation. As

explained in Chapter 6, this experiment compared four systems (Direct Manual

Individual (DI), Direct Manual Group (DG), Supervisory Individual (SI),

and Supervisory Group (SG)) which di�ered along two dimensions (the amount

of autonomy and the number of robots controlled at a time). The collected data for

this experiment is listed in tabular form in Appendix C and is duplicated in Table

7.1 for convenience.

Unlike some of the other tasks, the only way to fail to complete this task was

to exceed the time limit. Therefore, the task completion time is already set to

the timeout period in every instance where the subject did not complete the task.

So, the task completion time can be used directly as a measure of the e�ectiveness,

with no extra processing required to combine the two measures into one quantitative

measure, as described in Chapter 6.2. The number of collisions is used as the safety

rating, and the number of user actions is used as the ease-of-use rating.
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Table 7.1: Movement-to-Coverage Data Values

Number of collisions
Direct Manual, Individual 0 0 0 0 0 0

Direct Manual, Group 12 7 6 5 12 6
Supervisory, Individual 0 0 0 0 0 0

Supervisory, Group 0 0 1 0 0 0
Completion of the task (Y = Completed, N = Incomplete)
Direct Manual, Individual Y Y Y Y Y Y

Direct Manual, Group N N N N N N
Supervisory, Individual Y Y Y Y Y Y

Supervisory, Group Y N N Y Y N
Task completion time (seconds)

Direct Manual, Individual 212 181 237 253 196 179
Direct Manual, Group 600 600 600 600 600 600
Supervisory, Individual 198 308 500 534 221 239

Supervisory, Group 552 600 600 599 539 600
Number of user actions

Direct Manual, Individual 47 26 32 51 42 36
Direct Manual, Group 45 40 108 49 55 77
Supervisory, Individual 32 58 80 82 56 30

Supervisory, Group 45 65 67 53 80 73
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Table 7.2: Transformed Movement-to-Coverage Data Values

Safety
Direct Manual, Individual 0 0 0 0 0 0

Direct Manual, Group 12 7 6 5 12 6
Supervisory, Individual 0 0 0 0 0 0

Supervisory, Group 0 0 1 0 0 0
E�ectiveness)

Direct Manual, Individual 212 181 237 253 196 179
Direct Manual, Group 600 600 600 600 600 600
Supervisory, Individual 198 308 500 534 221 239

Supervisory, Group 552 600 600 599 539 600
Ease-of-use

Direct Manual, Individual 0.6814 0.7219 0.7071 0.6749 0.6881 0.6988
Direct Manual, Group 0.6834 0.6915 0.6261 0.6776 0.6698 0.6477
Supervisory, Individual 0.7071 0.6663 0.6452 0.6436 0.6686 0.7117

Supervisory, Group 0.6834 0.6587 0.6567 0.6723 0.6452 0.6511

We will consider the four systems to be levels of a single factor and perform

a one-factor ANOVA analysis. The �rst step is to insure that the error values of

each data set �t a normal probability distribution and that the error variance is

constant across data sets using the Box-Cox procedure (Section 7.1.1). The Box-

Cox4 procedure indicated that � = 1 for both the safety and the e�ectiveness ratings,

and that � = �0:1 for the ease-of-use rating. This indicates that no transformation

is needed for the �rst two ratings, and a transform of Y �0:1 is needed for the ease-

of-use rating. Table 7.2 shows the data after the transformation.

The next step is to produce a single-factor ANOVA table for each criteria (Tables

7.3, 7.4, and 7.5). Most statistical software can automatically create this table from

the data (Matlab [38] produced these tables). The F � values in the tables are used

in the test to determine if all the factor level means are equal. In Section 7.1.2, the

4Consult [41] for details on how the Box-Cox procedure is performed.
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Table 7.3: Movement-to-Coverage Single-factor ANOVA Table for Safety. The only
values important to us are the F � value and the MSE value (in the Mean Square
column and Error row).

Sum of degrees of Mean
Source Squares (SS) freedom (df) Square (MS) F �

Factor A 284.1 3 94.71 37.26
Error 50.83 20 2.542
Total 335 23

Table 7.4: Movement-to-Coverage Single-factor ANOVA Table for E�ectiveness.
The only values important to us are the F � value and the MSE value (in the Mean
Square column and Error row).

Sum of degrees of Mean
Source Squares (SS) freedom (df) Square (MS) F �

Columns 6.587e+05 3 2.196e+05 37.5
Error 1.171e+05 20 5855
Total 7.758e+05 23

following decision rule was determined for this test:

If F � � 3:10,

then conclude H0,

else conclude Ha.

Since F � = 37:26 for the safety and F � = 37:5 for e�ectiveness, we conclude

that not all the means are equivalent for these two criteria. F � = 2:724 for the

ease-of-use, however, indicating that all four systems performed equivalently for

this criteria. Therefore, no system ranking can be determined for the ease-of-use.

Because the means for safety and e�ectiveness are not all equivalent, multiple-

comparison con�dence intervals are used to determine what the di�erences are. In

Section 7.1.3, the con�dence intervals were determined to be Y i� � 0:808
p
MSE
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Table 7.5: Movement-to-Coverage Single-factor ANOVA Table for Ease-of-use. The
only values important to us are the F � value and the MSE value (in the Mean
Square column and Error row).

Sum of degrees of Mean
Source Squares (SS) freedom (df) Square (MS) F �

Columns 0.004061 3 0.001354 2.724
Error 0.009937 20 0.0004969
Total 0.0014 23

Table 7.6: Movement-to-Coverage Safety Con�dence Intervals.

System Mean Lower Boundary Upper Boundary
DI 0.0 -1.2887 1.2887
DG 8.0 6.7113 9.2887
SI 0.0 -1.2887 1.2887
SG 0.2 -1.1220 1.4554

(Equation 7.2). The MSE value can be obtained from the ANOVA tables (Tables

7.3 and 7.4), from the MS column and the Error row. This produces the con�dence

intervals in Tables 7.6 and 7.7 (depicted visually in Figures 7.6 and 7.7). The

system rankings can be determined from the con�dence intervals and means. Lower

means indicate better systems. Any con�dence intervals that overlap are considered

equivalent and are grouped together in the ranking. There will be at least two (and

at most four) non-overlapping sets of systems, since this step is not performed if the

F -test indicated that all systems were equivalent.

The next step is to determine if there are any general results relating a point in

a system dimension to a task class. To do this we conduct a two-factor ANOVA

analysis, considering each of the system dimensions, the level of autonomy and the

number of robots controlled at a time, as factors A and B respectively. We have
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Table 7.7: Movement-to-Coverage E�ectiveness Con�dence Intervals.

System Mean Lower Boundary Upper Boundary
DI 209.7 147.8157 271.5176
DG 600.0 538.1491 661.8509
SI 333.3 271.4824 395.1843
SG 581.7 519.8157 643.5176

SG

SI

DG

DI

System Type

Safety Mean Value
4 6 8 10-2 20

(a)

Ranking

      Supervisory Individual (SI)

2.   Direct Manual Group (DG)

1.   Direct Manual Individual (DI)

      Supervisory Group (SG)

(b)

Figure 7.6: Movement-to-Coverage Safety Con�dence Intervals and Ranking. (a)
depicts a graph of the con�dence intervals, and (b) shows the corresponding safety
ranking for this task. The three systems ranked as (1) performed better than the
one ranked (2).
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SG

SI

DG

DI

450 550 650350250150

System Type

Effectiveness Mean Value

(a)

Ranking

      Supervisory Individual (SI)
1.   Direct Manual Individual (DI)

2.   Supervisory Group (SG)
      Direct Manual Group (DG)

(b)

Figure 7.7: Movement-to-Coverage E�ectiveness Con�dence Intervals and Ranking.
(a) depicts a graph of the con�dence intervals, and (b) shows the corresponding
e�ectiveness ranking for this task. The two systems ranked as (1) performed better
than those ranked (2).
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Table 7.8: Movement-to-Coverage Two-factor ANOVA Table for Safety. The values
of importance to us are the F � values and the MSE value (in the Mean Square
column and Error row). The row labeled \Factor B" pertains to the level of auton-
omy dimension, and the row labeled \Factor A" pertains to the number of robots
controlled dimension.

