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Abstract lined navigation technique will combine manually
designated landmarks from imagery of Eros and
radiometric data to compute and control the trajectory of the
orbiter. The NEAR mission will clearly demonstrate the
effectiveness of optical navigation. However, this ground-
based paradigm will not map to missions involving small

Space science and solar system exploration are driving
NASA to develop an array of small body missions ranging
in scope from near body flybys to complete sample return.
This paper presents an algorithm for onboard motion
estimation that will enable the precision guidance - .

4 body exploration and landing.
necessary for autonomous small body landing. Our . . . .
. . . Small body exploration requires multiple precise target
techniques are based on automatic feature tracking between_,~.. . .
: . relative maneuvers during a brief descent to the surface. The
a pair of descent camera images followed by two frame

. L . . round trip light time prohibits the determination of the
motion estimation and scale recovery using laser altimetry )
. i \ .. 2 necessary trajectory control maneuvers on the ground.
data. The output of our algorithm is an estimate of rigid

. . = ; : Furthermore, typical onboard position sensors do not have
motion (attitude and position) and motion covariance . .
. . . he accuracy needed for small body landing (e.g., during a
between frames. This motion estimate can be passe

directly to the spacecraft guidance and control system to small body descent taking a few hours accelerometer errors

. . . ; . will grow to the kilometer level). However, the required
enable rapid execution of safe and precise trajectories. I . ) .
positional accuracies can be obtained if autonomous real-

1 Introduction time optical navigation methods are developed.
) ) ] The Deep Space 1 mission as part of the New

Due to the small size, irregular shape and variable \jijjennium Program is flying an autonomous optical
surface properties of small bodies, accurate motion navigation technology demonstration. The DS-1
estimation is needed for safe and precise small body 5;to0pNav system will use onboard centroiding of
exploration. Because of the communication delay induced eference asteroids for autonomous navigation during small
by the large d|_stances between the garth and targeted Smaﬂody fly-bys [6]. They expect to obtain automatic position
bodies, landing on small bodies must be done ggimates with accuracies on order of 100 kilometers. For
autonomously using on-board sensors and algorithms.ggieniific instrument pointing purposes, this accuracy is
Current navigation technology does not provide the gicient. Controlled small body landing will require much
precision necessary to accurately land on a small bodies, sQqtter position and motion estimation accuracies.
novel motior_n _estimation techniq_ues must_ be devemp_ed'Furthermore, since the appearance of the small body is
Conjputer_V|5|_on offers a possible solution to precise variable, small body landing cannot always rely on
motion estimation. o _reference landmarks for navigation. The DS-1 AutoOpNav

Historically, optical navigation has been used for orbit gy tem will demonstrate autonomy and computer vision in
determination and instrument pointing during close fly-bys space, however for small body landing a more versatile and
of small bodies and moons of the outer planets. Ge”era"y'accurate system is required.
this has been implemented by ground-based image rpis paper describes a fully autonomous and onboard
processing to extract centroids of small reference targetsqqytion for accurate and robust motion estimation near a
like asteroids and moons from which target relative proximal small body. Our techniques are based on
spacecraft attitude and position are computed. automatic feature tracking between a pair of images

The Near Earth Asteroid Rendezvous (NEAR), a current ¢15wed by two frame motion estimation and scale
mission that will rendezvous with asteroid Eros 433 in recovery using laser altimetry data. The output of our
Februa_ry 2_000, uses optical navigation e>_<tensively for orbit algorithm is an estimate of rigid motion (attitude and
determination and small body 3-D modeling [5]. The base- ,qgition) and motion covariance between frames. This

———— , . motion estimate can be passed directly to the spacecraft
The work described in this paper was carried out at the Jet Propulsiol

Laboratory, California Institute of Technology, under contract from gwdan_ce navigation and Fomro! systgm to enable I‘apld
the National Aeronautics and Space Administration. execution of safe and precise trajectories.




