
Visualizing Multi-process CPU Utilization using CUSP
Mark W. Maimone

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA USA
Mark.Maimone@jpl.nasa.gov

Abstract—The CPU Utilization Statistics Plotter (CUSP) tool
automates the interpretation of detailed CPU Utilization trace
data and statistics. It puts you on the cusp of understanding how
CPU resources are split among the many parallel components of
a software system.

CUSP combines time-sampled CPU utilization numbers and
Event Log annotations to generate human-readable plots and
tables. It automatically splits up large CPU usage log files
around interesting events, determines and highlights just the
tasks of primary relevance by evaluating their changing contri-
bution to each plot’s total CPU usage, automatically eliminates
irrelevant tasks, provides context by labeling plots with names
and durations of all active commands, and uses consistent color-
coding to enable quick visual comparison across multiple plots.

CUSP has been used to process CPU Utilization trace logs on
the Mars Science Laboratory and the Mars 2020 Rover missions
during flight software development and Flight Operations on the
Martian surface since December 2013.

TABLE OF CONTENTS

1. INTRODUCTION .1
2. RELATED WORK .1
3. EXAMPLE REALTIME CPU DATA : MSL FSW2
4. AUTOMATIC PLOT GENERATION2
5. MANUAL PLOT GENERATION .6
6. INTERPRETING THE DATA .6
7. CURRENT AND FUTURE USES. .7
8. CONCLUSION .7
9. ACKNOWLEDGEMENTS .7
REFERENCES .7
BIOGRAPHY .8

1. INTRODUCTION

Software systems with multiple parallel processes can be
difficult to understand and debug. We wanted to understand
how CPU time was being divided among multiple tasks, to
give us the means of directly measuring unexpected delays in
two realtime systems; the Curiosity and Perseverance Rover
Flight Software (FSW) on the Mars Science Laboratory
(MSL) and Mars 2020 (M2020) missions.

Curiosity’s flight software is an embedded system running
the VxWorks realtime operating system. [6] The MSL and
M2020 embedded FSW use VxWorks’taskHookLib to
implement logging of every task switch that occurs in the
VxWorks realtime system, as part of the Operating System
Abstraction Layer (OSAL) and Resource Tracking Service
(RTS) FSW modules. There are more than one hundred

978-1-6654-3760-8/22/$31.00 c©2022 IEEE

independent software modules that comprise the FSW, and
more than one hundred corresponding VxWorks tasks in the
running system. [1] The best way to begin to understand
unexpected delays is to measure the CPU usage of each
running task, to see where time is actually being spent.

But measurement of CPU usage in our realtime system pre-
sented us with several difficulties.

There are so many task context switches that the amount of
raw data needed to record them all rapidly grows to be im-
practically large, with several megabytes needed to document
one minute of operation. Our deployed system could never
downlink so much data, and even our testbed systems had
trouble processing the large amounts of data generated over
more than a trivial duration.

Another issue was the manual interpretation of the large
amount of trace data. The process of breaking up the logged
data into more understandable pieces initially required having
a person specify start and end times of every period of interest
by hand. Given that we can run dozens or hundreds of
commands per session, this unwieldy process rapidly became
unworkable.

We also needed a way to zoom in on just the tasks that
contributed to the activity being studied. Our system has over
a hundred independent tasks, but trying to visually grasp tens
of thousands of CPU usage samples spanning so many tasks
was daunting. We needed a way to restrict attention to just the
tasks of interest, by creating a tool to determine which tasks
were most active (instead of pre-specifying a smaller set of
tasks to visualize, which would fail to elucidate unexpected
task names).

Finally, we wanted a way to quickly understand the inter-
relationships between plots from different commands. Our
existing CPU usage data plots offered no context, and the
existing plotting tools used an ever-changing color scheme
that made comparing different plots needlessly challenging.

2. RELATED WORK

Many commercial operating systems provide a realtime Per-
formance Monitor, or Task Manager, with a simple visualiza-
tion of the current overall CPU usage. However, these tools
typically do not support after-the-fact trace-based diagnosis
or per-task CPU Utilization numbers, nor do they typically
provide event annotation. Johansson and Saegebrecht [2]
summarize some of the tools available to help with per-
formance visualization in realtime systems, and they also
describe their own viewer. But these all report a single CPU
usage number, not one broken down by tasks.