Sum of degrees of Mean
Source Squares (SS) freedom (df) Square (MS) F �

Factor B 100 1 100 39.36
Factor A 92.04 1 92.04 36.21
Interaction 92.04 1 92.04 36.21
Error 50.83 20 2.542
Total 335 23

already performed the Box-Cox procedure on the data in the single-factor analysis,

so we do not need to do so again. The transformed data is listed in Table 7.2. If we

had not done this already, then this procedure would be needed to insure normality

of the data sets and constant variance across data sets (Section 7.1.1).

A two-factor ANOVA table is now produced for each of the three criteria. Tables

7.8, 7.9, and 7.10 are the tables produced by Matlab [38] for the safety, e�ectiveness,

and ease-of-use, respectively.

The next step is to test for interactions between the factor e�ects. In Section

7.2.1, the decision rule for this test was determined to be:

If F � � 4:35,

then conclude H0 (no interactions),

else conclude Ha (interactions present).

The F � value used in this test is obtained from the ANOVA table (from the \F �"

column and the \Interaction" row). The test indicates that interactions are present

for the safety criteria, but not for the e�ectiveness or ease-of-use criteria. Simple

transformations do not remove the interactions from the safety data, so no general
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Table 7.9: Movement-to-Coverage Two-factor ANOVA Table for E�ectiveness. The
values of importance to us are the F � values and the MSE value (in the Mean
Square column and Error row). The row labeled \Factor B" pertains to the level
of autonomy dimension, and the row labeled \Factor A" pertains to the number of
robots controlled dimension.

Sum of degrees of Mean
Source Squares (SS) freedom (df) Square (MS) F �

Factor B 6.118e+05 1 6.118e+05 104.5
Factor A 1.664e+04 1 1.664e+04 2.842
Interaction 3.025e+04 1 3.025e+04 4.165
Error 1.171e+05 20 5855
Total 7.758e+05 23

Table 7.10: Movement-to-Coverage Two-factor ANOVA Table for Ease-of-use. The
values of importance to us are the F � values and the MSE value (in the Mean
Square column and Error row). The row labeled \Factor B" pertains to the level
of autonomy dimension, and the row labeled \Factor A" pertains to the number of
robots controlled dimension.

Sum of degrees of Mean
Source Squares (SS) freedom (df) Square (MS) F �

Factor B 0.002608 1 0.002608 5.25
Factor A 0.001033 1 0.001033 2.08
Interaction 0.0004187 1 0.0004187 0.8427
Error 0.009937 20 0.0004969
Total 0.014 23
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results can be determined. The search for general results continues, however, for

the other two criteria.

To determine if any general results are present for e�ectiveness and ease-of-use,

the data is tested for factor main e�ects. In Section 7.2.1, the decision rule for both

factor A (row) and B (column) main e�ects was determined to be:

If F � � 4:35,

then conclude H0 (no main e�ect),

else conclude Ha (main e�ect present).

The test for factor A main e�ects uses the F � value in the \Factor A" row of the

ANOVA table, and the test for factor B main e�ects uses the one in the \Factor B"

row. These tests indicate that there is no e�ect due to the level of autonomy (factor

A) for either e�ectiveness or ease-of-use, but there is an e�ect due to the number of

robots controlled at a time (factor B) for both criteria.

Since more than one comparison was made for each criteria, a multiple com-

parison procedure must be used to determine if the main e�ects are signi�cant

within the 95% family con�dence level (Section 7.2.2). From Equations 7.8 and

7.7, sfD̂g = 31:2383 and D̂ = �319:3333 for the e�ectiveness factor B, and

sfD̂g = 0:0091 and D̂ = 0:0084 for the ease-of-use factor B. From these values

and Equation 7.5, q� = �14:4568 for e�ectiveness, and q� = 1:2982 for ease-of-use.

In Section 7.2.2, the decision rule for factor B main e�ects was determined to be:

If jq�j � 2:95,

then conclude H0 (no main e�ect),

else conclude Ha (main e�ect present).

Therefore, the main e�ect due to the number of robots controlled at a time is

statistically signi�cant for e�ectiveness, but not ease-of-use, when considered within

the family of comparisons. So, there is a main e�ect for e�ectiveness, but the main
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e�ect for ease-of-use is rejected. Looking at the actual means for the e�ectiveness

data sets, and knowing that a main e�ect exists concerning the number of robots

controlled at a time, we can see that Individual control is more e�ective than

Group control for this task.

Using the analysis methods presented, the rankings in Figures 7.6 and 7.7 were

determined for the safety and e�ectiveness, and all of the systems were equivalent in

terms of ease-of-use. No general �ndings (corresponding to main e�ects) were found

for safety or ease-of-use, but one was found for e�ectiveness. This analysis method

was repeated for each of the other three tasks.

7.4 Summary

Standard statistical analysis techniques are applied to determine the rankings and

identify any general relationships between one system dimension and the task. A

one-factor ANOVA analysis is used to determine the rankings of the individual

systems and a two-factor ANOVA analysis is used for the more general �ndings.

Three rankings (one for each of the evaluation criteria) were produced for each task

class. The two-factor analysis is used to identify main e�ects, which correspond to

the general �ndings.

In both the single and multi-factor analyses, the Box-Cox procedure insures that

the assumptions of the ANOVA model are met. The Tukey multiple-comparison

procedure insures that the 95% certainty level is maintained in both cases, even

though several comparisons are made. For more details on this analysis procedure,

see [41].
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Chapter 8

Experimental Results

The data from the experiments was analyzed as described in Chapter 7. The results

of this analysis are discussed in this Chapter. These results are divided into the

three rankings that were developed for each of the tasks (Section 8.1), one for each

of the three evaluation criteria, and the more general results (Section 8.2) that were

found for some of the system/task combinations. A discussion of the generalizability

of the results is provided in Section 8.3. The actual data values that were collected

are shown in tabular form in Appendix C.

8.1 System Rankings

The four systems were ranked (in terms of safety, e�ectiveness, and ease-of-use) for

each of the four tasks. These rankings indicate which system types are best for each

type of task. A system developer, or a human operator with a system that allows

choosing the type of the control, can use these rankings to determine which system

to develop or use based on the criteria that are important to him.

Tables 8.1, 8.2, 8.3, and 8.4 show the rankings of the four types of systems for

each task class. These were computed as described in Section 7.1, by a single-factor

ANOVA analysis of the data. Among each task, there is a separate ranking for each

of the three criteria of safety, e�ectiveness, and ease-of-use. Those systems listed

�rst in the rankings are the best systems (out of the system types examined) for
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that criteria, indicated by a ranking of one.

In many cases, there is more than one system listed under the same number in

the ranking, because there was no statistically signi�cant di�erence between them.

In a few instances, such as the ease-of-use ranking for the movement-to-convergence

task (Table 8.2), one system is listed in more than one position in the ranking.

In this case, Supervisory Individual control appears in both the number one

and two positions, because that system's performance was not signi�cant di�erent

than the performance of the other two systems in the number one ranking, nor

was it signi�cantly di�erent than the other system in the number two position.

The other two systems in the number one position, however, showed a statistically

signi�cantly di�erence than the other system in the number two position. In this

case, the con�dence interval for Supervisory Individual control overlaps those

for all the other systems, but the con�dence intervals for Supervisory Group and

Direct Manual Individual control do not overlap the interval for Direct Manual

Group control. Also, in a few cases (Table 8.1 Ease-of-Use, Table 8.3 E�ectiveness,

and Table 8.4 Safety), none of the systems distinguished themselves from the others

for a particular performance criteria, and the ranking is replaced by the sentence

\All systems equivalent." This was determined by the F -test (Chapter 7.1.2), which

indicated that all the systems had equivalent sample means. The actual means and

con�dence intervals that these rankings were derived from are presented in Appendix

D.