2 Motion Estimation multiple proven feature detection methods exist.
. . . . . ) Consequently, we elected to implement a proven feature
Motion estimation from images has a long history inthe yetection method instead of redesigning our own. Since

machine visi_on literature. The algorithm presented in this processing speed is a very important design constraint for
paper falls in the category of two-frame feature-based o application, we selected the state of the art feature
motion estimation algorithms Once the spacecraft sensoryatection algorithm of Benedetti and Perona [2]. This
are pointed at the small body surface, our algorithm works algorithm is an implementation of the well know Shi-
as follows. At one time instant a descent camera image andrgmasi feature detector and tracker [7] modified to
a laser altimeter reading are taken. A short time later, o;iminate transcendental arithmetic.

another image and altimeter reading are taken. OUr g faces of small bodies generally appear highly
algorithm then processes these pairs of measurements .,y red, so good features to track are expected to be
estimate the rigid motion between readings. There arep|aniify|. Usually feature detection algorithms exhaustively
multiple steps in our algorithm. First, distinct features, gearch the image for every distinct feature. However, when
which are pixels that can be tracked well across multiple y,o goal is motion estimation, only a relatively small

images, are detected in the firstimage. Next, these feature, mper of features need to be tracked (~100). The speed of
are located in the second image by feature tracking. Givensao 4t re tracking can be increased up to two orders of

these feature matches, the motion state_and covariance Orfnagnitude by using a random search strategy, instead of an
the spacecraft, up to a scale on translation, are computed,hastive search for all good features, while still
using a two stage motion estimation algorithm. Finally the guaranteeing that the required number of features are

scale of translation is computed by combining altimetry qetected. Suppose thht features are needed for motion
with the motion estimates using one of two methods which ggtimation. Our detection algorithm selects a pixel at

depend on the descent angle. The block diagram for motion,;nqom from the image. If the randomly selected pixel has

estimation is shown in Figure 1. an interest value greater than a predetermined threshold, it
2.1 Feature Detection is selected as a feature. This procedure is repeatedNintil

] . ) o features are detected.
The first step in two-frame motion estimation is the

extraction of features from the first image. Features are2.2 Feature Tracking
pixel locations and the surrounding image intensity  The pext step in motion estimation is to locate the
neighborhood (call this a feature window) that can be fearres detected in the first frame in the second frame. This
tracked well across multiple images that may under go procedure is called feature tracking. As with feature
arbitrary, but small, changes in illumination or viewing yetection, there exist multiple methods for feature tracking
direction. A qualitative definition of a good feature is @ j, the machine vision literature. Feature tracking can be
feature window that has strong texture variations in all split in to two groups of algorithms: correlation based
directions. _ , _ methods and optical flow based methods [7]. Correlation
Feature detection has been studied extensively and,,qeq methods are appropriate when the motion of features
in the image is expected to be large. For small motions,

- optical flow based methods are more appropriate because in
v general they require less computation than correlation
detect methods. We use the Shi-Tomasi feature tracker an optical
(oot s - flow based method for feature tracking, because in our
add application of precision landing, we know a-priori that the
features | features motion between image frames will be small. Our
track |
features <—|
feature tracks motion =
v feedback X=(xy.2)
estimate
motion
5 DoF motion
estimate
-’ scale
v ) Figure 2: Unit focal length imaging geometry. World
6 DoF Motion coordinate origin O is on image plane and optical cen-

Figure 1: Block diagram for motion estimation. ter Cis 1 unit behind image plane.



implementation of feature tracking follows that in [7] for 2- squares[12].

D (not affine) feature motion.

. . . 2.3.2. Nonlinear Motion Estimation
2.3 Two Frame Motion Estimation

Robust linear motion estimation serves two purposes: it
by a rigid transformation(RT) where R encodes the provides an initial estimate of the 5 DoF motion between
: views and it detects and eliminates feature track outliers.

rotation between views and encodes the translation Th i laorithm takes the initial i imate of
between views. Once features are tracked between images € honiinear aigorithm takes the infial finear estimate o

the motion of the camera can be estimated by solving for theth$ mott_lon ar;(:r:eflnest_lt by m|n|m|tzmg andertrr?r terrtrll_tha;t IS
motion parameters that, when applied to the features in the? fUnction ot the motion parameters an € outlieriree

first image, bring them close to the corresponding featuresfea_ture_ tracks. _There_ eX'StS. many nonlinear motion
in the second image. estimation algorithms in the vision literature. Instead of