The htop tool [4] supports visualizing multiple processes’
usages all at once. But it is limited to UNIX-based systems,

1

Sampling Rate Duration
(hours : minutes : seconds)

64.0 Hz 3:45
8.0 Hz 30:00
1.0 Hz 4:00:00
0.1 Hz 40:00:00

Table 1. Time-capacity of a single 73 Mbit file holding
14,400 664-byte samples including 64 Hz statistics (1 Mbit
equals 128 Kbytes). Note that after being compressed, this

file typically would only require 5.6 Mbits to transmit.

Sampling Rate Duration
(hours : minutes : seconds)

64.0 Hz 15:00
8.0 Hz 2:00:00
1.0 Hz 16:00:00
0.1 Hz 160:00:00

Table 2. Time-capacity of a single 78 Mbit file holding
57,600 178-byte samples without extra statistics. Note that

after being compressed, this file typically would only require
6.3 Mbits to transmit.

does not support a trace playback facility, and its use of the
curses library for its display also prevents it from incorporat-
ing event-based annotations in a reasonable way (since there
is little remaining screen area for such information).

VxWorks’ spyLib provides CPU utilization statistics, and its
WindView display tool can be used to for graphical display
of some system state. But no known tools allow for simulta-
neous display of per-task CPU usage with event annotations,
or for playback of trace data.

3. EXAMPLE REALTIME CPU DATA : MSL
FSW

CUSP can generate plots using any well formed input files.
But this section will describe the format of data available
from the primary source used during its development, the
MSL flight software.

MSL Resource Tracking Service FSW (RTS) can be in-
structed to log either an entire task context switch trace,
or just the overall CPU Utilization numbers. The CPU
Utilization data is generated onboard by monitoring all task
context switches, but that detailed data is summarized and
compressed down into statistics at one of four available
sampling rates: 64 Hz, 8 Hz, 1 Hz, 0.1 Hz.

The per-task CPU Utilization (i.e., total duration of each
task divided by the chosen sampling interval) is computed
onboard, and stored as an 8-bit integer representing the
percentage between 0 and 100 before being written into a file
for transmission. In addition, the CPU Utilizations of all the
constituent 64 Hz samples over the current sampling interval
can optionally be summarized and reported as an 8-bit mean
and 16-bit variance. These statistics enable additional insight
into the finer-grained behavior of the system, at relatively
little cost in generated data volume.

Sampling Rate Raw size 92% Compressed
(Mbits) size (Mbits)

64.0 Hz 1167.2 89.8
8.0 Hz 145.9 11.2
1.0 Hz 18.2 1.4
0.1 Hz 1.8 0.1

Table 3. Storage required for one hour of CPU Utilization
data including 64 Hz statistics.

Sampling Rate Raw size 92% Compressed
(Mbits) size (Mbits)

64.0 Hz 312.9 24.07
8.0 Hz 39.1 3.01
1.0 Hz 4.9 0.38
0.1 Hz 0.5 0.04

Table 4. Storage required for one hour of CPU Utilization
data without extra statistics.

The contents of the logged data include the timestamp at the
start of the current block, the average CPU Utilization of each
task over the sampling interval, and if requested the mean and
variance of the each task’s constituent 64 Hz samples. In the
MSL FSW, each record including the 64 Hz statistics requires
664 bytes, while each record without statistics requires only
178 bytes.

These data are highly compressible, and internal tests have
demonstrated a 13X compression benefit can be realized
using the available MSL FSW LZO compression capability
[3], reducing onboard storage requirements by 92%. Ta-
bles 1, 2, 3, 4 explain how much data can be logged by the
system at its available sampling rates.

Event Annotations

System Event Annotations are needed to provide some con-
text for the CPU Utilization numbers. For MSL, we use the
names of the currently active spacecraft commands (extracted
from Command Event Reports) and their associated durations
as labels, but any set of time-tagged data may be used.

4. AUTOMATIC PLOT GENERATION

One of the key benefits of CUSP over the tools that preceded
it is that it can generate human-understandable plots without
requiring a human in the loop to hand-craft each plot. In this
section we explain how CUSP achieves that capability.

Stacked plots vs Unstacked Plots

CUSP supports two methods of plotting CPU utilization:
Stacked and Unstacked. TheStacked display generates a
color-filled histogram, where each new task’s contribution
is stacked on top of the previous one (so that visually they
all add up to 100%). See Figure 1 for an example. The
Unstackeddisplay is the more traditional line-graph way of
plotting CPU usage. See Figure 3 for an example. You can
ask CUSP to generate plots this way, but it can rapidly get
unwieldy, since many task plots will likely overlap.