As an example, look at the E�ectiveness ranking for the movement-to-coverage

task:

1. Direct Manual Individual

Supervisory Individual

2. Supervisory Group

Direct Manual Group
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Table 8.1: System rankings for Movement-to-Coverage task.
Safety E�ectiveness Ease of Use

1. Direct Manual Individual 1. Direct Manual Individual All systems equivalent.
Supervisory Individual Supervisory Individual
Supervisory Group

2. Supervisory Group
2. Direct Manual Group Direct Manual Group

Table 8.2: System rankings for Movement-to-Convergence task.
Safety E�ectiveness Ease of Use

1. Direct Manual Individual 1. Direct Manual Individual 1. Supervisory Group
Supervisory Individual Supervisory Group Direct Manual Individual
Supervisory Group Supervisory Individual Supervisory Individual

2. Direct Manual Group 2. Direct Manual Group 2. Supervisory Individual
Direct Manual Group

This ranking indicates that Direct Manual Individual (DI) and Supervisory

Individual (SI) control performed equally well. Likewise, Supervisory Group

(SG) and Direct Manual Group (DG) control performed equivalently. Since the

DI/SI group is ranked 1, this indicates that the two systems in it were more e�ective

than the systems in the SG/DG group, which ranked 2.

8.2 General Findings

For some of the tasks, the data indicated more general results relating a type of

system to the task class. This was determined by a two-factor ANOVA analysis

Table 8.3: System rankings for Movement-While-Maintaining-Coverage task.
Safety E�ectiveness Ease of Use

1. Supervisory Individual All systems equivalent. 1. Supervisory Group
Supervisory Group Direct Manual Group
Direct Manual Individual

2. Direct Manual Individual
2. Direct Manual Individual Supervisory Individual

Direct Manual Group
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Table 8.4: System rankings for Movement-While-Maintaining-Convergence task.
Safety E�ectiveness Ease of Use

All systems equivalent. 1. Direct Manual Group 1. Direct Manual Group
Supervisory Group Supervisory Group
Direct Manual Individual

2. Direct Manual Individual
2. Supervisory Group Supervisory Individual

Direct Manual Individual
Supervisory Individual

(Section 7.2). For these tasks, it was possible to determine that a certain factor

level is better, based on one of the judgment criteria, than the other levels for that

factor, regardless of the settings for the other factors. For instance, it might be

possible to determine that, for a particular class of task, Group control is safer

than Individual control, regardless of whether the system uses Supervisory or

Direct Manual control. The following results are those indicated to be statistically

signi�cant by the data collected. The results are �rst presented as a group, and then

they are discussed individually.
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� Movement to coverage task

{ Individual control is more e�ective than Group control.

� Movement to convergence task

{ No general �ndings identi�ed.

� Movement while maintaining coverage task

{ Supervisory control is safer than Direct Manual control.

{ Group control is easier to use than Individual control.

� Movement while maintaining convergence task

{ Supervisory control is safer than Direct Manual control.

{ Group control is more e�ective than Individual control.

{ Direct Manual control is more e�ective than Supervisory

control.

{ Group control is easier to use than Individual control.

1. For the movement-to-coverage task:

Individual control is more e�ective than Group control.

Regardless of whether Supervisory or Direct Manual control is used, it is

more e�ective to use Individual control when moving the robots to cover an area.

This indicates that the operator will be able to complete the task signi�cantly faster

with an Individual control system. This is probably becausemovement-to-coverage

tasks require each of the robots to move away from each other, and therefore, in
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di�erent directions. Group control only allows the operator to give the same di-

rectional commands to the entire group. Therefore, getting the robots to move in

di�erent directions is di�cult or impossible. Individual control, however, allows

the operator to give di�erent commands to each robot, which is what is needed for

this type of task. The results seem to con�rm this intuition.

2. For the movement-to-convergence task, no general principles were identi�ed.

This is because there were not any statistically signi�cant main e�ects (Chapter

7.2) present in the experimental data. Because the two Group control systems

only allow the user to give the same instructions to all the robots, it might seem

that the same result identi�ed for movement-to-coverage tasks would be found here.

The waypoint commands for the Supervisory Group control system, however,

allow the user to easily gather the robots together. This is probably the reason why

no di�erences were found between the Group and the Individual control systems.

3. For the movement-while-maintaining-coverage task:

� Supervisory control is safer than Direct Manual control.

� Group control is easier to use than Individual control.

These results indicate that both Supervisory control systems produce less colli-

sions than either Direct Manual control system. This is the expected result, since

the Supervisory control system takes an active role in trying to avoid obstacles.

It was thought that this result would be found for all the classes of tasks, although

it was not. For the other tasks, the human was able to compensate for the lack of

automated obstacle avoidance, although this result may not have appeared if the

number of robots had been increased, producing a greater cognitive load on the

operator.
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The Group control systems also required the human to issue less commands

than the Individual control systems while carrying out the task. Movement-while-

maintaining-coverage tasks require that the group of robots move while maintaining

positions that are spread out from each other. Since the robots are already dispersed

in this task, if they each receive the same movement commands, they will tend to

stay spread out, while moving in the direction indicated. Therefore, Group control

is best suited for this task class, and requires less of the operator than Individual

control.

4. For the movement while maintaining convergence task:

� Supervisory control is safer than Direct Manual control.

� Group control is more e�ective than Individual control.

� Direct Manual control is more e�ective than Supervisory con-

trol.

� Group control is easier to use than Individual control.

These results indicate that Supervisory control produces signi�cantly less col-

lisions than Direct Manual control, but that Direct Manual control results in

signi�cantly faster completion times than Supervisory control. It is intuitive that

Supervisory control is safer than Direct Manual control. The apparent reason

why Direct Manual control is more e�ective than Supervisory control is less

apparent. This was an unexpected result, although it seems obvious in hindsight.

With the Direct Manual control system, the operator can command the robots

to take shorter paths, passing very close to obstacles, rather than skirting wide

around the obstacles. With Supervisory control, the robots automatically go wide
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around the obstacles, often causing them to take longer paths, and giving the human

less control of their trajectories. When attempting a movement-while-maintaining-

convergence task, the operator or system designer will need to decide whether safety

or e�ectiveness is more important based on the particular situation.

Group control is shown to be both more e�ective and easier to use than Individ-

ual control for this task, regardless of whether Supervisory or Direct Manual

control is used. Therefore, whether the operator chooses the safer Supervisory

control system or the more e�ective Direct Manual control system, he should use

Group control when attempting a movement-while-maintaining-convergence task.

8.3 Generalizability of the Results

It is important to realize that these results are somewhat dependent on the actual

setup of the experiments. In order to conduct the experiments, it was necessary to

choose a particular type of supervisory control, as well as a particular method for

the human to interface with this control system. Likewise, the number of robots

used for the tasks had to be set at a �xed number (four in this case). It is possible,

and even probable, that some of these decisions a�ected the results. For instance,

while Direct Manual Individual control was found to be as safe as Supervisory

Individual control for the movement-to-coverage task, when using four robots, this

result may not have been the same if 100 robots were used. Likewise, a change in

the human interface, even for the same control technique, can a�ect the results. For

instance, if the human interface for the waypoint technique for giving the robots

instructions was di�cult to use, then the Supervisory control systems might not

have performed as well as it might have if this interface was easy to use. Ideally, every

combination of control system, number of robots, and all other possible di�erences

should have been examined in the experiments, but there is an in�nite number of
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possible combinations, so a complete examination is not possible.

The results will not necessarily be valid when considered outside the scope of the

experiments, which is limited to similar control systems, human interfaces, robots,

distribution of subject backgrounds, and experimental task setups (e.g., the obstacle

density in the task environment, amount of time delay present in the teleoperation,

etc.). This e�ect of the experimental setup on the results does not mean that the

results cannot be used in other situations. One should be careful when making

generalizations from these results, however, especially the more general �ndings

listed in Section 8.2. Instead, they should be used as guidelines for other situations,

as well as indications of where further research should be focused. While predictions

can be made, they should be veri�ed through further experimentation.