In our algorithm, motion estimation is a two stage starting from scratch, the nonlinear algorithm we have

process. First an initial estimate of the motion is computed dlevel_?r;])ed tcombénes the ?ttriﬁlvethelte_ments O]; ?um?lle
using a linear algorithm. This algorithm is applied multiple 2/9°thMs fo produce an aigorithm that 1S computationally

times using different sets of features to eliminate feature efficient, numerically stable and accurate. For numerical

track outliers and determine a robust LMedS estimate ofi:[ab”t;ty’ we _used tge Eamderla ?Odﬁ_l rr])larametertlzatlor:_ of
motion. The result of this algorithm is then used as input to zarbayejani and Pentland[1]. For highly accurate motion

a more accurate nonlinear algorithm that solves for the parameter estimation we use t_he Levenberg-Marquardt
motion parameters directly. Since an good initial estimate is algorlthm_as prop(_)s_ed by Szeliski and Kang(8]. Finally, for

needed to initialize any nonlinear feature-based motion computatlona_l efﬂue_nqy,_we_ remove the scene structure
estimation algorithm, this two stage approach is common from the nonlinear minimization as suggested by Weng et

[11]. Output from the nonlinear algorithm is the estimate of al. n [11]. .
the five motion parameters and their covariance. Our First, the homogenous coordinates of each feature are

algorithm assumes that the camera taking the images ha e@ermir_wed_by p_rojecting them onto the unit focal plane.

been intrinsically calibrated (i.e., focal length, radial | s Projection will depend onthe lens, imager, and camera

distortion, optical center, skew and aspect are all known). model used. A simple model for the Fransformatlon of a
A fundamental short coming of all image-based motion feature at pixel location(p;,q) to its homogenous

estimation algorithms is the inability to solve for the CoOrdinatesiis

magnitude of translational motion. Intuitively the reason for y = [u . 1]T _ [pi_cp a4 -Cq ]T

this is that the algorithms cannot differentiate between a ! it 7 T ef

f sf
very large object that is far from the camera or a small where(C.,,C,) is the center of the camera in pixel unitss

object that is close to the camera; the camera does no%he focal length of the camera in pixel units asis the
convey information about scene scale. Consequently, the

. e ; aspect ratio of the pixels. This model assumes no radial
output of motion estimation is a 5 Dol motion composed of distortion in the camera. More sophisticated models that
the a unit vectorT, = T/||T| describing the direction of X b

. . . . incl radial distortion ar when n r .
heading and the rotation matrik between views. As is clude radial distortion are used when necessary [9]

- : . . Before we can express the error function, we need to
shown in the next section, laser altimetry can be combined . . ; LT
. ; T detail the motion parameters over which the minimization
with 5 DoF motion estimation to compute the complete 6

DoF motion of the camera will take place. First of all, the motion between frames is
' presented as a translation and rotation p@tT). To
simplify the parameter estimation, we represent the rotation

The motion between two camera views can be described

@)

2.3.1. Robust Linear Motion Estimation

T
The first stage of motion estimation uses a linear with & unit quaterniond = [q° G 92 q3] where the

algorithm to compute the motion between views [4]. Since rotation matrix in terms of a unit quaternion is

the linear algorithm has a closed form solution, motion can 2 2 2 2

be computed quickly. However, the linear algorithm does Go*dp—dp—d3 2(d19-9%3) 2(d393+ dgdp)

not solve for the motion parameters directly, so its results gy

will not be as accurate as those obtained using the nonlinear

algorithm. Our linear algorithm is an implementation of the 2(9403-0g9y) 2(ay05+ dgdy) qg—qi—q§+q§

algorithm presented in [10] augmented by normalization ) . .