You must use the Unstacked display mode if you want to
see the MSL-embedded 64 Hz mean and variance data. See

2

Figure 1. Example of a “Stacked” output plot. The bottom half of the plot shows those tasks whose CPU utilization remained
relatively constant, the top half shows which task dominated the CPU for the given time duration.

Figure 2. Illustration of the importance of smart task-ordering within the plot. This is the same plot as in Figure 1, but with
tasks sorted by mean CPU utilization rather than by the variance. This plot is much harder to interpret at a glance.

Figure 4 for an example. It would be challenging to visualize
CPU Utilization variance in the Stacked histogram display
mode.

Time Range Selection

CUSP automatically breaks up very large log files into
command-sized pieces, eliminating the need for human as-
sistance in creating plots.

Commands are input to CUSP by specifying a file with a
list of time-tagged Event Annotations (Command Names for
MSL). All events are extracted and written as labels in the

plots, alongside arrows representing their complete duration.
See Figure 1 for an example.

Certain events serve a dual role as both label and plot separa-
tor. CUSP accepts an input regular expression; whenever an
event’s name matches that expression, CUSP will use its start
and end times to break up the large log file into three pieces;
before that command, during the command, and after that
command. Each piece will be processed independently, and
the before/after time ranges may be further split if additional
commands of interest are found in their time ranges.

So every command of interest will get its own independent

3

Figure 3. Example of an “Unstacked” output Plot. This is the same plotas in Figure 1, but with CPU usage plotted
independently for each task. This plot is somewhat harder tointerpret.

Figure 4. Example of an “Unstacked” output Plot with 64 Hz mean and variances. This plot in similar to Figure 3, but only
includes three tasks on the command line so that the mean and variance can be seen as well.

plot, and the times surrounding each command of interest will
also be written into separate plots. Humans need not bother
with the tedious process of splitting up the complete CPU
Utilization trace, CUSP will do it automatically.

Naming the Plots—Each plot is written to a file whose name
includes both the name of the command used to determine
its duration, and the current timestamp. These details allow
the image filenames to be easily interleaved into other time-
tagged system reports.

Task Ordering

Within each plot, the vertical axis represents Percent of CPU
Utilization, and the horizontal axis represents the procession
of time. One could imagine simply plotting the CPU usage
of all the tasks in alphabetical order, but such a plot would

be unreasonably difficult to understand when there are lots of
tasks in the system. It would be difficult to read the names of
the most important tasks in such a dense plot.

Although MSL (and Mars 2020) have over one hundred tasks,
the important insight is that any interesting command will
likely invoke a very small number of tasks over the entire
command duration. So to help the reader focus in on where
the CPU time is being spent, several factors are considered.

Eliminating unimportant tasks Only those tasks that have
at least one samplewith CPU Utilization above a fixed
minimum will be included in the plot. Tasks that never reach
a certain CPU Utilization are deemed insignificant, and will
be omitted from the plot. CUSP computes this set of active
tasks for you automatically, no need to guess at what they are