For example, in both of the movement-while-maintaining tasks that were ex-

amined, Group control was easier to use than Individual control. This points

out something that seems to be commonsense in afterthought. Because movement-

while-maintaining tasks require the human operator to keep the robots from devi-

ating from their current formation, it should be easier for the operator to give all of

the robots the same movement commands at the same time, which is what group

control provides. Therefore, since the two examples in these experiments point out

a �nding that seems logical, it is reasonable to think that the �nding may apply in

other situations for the same classes of tasks.

Ideally, at this point, the Multiagent Telerobotic System (MTS) designers should

conduct a small set of similar experiments to test this �nding with their particular

MTS setup (control system, number of robots, etc.). Even if further experimen-

tation is not conducted, however, using the results of these experiments, as well

as commonsense, is better than just trying to guess what type of control system to

provide for a task, which is, unfortunately, the technique that is currently used most
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often in practice.

8.4 Summary

Two types of experimental results were presented. First, the systems were ranked in

terms of safety, e�ectiveness, and ease-of-use for each of the four task classes. The

rankings were determined by the procedure described in Chapter 7.1. Second, some

general �ndings were identi�ed, relating the types of systems to the task classes,

although these results were not found for all the task classes. These �ndings were

determined by the procedure described in Chapter 7.2.

The experimental results can be used to help MTS developers create safe, e�ec-

tive, and easy-to-use systems for particular tasks. Likewise, if an existing system

provides multiplemethods of control, then a human operator can utilize these results

to choose a control method for the current task. Care should be taken when gen-

eralizing the results beyond the scope of the experiments. While they can provide

insights and guidelines, they should not be taken at face value in other situations.
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Chapter 9

Evaluation Through Predictive Study

The rankings and principles that are the results of this study are intended to be uti-

lized when designing a MTS for a particular task. Therefore, some sort of predictive

study was needed to determine if the results are actually useful for this purpose. A

predictive study is an experiment that utilizes the previous �ndings to predict the

new results.

A di�erent task than those used in the earlier experiments was chosen and clas-

si�ed using the task taxonomy. The task was chosen prior to the analysis of the

data from the �rst set of experiments. The chosen task is the �rst subtask of a

box-pushing task, that is, moving the robots such that they are all gathered close

to one side of a large box, that they will later push. This �ts into the movement-

to-convergence task classi�cation, because the robots must move from dispersed

positions to gather in a group near the box.

The idea was to choose one MTS that should perform well for this task and one

system that should perform poorly, based on the earlier analysis. These two systems

would then be tested against each other, using the identical experimental procedure

as for the initial tests. If the system that should perform well did better than the

system that should not, then this indicates some validity to the earlier results, and

thus the rankings would have demonstrated their utility.

It was not possible, however, to determine which system should perform best for

this class of task, since three of the systems performed equally well while the fourth
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performed poorly. Therefore, only one of the three good systems was chosen and

compared to the lone system that should perform poorly. The initial study's results

indicate that the Direct Manual Group (DG) control system should perform the

worst for this class of task over all three of the judgment criteria (safety, e�ectiveness,

and ease of use), and, thus, it was chosen as the predicted inferior system. While the

other three types of systems ranked equally well in terms of statistical signi�cance,

Direct Manual Individual (DI) control was chosen as the predicted superior

system for the task, because this control system performed slightly better or equal

to the others when the actual mean values were consulted.

9.1 Experimental Setup

The initial task setup is shown in Figure 9.1. There was a box in the center of the

task area, and the robots started at various positions around this box. The operator

had to move the robots such that all four of them were within a rectangle marked

on the oor on one of the long sides of the box. This rectangle was large enough

that all four robots could �t within it at the same time. When all four robots were

inside the rectangle, the task was completed.

9.2 Experimental Procedure

These experiments used the same experimental procedure as in the earlier tests. The

only di�erence was that only two systems were tested, once again in experimental

blocks (i.e., the replication were conducted as follows: DI, DG, DI, DG, ..., DI, DG).

Six replications were conducted for each system, so a total of 12 participants were

used. The participants received the same training as before and were allowed to ask

questions. They were given the same guidelines, i.e., they should complete the task

149



����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

(a)

(b)

Figure 9.1: The initial setup for the box-pushing task. In (a), the gray rectangle
is the box. The other rectangle is the area that the operator had to maneuver the
robots into. The black objects are robots. The photograph in (b) also shows the
initial setup for the task. Three robots can be seen. The fourth is just to the right
of the edge of the picture.
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as fast as possible and with as few collisions as possible. The timeout period was

10 minutes.

9.3 Results

The data analysis technique was similar to that used for the earlier experiments, as

presented in Chapter 7. Since only two systems were being compared here, however,

the Tukey multiple-comparison procedure was not necessary and therefore omitted.

The F -test described in Section 7.1.2 is su�cient to determine whether the means

are equal or not, and if they are not equal, it is obvious from the actual means which

is greater. Additionally, the Box-Cox procedure indicated that no transformation

was necessary to insure normality and equal variance for any of the data sets.

The Direct Manual Individual control system proved better than the Direct

Manual Group control system for all three of the criteria: safety, e�ectiveness,

and ease-of-use. The di�erence was even greater than in the earlier experiments. As

this was the anticipated result, based on the previous analysis, it lends validity to

the earlier experiments.

The means for each of the systems are presented in Table 9.1. The actual data

values are shown in tabular form in Appendix C. The F � value used to determine

if the means are signi�cantly di�erent is listed in Appendix D.

The most signi�cant di�erence between the systems was found in terms of Ef-

fectiveness. None of the participants who used the Direct Manual Group control

system was able to complete the task. The task is possible with this system, as the

designer tried it himself and was able to complete it. This, however, was performed

post facto: the experimenter had watched the other participants try and had gained

ideas on how to accomplish it from them. In order to accomplish the task with the

Direct Manual Group control system, it is necessary to intentionally drive the
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Table 9.1: Means of the Predictive Study Data Sets

Safety Means
System Mean
Direct Manual Individual 0.3
Direct Manual Group 4.3

E�ectiveness Means
System Mean
Direct Manual Individual 232.8
Direct Manual Group 600.0

Ease-of-use Means
System Mean
Direct Manual Individual 66.5
Direct Manual Group 88.0

robots into non-movable obstacles in order to move the robots closer to each other.

Therefore, one must sacri�ce safety in order to accomplish the task, or they must

sacri�ce e�ectiveness to avoid collisions.

9.4 Summary

The predictive study helped to validate the earlier results, and demonstrate their

utility for designing MTSs (of the types considered in this dissertation) for the ex-

amined tasks. This study examined an experimental task (part of box-pushing) that

had not been used in the earlier experiments, but �t the movement-to-convergence

class. Direct Manual Individual and Direct Manual Group control, which the

earlier analysis indicated were superior and inferior, respectively, for this task, were

compared. The results were as anticipated, with the Direct Manual Individual

MTS performing better than the Direct Manual Group system.
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Chapter 10

Contributions

There are three main contributions from this work:

� the rankings and general �ndings that are the results of the experiments con-

ducted

� an adaptation of a general experimental methodology to make it appropriate

for large-scale telerobot evaluations

� a taxonomy of mobile multiagent tasks

Each of these contributions is discussed in the following sections.

10.1 Experimental Results

Large-scale evaluations of di�erent types of systems are necessary to advance the

�elds of robotics and telerobotics to a more scienti�c stage. Currently, most re-

searchers use intuition to develop robotic systems. Those evaluations which are

conducted usually either compare the researcher's system to one other system for a

single task, or compare the researcher's system to itself for multiple tasks. These

are useful comparisons, but unbiased evaluations of multiple systems for multiple

tasks are important for developing scienti�c principles which can be used in other

research.
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This dissertation's research is the �rst such evaluation at such a large scale.

Ninety-six subjects were used to evaluate the Multiagent Telerobotic Systems (MTSs)

(Chapter 6), and an additional twelve were used to test the predictive qualities of

the results (Chapter 9). This number of human participants is believed to be un-

precedented for system evaluations in the �eld of mobile telerobotics. Many more

such large-scale evaluations are needed, as this one covers only a small subset of

the possible MTSs and the task types. This study begins the task, however, and

hopefully, it will inspire other researchers to conduct similar evaluations.