presented in [3] for better numerical conditioning. To filter The translation is represented by a unit vector

out possible outliers in feature detection, we use a robustT = [Tx T, TZ]T_ Together the unit quaternion and unit

linear motion estimation algorithm based on least median of

- 2 2 2 2
D = | 2(qy0,+dgls) Go—0y *+dy—03 2(dyta—0gay) | (&)



translation comprise the parameter state vexctor length of the parameter vector, a computationally expensive
T matrix inversion would result. Since feature depths can be
as [qo G102 A3 Ty Ty T2] ©) computed directly from the motion between views, it is not

Nonlinear motion estimation attempts to minimize the necessary to include them in the parameter vector. Instead,
image plane error between the features in the second viewat each iteration, the feature depths are updated using the
and the projection of the features in the first view into the current motion estimate.The result is a computationally
second view given the motion between frames. efficient and accurate motion estimation algorithm.

If the unit focal coordinates (defined by Equation 1) of  Since we are solving for a rotation represented by a unit
guaternion and also a unit length translation, these
constraints need to be enforced during minimization. We
in imageJ, then the image plane error is enforce these constraints by settirig+q| = 1 and

_ , 2 |IT+5T|| = 1 during the update of the parameter vector at
Ca) = IZ"U‘ — ;3 () each iteration of the Levenberg-Marquardt algorithm.
wheref represents the projection of the features  into Consequently, these constraints are enforced while not
image J given the motiona. Correct image projection com_pl_lcat_mg the ml_nlmlzqtlon by |_nclud|ng the constraints
requires knowledge of the depth to a feature and a®XPlicitly inthe minimization function. _
perspective camera model. Using the model of The output of nonlinear motion estimation is an estimate

Azarbayejani and Pentland [1], if the (unknown) feature Of the 5 DoF motion between views. In addition, the
depths from the image plane a@ then the relation covariancex of the motion parameters can be extracted

between unit focal feature coordinates and 3-D featuredir_ec“y from the quantities computed during minimization
coordinates is using

the features in imageareu; = [Ui vi]T andu;' = [Ui' vi]T

s(a) = AL, 9)
(5) 2.4 Scale Computation Using Altimeter

The final stage of motion estimation computes the
remaining motion parameter, magnitude of translation,
from laser altimetry data. Depending on descent angle and
surface relief, one of two complimentary methods is used.

The features in imageé are transformed into imagé
according to

T
X' = [X'i Y, zi] = R(g)X; +T. (6)
By combining Equation 5 and Equation 6, the feature

2.4.1. Motivation

T ) ) Motion estimation using monocular imagery cannot
depths [Zi Zi] can be computed through triangulation by solve directly for the magnitude of translation, so an
solving external means must be used to recover this parameter. For
a spacecraft in orbit about a small body, there exist multiple
[—Rui Ui] {Zi] =T (7)  possible solutions.
z' One solution is to integrate the accelerometer

assuming that the translation between views is nonzero[10].M€asurement in the spacecraft inertial reference unit to
The camera model given the imaging geometry, shown determine position. The advantage of accelerometers is that

in Figure 2, is they present a completely onboard solution. Unfortunately,
because that come from integration of noisy acceleration
f(u;,a) = L)j 7 i . (8) measurements, position measurements from accelerometers
may be too inaccurate for precision landing.

Combining Equation 5, Equation 6, and Equation 8 results ~ The traditional approach is to use radiometric tracking
in a complete definition of Equation 4. measurements from earth. This approach has the advantage
To estimate the motion parameters, we minimize that it is well understood and uses equipment already on
Equation 4 using the Levenberg-Marquardt algorithm for board the spacecraft. However, radiometric tracking has
nonlinear minimization. This approach was also used by many disadvantages. First, it requires dedicated Deep Space

Szeliski and Kang [8], however, unlike in their approach, Network tracking which is expensive and difficult to
we do not include the feature depths in the minimization. schedule. Second, round trip light time for tracking from
Inclusion of the feature depths would increase the length ofearth induces a large latency in any position measurements
the parameter vector from 7 to 7+N. Since the minimization (approximately 24 minutes for comet Tempel 1).