4

437643205.90076 === Command MOB_UPDATE completed
437643206.000133 Task IMG_PPT ran for 1.000 seconds with 16.000 +/- 0.000 percent CPU
437643206.10001 === Command SEQ_IF dispatched
437643206.10091 === Command SEQ_IF completed
437643206.10104 === Command SEQ_ENDIF dispatched
437643206.10167 === Command SEQ_ENDIF completed
437643206.10181 === Command SEQ_IF dispatched
437643206.10289 === Command SEQ_IF completed
437643206.10303 === Command SEQ_ACTIVATE dispatched
437643206.36621 === Command SEQ_PAUSE dispatched
437643206.36696 === Command SEQ_ACTIVATE completed
437643206.36861 === Command SEQ_PAUSE completed
437643206.36876 === Command SEQ_ACTIVATE dispatched
437643206.52307 === Command SEQ_IF dispatched
437643206.52368 === Command SEQ_ACTIVATE completed
437643206.52515 === Command SEQ_IF completed
437643206.52528 === Command SEQ_IF dispatched
437643206.52617 === Command SEQ_IF completed
437643206.52631 === Command MOB_UPDATE dispatched
437643210.000193 Task DMS ran for 4.000 seconds with 21.500 +/- 2.693 percent CPU
437643213.000164 Task IDLE ran for 3.000 seconds with 26.000 +/- 10.033 percent CPU
437643214.000161 Task IMG_CCT ran for 1.000 seconds with 39.000 +/- 0.000 percent CPU
437643218.85806 === Command IMG_ACQUIRE completed
437643220.000105 Task IDLE ran for 6.000 seconds with 36.500 +/- 8.921 percent CPU
437643233.000093 Task IMG_PPT ran for 13.000 seconds with 36.615 +/- 8.553 percent CPU
437643234.000084 Task FILES ran for 1.000 seconds with 21.000 +/- 0.000 percent CPU
437643235.000084 Task IMG_PPT ran for 1.000 seconds with 43.000 +/- 0.000 percent CPU
437643279.000114 Task NAV ran for 44.000 seconds with 41.636 +/- 4.178 percent CPU
437643282.000090 Task DMS ran for 3.000 seconds with 32.333 +/- 14.636 percent CPU
437643282.35684 === Command DRIL_GUARDED_MOTION completed
437643282.39595 === Command SEQ_RUN dispatched
437643282.43024 === Command SEQ_DEACTIVATE dispatched
437643282.43097 === Command SEQ_DEACTIVATE completed
437643282.43221 === Command SEQ_RUN completed
437643282.43236 === Command ACM_MASK dispatched
437643282.43341 === Command ACM_MASK completed
437643283.000101 Task HST ran for 1.000 seconds with 29.000 +/- 0.000 percent CPU
437643283.34813 === Command ARM_READ dispatched
437643284.015758 Task PDP ran for 1.016 seconds with 46.000 +/- 0.000 percent CPU

Figure 5. Text Table

by artificially restricting them on the command line.
Matching a pattern However, if the user really wants to,
they may optionally request that only tasks matching a regular
expression be included in the output.
Building a foundation Tasks whose CPU Utilization is sig-
nificant, yet changes very little over time, are placed at the
bottom of the plot. This gives the plot the appearance of a
fence with a firm “Foundation”, an easy visual cue that for
the tasks on the bottom, things are not changing much. Tasks
that have a large CPU variation over the duration of the plot
are placed near the top. Such a plot makes it easier to notice
changes in CPU Utilization over time (see Figure 1 for an
example).
The Sky’s the Limit The one exception to the “Building a
Foundation” item is that the IDLE task is always plotted on
top. Doing that consistently makes it easier to interpret the
rest of the tasks as always being active. This mimics other
tools’ CPU Utilization display as a line graph, with empty
CPU usage always on top.

The way to achieve the smooth “Foundation” appearance of
the plots is to sort tasks using thevarianceof all their CPU
Utilizations across the entire plot. This seems somewhat
counterintuitive, in that one might think that placing tasks
with large meanCPU Utilization on the bottom would be
more clear. But that kind of plot is very hard to read as CPU
usage changes over time; any constant-usage tasks stretch up
and down across the whole graph, painting wide and uneven
swaths that detract from the other changing tasks that are the

really interesting ones. See Figure 2 for an example of a plot
whose tasks are sorted by mean CPU Utilization.

So within each plot, CUSP automatically computes the vari-
ance of each task’s CPU Utilization values, and plots active
tasks in order according to their changing contribution. That
makes a clear visual distinction between steady-state tasks on
the bottom, and changing CPU usage tasks on top.

Coloring

Consistent coloring of individual tasks is important. It isthe
only way to ensure that one can quickly compare one or more
plots against each other. The IDLE task must always be the
same color, and the tasks that CUSP discovers to be most
important should always have the same color.

So the user is encouraged to provide a consistent color
scheme, mapping task names to individual colors. If no
such mapping exists, then the plot tools will make their own
choices. And since each plot is generated independently,
the color choices will probably not be consistent across all
graphs.

CUSP allows you to make plots more understandable by
allowing you to choose fixed colors, but CUSP does not
automatically determine the fixed-color scheme for you.

5

Statistic Units Curiosity Perseverance
Sols with CPU usage data sols 51% (1684 of 3292) 79% (203 of 257)
RP Sequences number of sequences2807 212
RP Sequence Durations hours 0.746 +/- 0.659 (0.00 : 5.48) 0.744 +/- 0.665 (0.00 : 3.84)
Data product files number of files 2662 362
Data product file sizes Mbits 14.0 +/- 18.5 (0.130 : 72.9) 13.6 +/- 12.1 (0.956 : 65.4)

Table 5. Statistics related to the in-flight collection of CPU Utilization data on Curiosity and Perseverance, through
November 9, 2021 (sols 3292 and 257, respectively). Data product file sizes are the uncompressed “raw” file sizes. Statistics

are presented as “Mean +/- Standard Deviation (Min : Max)”.