Two types of results were generated by these experiments: system rankings for

each task and, in some cases, general �ndings relating one of the examined dimen-

sions to the task type. These results are presented in Chapter 8. The rankings show

which system types are best for a task in terms of each of the three criteria (safety,

e�ectiveness, and ease-of-use). The general �ndings indicate that one system di-

mension has a particular e�ect for a task type regardless of the setting of the other

dimension. An example general �nding that was found is \Group control is more ef-

fective than Individual control for movement-while-maintaining-convergence tasks

regardless of whether Supervisory or Direct Manual control is used."

The rankings and general �ndings that resulted from these experiments are useful

to both MTS developers and users. Developers can use them to help create safe,

e�ective, and easy-to-use MTSs. If they know the nature of the task or tasks that

their system will be used for, they can see what sort of systems were found to be

best for each criteria in this evaluation, and then develop a system that will be best

for them, based on their own needs. If an MTS user can choose between multiple

control methods at execution time, then he can use the results of these evaluations

to decide on the control technique that is best for his current task.
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A predictive study (Chapter 9) demonstrated the utility of the experimental re-

sults for developing MTSs. The system rankings were used to determine which sys-

tem types should and should not perform well for part of a box-pushing task. These

two systems (Direct Manual Individual and Direct Manual Group control)

were then compared for this task, and they performed as had been predicted. This

shows that the experimental results presented in Chapter 8 can be used e�ectively

to develop good MTSs.

Additionally, the results can be used as a starting point to indicate what sort of

additional evaluations are needed. The evaluations cover only a small section of the

space comprised of all possible MTSs. Similar evaluations should be conducted to

broaden our knowledge of the relationships between MTS systems and tasks.

10.2 Experimental Methodology for Evaluating

Telerobot Systems

Most robotics research does not consider system evaluation in any structured man-

ner. However, this is an essential part of any scienti�c or engineering endeavor.

Without formal analysis, and the discovery of the underlying design principles,

robotics will remain more of an art than a science.

Since no comparisons of this sort have been conducted in the past, no exper-

imental methodology existed that was tailored to this type of study. A general

experimental methodology has been adapted to �t these kinds of evaluations, and

has been applied to a comparison of mobile multiagent telerobotic systems. The

methodology combines elements from the areas of user-interface evaluation, human-

factors studies, and general experimental design.

This methodology is presented in Chapter 3 in a generalized manner, to provide
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an easy-to-use procedure for other researchers conducting their own evaluations.

The basic procedure is as follows:

1. Determine evaluation criteria.

2. Decide what types of systems to compare.

3. Formulate tasks to use the systems for.

4. Conduct experiments with real robots to compare the systems for

the tasks.

5. Analyze the data collected from the experiments to determine

how each system performed.

The methodology provides suggestions for formally determining which system and

task types to examine. It also provides guidelines for conducting experiments in-

volving both human operators and real robots.

Furthermore, the methodology is not speci�c to either multiagent or mobile robot

systems. It can also be used for single-agent systems and manipulator arms. Many

of the techniques used, such as the methods for selecting systems and tasks for the

evaluation, are also applicable to fully autonomous robot evaluations.

The methodology, as presented, is intended to serve as a standard procedure for

other telerobotics researchers to evaluate the utility of various system designs, as

well as to compare existing applications. Hopefully, the presentation of this work

and the explanation (Chapter 3) of how to apply the methodology to other robot

system evaluations will provide the impetus for other researchers to conduct these

sorts of evaluations and to realize their importance in robotics research.
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10.3 Mobile Multiagent Task Taxonomy

When two or more researchers compare their robotic systems for a particular task or

tasks, it is important to know whether the tasks are similar in nature or of di�erent

types. A formal taxonomy of tasks allows researchers to know if they are evaluating

their systems for the same kind of tasks as other researchers. For instance, two tasks

may seem di�erent in their application details, yet the underlying movement types

(or other characteristics) may be similar. An example is pushing a box and ying

in ocks, in which the high-level descriptions seem di�erent, yet both applications

involve moving as a coordinated group. Taxonomies allow us to classify application

tasks into general categories, thereby helping to identify similarities and di�erences

between tasks.

Additionally, when comparing mobilemultiagent systems for tasks, it is necessary

to know what types of tasks exist. Most evaluations will only be able to examine

a subset of all the possible task classi�cations. A formal taxonomy of tasks will

allow a structured choice of which task types to examine. For instance, one set of

experiments could examine one branch in the taxonomy tree, including all of that

branch's sub-categories. Then another set of experiments could examine a di�erent

branch. This ensures both that the tasks chosen for each evaluation are similar in

nature, and that no general task type is forgotten.

No existing taxonomy for classifying mobile multiagent tasks could be found. A

taxonomy (Figure 10.1) has been developed that classi�es tasks or subtasks in terms

of the relative motion of the robots (Chapter 5.1). It provides a means for compar-

ing the mobility requirements of various multiagent tasks. This taxonomy di�eren-

tiates tasks based on whether they are coverage or convergence tasks, movement-to

or movement-while-maintaining tasks, and known-positions or unknown-positions

tasks. These classi�cations are described in more detail in Chapter 5.1.
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The presented taxonomy is appropriate for classifying the relative motion of

multiagent human and animal tasks as well as robot or telerobot tasks. Furthermore,

it allows a MTS designer to classify his task so that he can use the results of this

research. The taxonomy can be used to guide further system evaluations. Only part

of this taxonomy was examined as part of this research; the other task categories

remain to be studied.

10.4 Future Work

This research raises as many questions as it answers. For instance, would the results

be the same if the number of robots used was varied? What e�ect do other possible

system dimensions have on the performance of MTSs? What sort of results would

be found if other points along the same two dimensions were examined?

Many more similar experiments need to be conducted. These are only the begin-

ning. There is an in�nite space of possible MTSs and tasks, and these experiments

cover only a small section of that space. Only two dimensions of possible telerobot

systems were examined. Within each of these dimensions, only two points were ex-

amined. Only a portion of the task taxonomy was considered. Furthermore, there

are potentially in�nite di�erent taxonomies of mobile multiagent tasks, which may

classify the applications in other ways. Each MTS was tested with exactly four

robots, rather than examining various numbers.

The goal of telerobot system evaluators should be to examine as much of this

space as possible. The next logical step would be to examine the remainder of

this taxonomy with the same systems and tasks. This dissertation has begun these

evaluations. It provides a general description of a formal telerobotic evaluation

methodology for researchers to use. It is hoped that others will see the importance

of formal evaluations and use this methodology to conduct further experiments.
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Evaluations of this sort will help transform robotics and telerobotics into a science,

rather than only an engineering �eld.
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Appendix A

Terminology

behavior-based: Behavior-based robots determine their actions through some com-

bination of the output of one or more simple behaviors. Each behavior takes

care of one aspect of the task, such as obstacle avoidance.

block: A grouping of experimental treatments, with every treatment occurring

once. In temporal blocking, which is used in this thesis, one replication is

conducted on all treatments in the block before the next replication is begun

on any treatment.

direct manual control: This means that the human operator has complete con-

trol over the robots' actions. Aside from its physical limitations, the robot does

not contribute to determining its motion. An example is a radio controlled

toy car.

factor: A factor is a predictor, or independent, variable to be studied in an investi-

gation. For instance, in an investigation of the e�ect of price on product sales,

price is the examined factor.

factor level: A factor level is a particular value for that factor. If price is the

factor, then $50 would be one of many possible factor levels.

mobile telerobot: This is a telerobot that is capable of moving itself. For instance,
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a telerobotic car would be considered a mobile telerobot, while a telerobot arm

that is bolted to a table would not.

multiagent robotics: This refers to using more than one robot to complete the

same task. The robots may be working on the same or di�erent subtasks, and

they are not required to use the same approach to the task.

multiagent telerobotic system (MTS): This is a group of more than one teler-

obot controlled by a human operator.

replication: Replications are repeat trials for the same experimental treatment.

shared control: With shared control, the instructions given by the human and the

robot are combined in some manner to determine the motion of the robot.

strict supervisory control: With strict supervisory control, the human operator

instructs the robot and then observes it as it attempts to autonomously carry

out its instructions. If there is a problem, the human may help out by giv-

ing more instructions. The term supervisory control, in the less strict sense,

is often used to refer to either shared control, strict supervisory control, or

combinations of the two approaches.

teleoperator: A teleoperator is a machine that uses direct manual control.

telerobot: The strict de�nition of a telerobot is a robot that determines its actions

based on some combination of human input and autonomous control. A teler-

obot can use shared control or strict supervisory control. In this research, the

term telerobot will be used to refer to both true telerobots and to teleoperators.

treatment: A treatment is a combination of levels from each factor in an experi-

ment. So, if one factor being examined is price (with levels $50 and $100) and
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another is size (with levels small and large), then each of the four combina-

tions of price and size ($50/small, $50/large, $100/small, and $100/large) is a

treatment. In a one-factor experiment, the factor levels are the treatments.
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Appendix B

Details of the Control Systems

The �rst section of this appendix describes how each of the motor schemas used in

this research functions. The second section tells which motor schemas were used

with each of the four systems and the parameter settings used.