relies on an inversion of a square matrix of rank equal to the ~ Multiple missions have or are using laser altimeters for



science return and navigation. As shown below, laserin this case, scene structure can be estimated more
altimeters can also be used as a navigation sensor by aidingccurately than for pure descent.
the determination of the position of the spacecraft. Laser The procedure for structure-based scale estimation is to
altimeters give accurate range estimates and, whenfirst compute the feature based motion between images
combined with a descent imager, present a complete on-along with the depth of the features in the image. Assuming
board solution to 6-D body relative motion estimation. A alignment of laser altimeter with the optical axis, the
disadvantage of the laser altimeter approach is that theyfeatures near the center of the image will be geometrically
have limited range (50 km for the NEAR laser altimeter). close to the surface patch that supplies the reading for the
However, near body operations is precisely when accuratelaser altimeter (see Figure 3). Since it is unlikely that a
position estimation is needed the most, so this is not a majorfeature will correspond exactly to the image center, a few
issue. A laser altimeter is an additional sensor; however, (3-5) features closest to the image center are selected and
science return combined with navigational use justify the weighted interpolation is used to determine the scene depth
addition. Based on the disadvantages of the other availableat the image center.. The image-based scene depth at the
options, we determined that the use of a laser altimeter wasmage center has the same depth as the altimeter reading
the most promising solution for scale estimation. taken when the first image was acquired, so the magnitude
of translation is
2.4.2. Difference Scale Estimation A
ITl = 07' (11)
If images are taken as the spacecraft descends vertically ¢
to the surface, or the surface has very little surface relief, A number of observations can be made about structure
Computation of translation magnitude is Straightforward_ based scale estimation. First, As the translation between
Laser altimeter readingsA, and A; are acquired images approaches vertical, the structure estimates degrade,
simultaneously with each image. As shown in Figure 3, the especially near the optical axis (i.e., on the optical axis, the
difference in altimeter readings is equal to the translation of displacement between features will be zero for vertical
the spacecraft along the z-axis between images.descent- structure from triangulation cannot be computed).

Consequently, the magnitude of translation is Fortunately, vertical descent is precisely the motion where
(A —A,) difference scale estimation works best. Second, for the
Tl = (10) altimeter reading to be related to scene structure, a feature
g

t

For motion approaching horizontd}, approaches zero,
Equation 10 becomes ill conditioned and difference scale
estimation will not work. Furthermore, if the spacecraft is
not descending vertically and the surface topography is
rough on order of the scale of translation then the difference
of altimeter readings will not accurately reflect the z
component of the translation. Once again, difference scale3 Results on Real Imagery
estimation will not work. Fortunately a different, albeit
more complicated, procedure exists for computing scale in
these cases.

z must be located near the optical axis in the first frame, so

structure-based scale estimation will work better when
more features are tracked.

The magnitude of translation from laser altimetry when
combined with feature-based motion completes the 6 DoF
motion estimation of the spacecraft.

To test our motion estimation algorithm, we generated
two sequences of real imagery. First a comet nucleus analog
was created by a comet scientist at JPL. This analog is
rough at all scales and matte black, the expected
characteristics of comet nuclei. The analog has an

From the feature-based motion estimate, the scaleda@pproximate diameter of 25 cm. We placed the analog on a
depthsa; (Equation 7) to features in the scene can be rigid stand and took two sequences of images as the camera
computed. Assuming, without loss of generality, that the moved toward the comet analog. The first sequence which
laser altimeter is aligned with the camera optical axis,
features in the optical center will be at a depth equivalent to
the laser altimeter reading. Consequently, the ratio of the
laser altimeter reading to the scaled feature range will be the
magnitude of translation. This approach requires only one
altimeter reading, so it is not susceptible to errors from
changing surface relief. Furthermore, it does not depend on i efcd
nonzero translation along the z-axis. In fact, structure-base Difference Structure
scale estimation works better when the spacecraft is Scale Estimation Scale Estimation

descending at an angle with respect to the surface becausI—elgure 3: Methods for estimating translation magnitude.