Event Label Annotation

CUSP also annotates each CPU utilization plot with all event
labels (e.g., Command Names) and their graphical durations
by drawing an arrow from their start to their end time. This
makes it easy to understand just what the overall system is
doing in each plot. The colorful CPU loading histogram may
be the most compelling part of the plot, but you also need
some visual cue to distinguish between hundreds of plots. So
command names are plotted one over the other, and when the
number of commands exceeds a predefined limit, they and
their arrows wrap around vertically (see Figure 1). If you
were to have too many commands executing one after another
this kind of display would get too cluttered and become
unreadable, but so long as the system is not flooded with
commands this format has been found to work well. Each
MSL command typically starts at least one second later than
the previous one, making this a viable strategy.

This automatic labeling of events is another key feature
of CUSP that enables it to generate human-readable plots
without manual intervention.

Most Important Task Table

Finally, in addition to plots that are color-coded and event-
annotated, CUSP also creates a text table summarizing just
the events of interest and the tasks that made the greatest
contribution to them over each time interval. Statistics are
computed and reported for any task whose peak CPU usage
spans a long contiguous time period.

This output makes for a nice summary report, explaining
which tasks were most active for each command. See Fig-
ure 5 for an example.

5. MANUAL PLOT GENERATION

CUSP also supports generation of plots according to
manually-specified constraints.

64 Hz Statistics You may choose display the 64 Hz statistics
if they were included in MSL raw CPU Utilization data, but
you must use Unstacked mode.
Time range You may specify a start and end time range,
if you do not want CUSP to compute it for you at each
command.
Task names You may specify a regular expression to limit
the tasks being displayed, if you do not want to rely on
CUSP’s minimum CPU utilization criterion.
Image Format You may change the size and output format
of the resulting images to anything that GNUPlot can support
for output.

6. INTERPRETING THE DATA

All of the example plots in this paper (and the text in Fig-
ure 5 as well) come from data that was collected from the
MSL engineering model rover, the Vehicle System Testbed
(VSTB). We were evaluating the use of Visual Odometry
(VO) processing [5] as a means of monitoring slip while
running the drill and collecting images in parallel.

One question that arose was why the number of VO slip mea-
surements was smaller than expected. The MOBUPDATE
command that implements it normally finishes in around 47
seconds, but we discovered it was sometimes taking longer
and wanted to know why. So we looked into the plot that was
automatically extracted by CUSP, shown in Figure 1,

The labels on top of Figure 1 indicate the names of commands
and sequence directives that were executed on the rover. In
the figure we see one MOBUPDATE ending (the right arrow
ends at time the command terminates), and another beginning
(the left arrow just under the label). The command duration is
some 86 seconds, much longer than usual. The bulk of the VO
processing performed by the MOBUPDATE command oc-
curs in the Surface Navigation (NAV) FSW module, which is
colored purple in the plot. During a normal execution such as
that shown in Figure 6, we would expect to see the command
start by acquiring an image using an “IMG” FSW module
(light and dark grey) for up to 5 seconds, then the NAV
module would perform its analysis and complete after 42 sec-
onds on average. But Figure 1 shows something completely
different. The command starts, but the CPU remains partly
IDLE (light yellow) for 11 seconds. The reason is explained
by looking at the command names at the top of the plot; an
IMG ACQUIRE command was running in parallel, taking
pictures of the drill while it is in motion. That command’s
processing held a lock on an imaging resource, and did not
complete until 10 seconds into the MOBUPDATE. And even
after it completed, the data collected by IMGACQUIRE was
still being processing by IMGPPT (Image Post-Processing,
in light grey) for 18 seconds. Only once that image data had
been fully processed and stored as a compressed data product
into the flash filesytem (Data Management System (DMS) in
beige, writing FILES in tan), could the new images begin to
be processed by NAV, some 25 seconds later than expected.

The same information is also summarized in the text view
shown in Figure 5, which highlights the task that uses the
greatest share of CPU within each sampling interval. It also
highlights the NAV, IMG, and DMS tasks with numeric CPU
usage numbers and timestamps.

This ability to explain why the system is performing a certain
way (in this case with longer delays between VO updates)
is key in demonstrating to review boards why complex in-
teractions between modules are still safe for use in flight

6

Figure 6. Example of a “Stacked” output plot during nominal Visual Odometry operations. The NAV (purple) processing
begins 5 seconds into the command execution.

operations. In this case, VO Monitoring was later used in
flight on several sols as an additional safety factor during
some drilling operations.