B.1 Motor Schema Details

Each motor schema produces a vector output consisting of a direction and magni-

tude. The vector outputs of the active schemas are then summed and normalized

to produce a �nal motion vector for the robot. The motor schemas used in this

research are computed as follows:

Avoid-obstacle

Moves the robot away from an obstacle [5].

Vmagnitude =

0 for d > S

S�d

S�R
�G for R < d � S

1 for d � R
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Vdirection = along a line from the robot to the center of the obstacle, pointing away

from the obstacle.

S, R, G, and d are de�ned as follows:

S = sphere of inuence (radial extent of force from the center of the obstacle),

R = radius of the obstacle,

G = gain,

d = distance of the robot to the center of obstacle.

Avoid-robot

Moves the robot away from another robot. The details of this schema are the same

as for the avoid-obstacle, except that another robot is substituted for the obstacle.

Formation

Moves the robot to its proper place in the group formation. The Formation schema

used in this research uses the unit-center reference [13]. A unit-center is computed

by averaging the x and y positions of all the robots involved in the formation. Each

robot determines its own formation position relative to that center.

Vmagnitude =

0 if d � D

d�D
B
�G if D < d < B

G if d � B
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Vdirection = toward the formation position for this robot based on the type of

formation.

d, D, B, and G are de�ned as follows:

d = distance from the robot to its formation position,

D = dead zone radius,

B = ballistic zone radius,

G = gain.

Move-to-waypoint

Moves the robot towards the location of the next waypoint.

Vmagnitude = �xed gain value.

Vdirection = in the direction of the next waypoint.

Teleautonomy

Moves the robot in the direction and speed that the human operator inputs into the

joystick.

Vmagnitude = set by user (between 0 and a �xed gain)

Vdirection = set by user.
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B.2 Parameter Settings for Each System

Parameters common to all systems

Parameter name Setting

Base velocity 0.15 m/s

Max velocity 0.20 m/s

Cautious velocity 0.01 m/s

Direct Manual Control Assemblage

The following schema and parameter were used for both the Direct Manual

Individual control and the Direct Manual Group control.

Teleautonomy Schema

Parameter name Setting

Gain 1.0

Supervisory Control Assemblage

The following schemas and parameters were used for both the Supervisory

Individual control and the Supervisory Group control.

Avoid-obstacle Schema

Parameter name Setting

Gain 1.0

Sphere of Inuence 0.75 m

Safety Margin 0.1 m
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Avoid-robot Schema

Parameter name Setting

Gain 1.2

Sphere of Inuence 0.6 m

Safety Margin 0.4 m

Formation Schema

Parameter name Setting

Gain 1.0

Type Set by user

Reference Unit-center-referenced

Spacing 0.5 m

Dead Zone Radius 0.25 m

Saturation Length 1.0 m

Teleautonomy Schema

Parameter name Setting

Gain 1.0

Move-to-waypoint Schema

Parameter name Setting

Gain 1.0

Success Radius 0.75 m
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Appendix C

Data Values

The actual data that was collected during the experiments is presented in tabular

form here. The data is shown on �ve tables, one for each of the four task classes in

the main experiments (described in Chapter 6) and one for the predictive experiment

(described in Chapter 9).

Each table is divided into four sections, one for each of the types of data collected.

In each section, the four systems are listed. The six data values (from the six

replications for that system/task combination) for that system are shown across the

row.
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Table C.1: Movement-to-Coverage Data Values

Subject Number
1 2 3 4 5 6

Number of collisions
Direct Manual, Individual 0 0 0 0 0 0

Direct Manual, Group 12 7 6 5 12 6
Supervisory, Individual 0 0 0 0 0 0

Supervisory, Group 0 0 1 0 0 0
Completion of the task (Y = Completed, N = Incomplete)
Direct Manual, Individual Y Y Y Y Y Y

Direct Manual, Group N N N N N N
Supervisory, Individual Y Y Y Y Y Y

Supervisory, Group Y N N Y Y N
Task completion time (seconds)

Direct Manual, Individual 212 181 237 253 196 179
Direct Manual, Group 600 600 600 600 600 600
Supervisory, Individual 198 308 500 534 221 239

Supervisory, Group 552 600 600 599 539 600
Number of user actions

Direct Manual, Individual 47 26 32 51 42 36
Direct Manual, Group 45 40 108 49 55 77
Supervisory, Individual 32 58 80 82 56 30

Supervisory, Group 45 65 67 53 80 73
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Table C.2: Movement-to-Convergence Data Values

Subject Number
1 2 3 4 5 6

Number of collisions
Direct Manual, Individual 0 0 0 0 0 0

Direct Manual, Group 4 1 1 0 5 0
Supervisory, Individual 0 0 0 0 0 0

Supervisory, Group 0 0 0 0 0 0
Completion of the task (Y = Completed, N = Incomplete)
Direct Manual, Individual Y Y Y Y Y Y

Direct Manual, Group N N N N N N
Supervisory, Individual Y Y Y Y Y Y

Supervisory, Group Y Y Y Y Y Y
Task completion time (seconds)

Direct Manual, Individual 174 245 173 195 169 123
Direct Manual, Group 600 600 600 600 600 600
Supervisory, Individual 348 201 342 234 151 241

Supervisory, Group 314 256 131 313 211 213
Number of user actions

Direct Manual, Individual 28 56 27 51 49 38
Direct Manual, Group 116 52 61 57 103 66
Supervisory, Individual 70 34 56 43 37 31

Supervisory, Group 46 14 15 16 36 47
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Table C.3: Movement-While-Maintaining-Coverage Data Values

Subject Number
1 2 3 4 5 6

Number of collisions
Direct Manual, Individual 0 1 0 0 0 0

Direct Manual, Group 0 0 3 2 2 0
Supervisory, Individual 0 0 0 0 0 0

Supervisory, Group 0 0 0 0 0 0
Completion of the task (Y = Completed, N = Incomplete)
Direct Manual, Individual Y Y Y Y Y Y

Direct Manual, Group N Y Y Y Y Y
Supervisory, Individual Y Y Y N Y Y

Supervisory, Group N Y Y N N Y
Task completion time (seconds)

Direct Manual, Individual 186 166 186 217 177 238
Direct Manual, Group 264 156 333 244 173 158
Supervisory, Individual 210 163 251 260 269 134

Supervisory, Group 197 148 146 216 318 206
Number of user actions

Direct Manual, Individual 50 41 36 60 57 47
Direct Manual, Group 36 24 38 24 27 20
Supervisory, Individual 38 35 83 56 54 30

Supervisory, Group 8 25 19 17 35 21

172



Table C.4: Movement-While-Maintaining-Convergence Data Values

Subject Number
1 2 3 4 5 6

Number of collisions
Direct Manual, Individual 0 0 1 0 1 2

Direct Manual, Group 0 1 1 0 2 1
Supervisory, Individual 0 1 0 0 0 0

Supervisory, Group 0 0 0 0 1 0
Completion of the task (Y = Completed, N = Incomplete)