2.4.3. Structure-Based Scale Estimation

=



we call descentwas with a 640x480 CCD imager, a 15 An altimeter reading was simulated for each image by
degree field of view lens. The second sequence calledusing the translation stage reading as the altimeter reading.
approachwas taken with a 1024x1024 CCD imager and a Using this data type, the scale of translation is know to the
25 degree field of view lens. Both sequences were acquiredaccuracy of the translation stage, so no scale estimation
with the camera starting 80 cm from the comet analog; the method is needed.
camera moved 1.00 cm toward the analog between each The motion estimation results for 50 features and the
image. descent sequence are shown in Figure 4. At the top is shown

Ground truth for the image sequence motions were the feature tracks for the entire sequence. Different shaded
obtained though camera calibration [9]. Each camera wastracks correspond to the different key frames when the
calibrated using a calibration target and as a by product offeatures were added to the sequence; a key frame occurred
the calibration procedure, the direction of translation was every 4 frames. Next are shown the computed translation
computed. For the descent sequence, the true translatiofftx,ty,tz) and rotation angleqrx,ry,rz) of the motion
direction is (0,0,-1), and for the approach sequence, the truecomputed for each frame using the two stage motion
translation direction is (0.0096, -0.0033, -0.9999). Since the estimation algorithm. Following these is a plot showing the
cameras were rigidly fixed, there was no rotation in the translation error magnitude (vector distance between the
motion. true and estimated translations) for each frame in the
sequence. On this plot, the dashed line corresponds to the
RPagatie JIacks expected performance of the algorithm established using

e Monte Carlo simulation (assuming perfect feature tracking)

for the imaging parameters and motion (See Section 4).
Finally, the rotation error magnitude (vector difference
between estimated and true rotation angles) is shown for
each frame. Again, the dashed line corresponds to the
expected performance of the algorithm established using
Monte Carlo simulation.

Table 1 summarizes the additional motion estimation

=
[ =
o

o

15 Descent Sequence Translation Components results obtained from processing the approach and descent
5 10f T{; . sequences obtained using 50 or 500 features and linear or
< 8-8 i otz ] linear+nonlinear motion estimation _
Bos5 ] For the 50 feature descent sequence and the linear
§ 1.0 motion estimation algorithm, the average translation error is
=-15 5 10, o 15 20 0.045 cm or 4.5% of the distance traveled. The average
Descent Sequence Rotation Components rotation error is 0.063 degrees from no _rotatlon. These error
7010 = R values are similar to the expected motion errors (0.057 cm
£0057 ~~__ ~_ s RN N S and 0.04 degrees) from Monte Carlo simulation given the
S 0.00Ff VX \ parameters of the image sequence. The frame rate for this
§ 0.05 \/_/\/ —_ {; ] sequence is 4.01 Hz on a 174 Mhz R10000 s&lo _
€ 010 " rzlb . - F_or the_ 50 _feature _approach sequence and_ the Ime_ar
= frame motion estimation algorithm, the average translation error is
010 Descent Sequence Translation Error Magnitude 0.028 cm or 2.8% of the distance traveled. The appro_ach
5008 — s_equlert]_ce sequence r_e-sults are more accurate beca_use the resol_utlon of
5006 b Ao = o = simufation /. the imager is greater The frame rate for this sequence is 2.91
%50.04 Hz on a 174 Mhz R10000 SGIOThe approach sequence
g%goz takes slightly longer to process because the larger image
5E 0.00 5 10 15 50 requires more time to detect features.
frame ' The results in Table 1, show that in general the addition
- Descent Sequence Ratation Errors of the nonlinear motion estimation algorithm does not
5 g - Sbquence improve the results of motion estimation all that much. This
5010 is because for vertical descent, the motion computed using
£8005 - - Do mm e e m the linear algorithm is very constrained, so the results are
§§ very close to those obtained using the nonlinear algorithm.
£0.00 5 0, . 15 20 Including the nonlinear algorithm in general doubles the

running time of the algorithm, so for the vertical descent, it

Figure 4: Motion Estimation for the Descent Sequence . : .
g g is probably a good idea to remove this stage from the

with 50 features tracked.