7. CURRENT AND FUTURE USES

CUSP provides the visualizations used to assess CPU usage
performance on the Curiosity and Perseverance Mars Rovers
by the Mobility, Surface Sampling System (SSS, including
Arm), and Flight Software teams. Every Rover Planner
“backbone” sequence is bookended by commands that begin
and end the collection of CPU usage data with statistics,
typically using the 1 Hz sampling rate. The duration of
these sequences varies widely, from a few minutes to a few
hours, depending on the activities of the day. CPU usage
data are downloaded every sol on which a Rover Planner
backbone executes. Table 5 summarizes information about
the collection of CPU usage information on Curiosity and
Perseverance.

MSL FSW, Mobility, and SSS operations teams are relying on
this tool to understand performance of the MSL FSW both on
the Curiosity rover itself, and during Vehicle System Testbed
(VSTB) operations. MSL Mobility Rover Planners have used
it to understand Curiosity’s driving behavior on Mars and in
the testbed, and the Arm Rover Planners have used it to assess
daily operations and the behavior of MSL FSW during Drill
parallel sequence operations in High Tilt testbed scenarios.

CUSP can be beneficial to any mission or activity that can
provide time-stamped logs of CPU utilization numbers and
interesting events. Both Realtime operating systems and
non-realtime systems that rely on multiple interacting sub-
processes can benefit from CUSP’s ability to automatically
generate easily-understood plots and tables from a raw dump
of CPU utilization data. Some other missions or frameworks
that could benefit include the FSW CORE project, the Fast
Traverse project, and the Europa Habitability Mission.

8. CONCLUSION

The CUSP tool plots CPU Utilizations for multiple parallel
tasks that humans can use to understand where system CPU
time is being spent. It can be run in a completely automated
way and still produce plots that are helpful for humans
to understand and explain system behavior. Ordering the
presentation of tasks by their CPU Utilization variance is a
novel and helpful way to understand the behavior of parallel
tasks.

CUSP is actively being used in Mars Science Laboratory and
Mars 2020 operations and FSW development, and also has
broader applicability to other CPU trace-generating systems.

9. ACKNOWLEDGEMENTS

The MSL Resource Tracking Service (RTS) flight software
(FSW) provided the raw data that led to the development
of CUSP. MSL RTS FSW was written collaboratively by
multiple MSL FSW team members including Ben Cichy,
Mark Maimone, Udo Wehmeier, and Muh-Wang Yang.

The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with NASA.

REFERENCES

[1] E. Benowitz and M. Maimone. Patching flight
software on Mars. In Workshop on Spacecraft
Flight Software, Laurel, MD, USA, October 2015.
https://www-robotics.jpl.nasa.gov/publications/
Mark Maimone/FSW2015BenowitzMaimone4.pdf.

[2] Mikael Johansson and Martin Saegebrecht. Cpu work-
load analysis in real time operating systems. June 2007.

[3] Rajeev Joshi. Managing data for curiosity, fun and
profit. In Workshop on Spacecraft Flight Software, 2013.

7

http://flightsoftware.jhuapl.edu/fsw13.html.

[4] Hisham Muhammad. htop - an interactive process viewer
for linux. http://htop.sourceforge.net/, 2014.

[5] Arturo Rankin, Mark Maimone, Jeffrey Biesiadecki,
Nikunj Patel, Dan Levine, and Olivier Toupet. Driving
curiosity: Mars rover mobility trends during the first
seven years.Journal of Field Robotics, January 2021.

[6] Kathryn Anne Weiss. The mars science laboratory
flight software – a platform for science and mobil-
ity. In Workshop on Spacecraft Flight Software, 2012.
http://flightsoftware.jhuapl.edu/fsw12.html.

BIOGRAPHY [

Mark Maimone is a Robotic Sys-
tems Engineer in the Robotic Mobil-
ity group at the Jet Propulsion Labora-
tory. Mark designed and implemented
the GESTALT self-driving surface nav-
igation Flight Software for MER and
MSL missions; during MSL operations
served as Deputy Lead Rover Planner,
Lead Mobility Rover Planner and Flight
Software Lead; developed downlink au-

tomation tools for MER and MSL; and is now working on
Mars 2020 as FSW developer and Deputy Lead Rover Plan-
ner. He holds a Ph.D. in Computer Science from Carnegie
Mellon University.

8