Direct Manual, Individual Y Y Y Y Y Y
Direct Manual, Group Y Y Y Y Y Y
Supervisory, Individual Y Y Y Y Y Y

Supervisory, Group Y Y Y Y Y Y
Task completion time (seconds)

Direct Manual, Individual 458 694 962 476 502 384
Direct Manual, Group 355 369 386 496 360 312
Supervisory, Individual 767 642 917 978 859 592

Supervisory, Group 1539 549 299 550 583 292
Number of user actions

Direct Manual, Individual 178 186 263 105 128 99
Direct Manual, Group 42 23 36 54 34 29
Supervisory, Individual 175 132 172 191 221 162

Supervisory, Group 194 58 29 26 54 27
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Table C.5: Predictive Task Data Values

Subject Number
1 2 3 4 5 6

Number of collisions
Direct Manual, Individual 1 0 1 0 0 0

Direct Manual, Group 1 3 0 7 4 11
Completion of the task (Y = Completed, N = Incomplete)
Direct Manual, Individual Y Y Y Y Y Y

Direct Manual, Group N N N N N N
Task completion time (seconds)

Direct Manual, Individual 207 227 248 272 212 231
Direct Manual, Group 600 600 600 600 600 600

Number of user actions
Direct Manual, Individual 79 49 63 84 42 82

Direct Manual, Group 116 127 95 103 35 52
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Appendix D

Con�dence intervals, �, F �, and q� values

The following is a list of the � values used to transform the experimental data (using

Y � transform), the F �-values obtained from the single-factor and two-factor ANOVA

analysis of the experimental data values, and the family con�dence intervals used

to determine the rankings. If the two-factor F test indicated that a main e�ect was

present, then the q� value used by the Tukey multiple comparison procedure to test

for main e�ects is also listed. For more information about the techniques used to

determine the � value, F -values, and con�dence intervals, as well as what each of

these reveals, see Chapter 7. All of the following tests were performed using an �

value of 0.05.

As discussed in Section 7.1.2, the appropriate decision rule for the single-factor

ANOVA tests is:

If F � � 3:10,

then conclude H0,

else conclude Ha.

If H0 was concluded, then no con�dence intervals are presented, since they were not

needed to determine a ranking. Also, as presented in Section 7.2.1, the decision rule

for determining interactions and the possible presence of main e�ects is:

If F � � 4:35,

then conclude H0,

else conclude Ha
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This test uses the three F � values for interactions, columns, and rows to determine

if there are interactions, main e�ects due to the number of robots controlled, and

main e�ects due to the level of autonomy respectively.

The decision rule for the multiple comparison test for main e�ects is as follows:

If jq�j � 2:95,

then conclude H0,

else conclude Ha.

This is described in more detail in Section 7.2.2.

In the following tables, DI stands for Direct Manual Individual control, DG is

Direct Manual Group, SI is Supervisory Individual, and SG is Supervisory

Group. The con�dence intervals and means presented are for the transformed data

values. The data was transformed as described in Section 7.1.1.
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D.1 Movement-to-coverage task

Safety E�ectiveness Ease-of-use

Transformation � 1 1 -0.1

Single-factor F � 37.26 37.5 2.724

Two-factor Interaction F � 36.21 5.165 0.8427

Two-factor Column F � 39.36 104.5 5.25

Two-factor Column q� NA -14.4568 1.2982

Two-factor Row F � 36.21 2.842 2.08

Two-factor Row q� NA NA NA

Safety Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 0.0 -1.2887 1.2887

DG 8.0 6.7113 9.2887

SI 0.0 -1.2887 1.2887

SG 0.2 -1.1220 1.4554

E�ectiveness Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 209.7 147.8157 271.5176

DG 600.0 538.1491 661.8509

SI 333.3 271.4824 395.1843

SG 581.7 519.8157 643.5176

No Ease-of-use con�dence intervals needed (all systems equivalent).
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D.2 Movement-to-convergence task

Safety E�ectiveness Ease-of-use

Transformation � 1 1 0.3

Single-factor F � 4.416 69.23 7.152

Two-factor Interaction F � 4.416 89.45 11.36

Two-factor Column F � 4.416 78.91 1.47

Two-factor Column q� NA NA NA

Two-factor Row F � 4.416 39.33 8.3

Two-factor Row q� NA NA NA

Safety Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 0.0 -0.8638 0.8638

DG 1.8 0.9695 2.6971

SI 0.0 -0.8638 0.8638

SG 0.0 -0.8638 0.8638

E�ectiveness Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 179.8 134.4737 225.1929

DG 600.0 554.6404 645.3596

SI 252.8 207.4737 298.1929

SG 239.7 194.3071 285.0263
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Ease-of-use Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 3.0 2.7404 3.3249

DG 3.6 3.3346 3.9191

SI 3.1 2.8160 3.4005

SG 2.7 2.3771 2.9616
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D.3 Movement-while-maintaining-coverage task

Safety E�ectiveness Ease-of-use

Transformation � 0.5 -0.7 0.1

Single-factor F � 3.579 0.4533 9.918

Two-factor Interaction F � 2.419 0.001137 1.066

Two-factor Column F � 2.419 0.756 27.43

Two-factor Column q� NA NA 7.4062

Two-factor Row F � 5.9 0.6027 1.26

Two-factor Row q� 3.4349 NA NA

Safety Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 0.2 -0.2111 0.5444

DG 0.8 0.3823 1.1378

SI 0.0 -0.3778 0.3788

SG 0.0 -0.3778 0.3788

No E�ectiveness con�dence intervals needed (all systems equivalent).

Ease-of-use Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 4.7 4.2686 5.1444

DG 3.8 3.3387 4.2145

SI 4.7 4.2487 5.1246

SG 3.3 2.8621 3.7379
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D.4 Movement while maintaining convergence task

Safety E�ectiveness Ease-of-use

Transformation � 0.5 -1 0.4

Single-factor F � 1.825 4.592 18.04

Two-factor Interaction F � 0.1522 0.00173 0.2027

Two-factor Column F � 0.1522 8.689 52.4

Two-factor Column q� 3.2155 -4.1687 10.2369

Two-factor Row F � 5.169 5.086 1.521

Two-factor Row q� NA 3.1893 NA

No Safety con�dence intervals needed (all systems equivalent).

E�ectiveness Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 0.012 0.0099 0.0147

DG 0.016 0.0134 0.0182

SI 0.010 0.0071 0.0119

SG 0.013 0.0108 0.0155

Ease-of-use Con�dence Intervals

System Mean Lower Boundary Upper Boundary

DI 7.5 7.0630 7.9388

DG 4.2 3.7342 4.6100

SI 7.9 7.4408 8.3166

SG 4.9 4.4778 5.3536
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D.5 Predictive study task

Safety E�ectiveness Ease-of-use

Transformation � 1 1 1

Single-factor F � 5.669 2.393 23.5
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Appendix E

Subject Distribution

The two tables in this section show the distribution of participants across the dif-

ferent systems and tasks. The �rst table shows the distribution across the types of

systems. Each column of this table represents a di�erent system type. The second

table shows the distribution across the di�erent tasks. Each column of the second

table represents one of the four task classes. Each of the tables is divided into four

sections of rows. The �rst set of rows shows the distribution of males and females.

The second set shows the age groups. The third set shows the highest level of ed-

ucation that the participant had already achieved. The last set indicates whether

the participant had previous experience working with mobile robots.

Each cell in the tables has two numbers. The �rst number is the actual number

of participants that �t this pro�le. The second number, in parentheses, is the

percentage of the participants for that system or task that �ts this pro�le.

The subjects were mostly males between the ages of 20 and 29. The ratios

of males to females and between the di�erent age groups is reasonably consistent

across the di�erent systems and tasks. High school was the highest level of edu-

cation completed for most subjects. Although the level of education was constant

across most of the tasks and systems, the movement-while-maintaining-convergence

task had greater numbers of subjects with higher education levels than the other

tasks. Almost all of the participants had no prior experience using mobile robots.

Those subjects who had used mobile robots before were evenly distributed across
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the system types and somewhat evenly across the task classes.
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Table E.1: Participant distribution by system. The �rst set of rows show the par-
ticipant's sex, followed by the age, highest level of education completed, and then
whether or not they have experience working with mobile robots.

Direct Manual Direct Manual Supervisory Supervisory

Individual Group Individual Group

male 18 (75%) 16 (67%) 20 (83%) 17 (71%)
female 6 (25%) 8 (33%) 4 (17%) 7 (29%)
10 - 19 5 (21%) 6 (25%) 5 (21%) 7 (29%)
20 - 29 16 (67%) 15 (63%) 14 (58%) 14 (58%)
30 - 39 0 (0%) 1 (4%) 5 (21%) 2 (8%)
40 - 49 1 (4%) 0 (0%) 0 (0%) 0 (0%)
50 - 59 2 (8%) 2 (8%) 0 (0%) 1 (4%)

pre-high school 1 (4%) 0 (0%) 0 (0%) 0 (0%)
high school 14 (58%) 15 (63%) 10 (42%) 17 (71%)

Bachelor's degree 5 (21%) 4 (17%) 8 (33%) 2 (8%)
Master's degree 2 (8%) 2 (8%) 4 (17%) 4 (17%)

Ph.D./M.D. 2 (8%) 2 (8%) 1 (4%) 1 (4%)
other 0 (0%) 1 (4%) 1 (4%) 0 (0%)

experience 2 (8%) 3 (12%) 2 (8%) 2 (8%)
no experience 22 (92%) 21 (88%) 22 (92%) 22 (92%)
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Table E.2: Participant distribution by task. The �rst set of rows show the par-
ticipant's sex, followed by the age, highest level of education completed, and then
whether or not they have experience working with mobile robots.

Movement Movement
while while

Movement to Movement to maintaining maintaining
coverage convergence coverage convergence

male 16 (67%) 19 (79%) 15 (63%) 21 (87%)
female 8 (33%) 5 (21%) 9 (37%) 3 (13%)
10 - 19 3 (13%) 6 (25%) 9 (38%) 5 (21%)
20 - 29 16 (67%) 17 (71%) 11 (46%) 15 (63%)
30 - 39 2 (8%) 0 (0%) 3 (13%) 3 (13%)
40 - 49 0 (0%) 1 (4%) 0 (0%) 0 (0%)
50 - 59 3 (13%) 0 (0%) 1 (4%) 1 (4%)

pre-high school 0 (0%) 0 (0%) 0 (0%) 1 (4%)
high school 15 (63%) 17 (71%) 16 (67%) 8 (33%)

Bachelor's degree 3 (13%) 5 (21%) 5 (21%) 6 (25%)
Master's degree 3 (13%) 1 (4%) 1 (4%) 7 (29%)

Ph.D./M.D. 3 (13%) 1 (4%) 2 (8%) 0 (0%)
other 0 (0%) 0 (0%) 0 (0%) 2 (8%)

experience 3 (12%) 1 (4%) 1 (4%) 4 (17%)
no experience 21 (88%) 23 (96%) 23 (96%) 20 (83%)
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Appendix F

Forms Used During the Experiments

Figures F.1 and F.2 are the consent form that the human subjects signed before

participating in the experiments. The Georgia Institute of Technology Institutional

Review Board approved this form and the experiments. Figure F.3 is the survey

that the subjects completed. After that, the script that the experimenter used when

talking to the subjects is presented.
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Figure F.1: Experimental Consent form, Page 1.
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Figure F.2: Experimental Consent form, Page 2.
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Figure F.3: The survey that the subjects completed.
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The script the experimenter used when talking to the subjects:

First of all, let me tell you what I am doing. A multiagent telerobotic system is a

system that allows a human to control a group of robots. There are many di�erent kinds

of systems. What I want to do is to determine what kind of these systems are best for

what types of tasks. To do this, I have identi�ed four types of systems for controlling

groups of robots, and I have identi�ed the di�erent types of tasks that groups of robots

might be asked to perform. Now, I am bringing in a whole bunch of people, and each

person is using one of the systems for one of the types of tasks. I want you to understand

that I am testing the system and not you. Furthermore, since this is all based on the

assumption that certain types of systems are better than others for certain tasks, the

system you get to use may be easy to complete the task with, or it may be di�cult or

even impossible to complete the task.

I'd like you to �ll out a consent form now. There are two of them, but they are the

same. The reason there are two is that you get to keep one and I keep one.

I am going to be videotaping the robots. You can see the videocamera over there.

It can see the robots. It can't see you. Furthermore, your identity will not be associated

with the data I collect in any way. It will only be referred to as the data from participant

number .

Now I'd like you to �ll out a survey.

Now I am going to show you how to use the controls for the system that you are

going to use. You will learn how to use the controls using simulated robots, here on the

computer screen. When you do the actual task that I will be taking data measurement

on, you will use the real robots. However, the controls will be the same.

|||||||||||||||||||||||||-

(One of the following)
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Sentry Positioning

In this task, you will pretend that the robots are sentries, whose job is to guard this

lab at night. If you look at the oor, you can see that it is marked with electrical tape.

There is black tape and red tape. Ignore the red tape, as that is another student's

work. The black tape divides the lab into four quadrants. A robot can guard an entire

quadrant if it is completely inside that quadrant. Since there are four robots and four

quadrants, the robots can e�ectively guard the lab if there is one robot in each quadrant.

It is the beginning of the night, and the robots are gathered in one section of the lab,

doing whatever robots do when they are not working. Your job is to move the robots so

that there is one robot in each quadrant.

Gathering to Perform Work

If you look at the oor, you can see that it is marked with electrical tape. There

is black tape and red tape. Ignore the red tape, as that is another student's work.

The black tape divides the lab into four quadrants. There is a robot in each quadrant,

performing some work in that quadrant. When the task begins, this robot contacts you

and informs you that there is a broken machine in its quadrant, and that it needs the

help of the other three robots to �x it. Your job is to move the robots such that all four

of them are within the quadrant with the broken machine at the same time.

Patrolling

In this task, you will pretend that the robots are soldiers, and they have been sent

on a patrol of this lab. If you look at the oor, you can see that it is marked with

electrical tape. There is black tape and red tape. Ignore the red tape, as that is another

student's work. The black tape divides the lab into four quadrants. The robots' patrol

route takes them through the four quadrants in this order (show order) and then back

to the starting quadrant. Your job is to move the robots through the quadrants in this
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order. Since the robots represent soldiers, they must stay together as you move them

to protect each other. To ensure this, as you are moving the robots from this quadrant

to this one, none of the robots can move into the next quadrant until they are all within

this one. And as you are moving them into each of the other quadrants, none of them

can move into the next quadrant until they are all within the current one. When you

get them back into the start quadrant, you will have completed the task.

Dragging a River Bottom

In this task, you will pretend that the lab is a river, and that the robots are boats

dragging the river bottom for something. If you look at the oor, you can see that it is

marked with electrical tape. There is black tape and red tape. Ignore the red tape, as

that is another student's work. The black tape divides the lab into four lanes, and there

is a robot in each lane. The lanes go across the lab, or downriver. Your job is to move

the robots downriver and across this �nish line. To make sure that they don't miss any

area, you must keep each robot in its respective lane as you move them. In other words,

this robot can not cross over into that robot's lane, and it can't go out of the outside

boundary either.

|||||||||||||||||||||||||-

When you have accomplished this, you will have completed the task. I will be

watching the robots, and I will tell you when you have completed the task. When I say

that you have completed the task, I want you to take your hand o� the mouse, even if

the robots are still moving, and I will come shut down the system. You will have

minutes to complete the task. If, by any chance, the timeout period is exceeded, I will

come shut down the system.

These trash cans and this box are obstacles. You want to try to avoid hitting them.

However, if you do hit them, don't worry. The robots are moving slow enough that it

won't hurt them. The tables on the side of the room are also obstacles. If a robot runs
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underneath one of them, it could knock something o� the top of the robot. So, if I see

that the robot is going to go under a table, then I will run over and shut the robot o�,

and the task will be counted as failed.

You have two guidelines in completing the task. I want you to complete the task as

fast as possible, and with as few collisions as possible. Do you have any questions?
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