algorithm if running time is important. However, for other were fixed: imager resolution was fixed at 1024, field of
motions (e.g., orbital motion) the nonlinear algorithm will view was set to at 30 degrees, spacecraft altitude was set to
result in improved motion estimation and should be used. 1000 m, altimeter range accuracy was set to 0.2 m, feature
Table 1 also shows that adding features (50 vs. 500) doedracking error was set at 0.17 pixels, average feature
not improve motion estimation all that much. Since adding tracking disparity was set at 20 pixels, scene surface scale
features increases the processing time of each frame, suingvas set to 200 m., and number of tracks was set at 500. The
50 features is recommended for estimating descent motion.remaining parameters to investigate are spacecraft motion

. and the scale estimation mode used in the algorithm.
4 Performance Testing

. _ 4.2 Effect of Motion on Motion Accuracy
Using Monte Carlo testing, the effect of sensor

parameters (e.g., field of view, resolution), spacecraft This investigation was performed to determine the effect
trajectory (e.g., motion, altitude) and scene characteristicsof different spacecraft motions on motion estimation
(e.g., surface scale) on the accuracy of body relative motionaccuracies. To simplify this investigation, the space of
estimation can be determined empirically. We used thesepossible motions was broken into two groups: descent (pure
tests to search for the “best” sensor parameters for precisdranslational motion) and pointing (pure rotational motion).
motion estimation and to predict the performance of the Descent can be parameterized by descent an¢iee
algorithm given a predetermined set of sensor parameters.Figure 3), the angle between horizontal and the translation
direction of the spacecraft. Given the above parameters,
simulations showed that a translational motion accuracy of
The procedure for a single Monte Carlo trial is as 0.22 m is expected independent of scale estimation mode
follows: First a synthetic terrain map is generated to and descent angle. At a fixed pixel disparity, the distance
represents the surface of the small body. Next, a featuretraveled between frames varies depending on the magnitude
position in the first image is generated by randomly Of translation. For a horizontal motioy<90°), a 20 pixel
selecting a pixel in the image (feature position in first disparity and 30°field of view corresponds to a motion of 12
image). The 3-D position of the feature is found by M. The motion error is then 0.22 m over 12 m or 1.8%. For
intersecting its line of sight ray with the synthetic surface. & descent angle 45" and a 30” field of view, a 20 pixel
Since the position of the camera for the second view is adisparity corresponds to a motion of 17 m resulting in a
known input, the 3-D point can be projected into the second motion error of 0.22 m over 17 m or 1.3%. Finally for
view to determine its pixel position in the second image. Vertical descenty0")and a field of view of 30°, a 20 pixel
Gaussian noise is then added to this feature pixel position todisparity corresponds to a 65 m motion. Thus the error is
simulate feature tracking errors. This is repeated for 0.22 m over 65 m or 0.34%.
however many features are requested. Altimeter readings BY integrating this motion accuracy estimate from
are computed by intersecting the line of sight for the multiple frames as the spacecraft descends to the surface an
altimeter (the camera optical axis) with the synthetic upper bound on the expected horizontal landing position
terrain, and computing distance between the sensor originrAccuracy can be obtained. Simulations showed that the most
and the surface intersection. Gaussian noise is then added tccurate landing position occurs for the vertical descent
the range value to simulate measurement noise in thewith a 10 degree field of view. In this case the landing
altimeter. Using simulated feature tracks and altimeter POsition accuracy is 3.6 meters. From a height of 1000
readings, the complete 6 DoF motion is estimated. meters, this is an accuracy of 0.36% of the starting altitude.

For these tests some of the motion estimation parameters To determine pointing accuracy we only investigated

Table 1: Motion estimation results.

4.1 Monte Carlo Simulation

sequence | of | estmaton | TTsea | R | TGESMO) ST TEEE | ary, | oy
features stages (cm) (degrees) (seconds) frames (Hz) (cm) (degrees)

descent 50 linear 0.044927 0.06376 6.24 25 4.01

descent 50 nonlinear 0.044966 0.0662209 13.1 25 1.90

descent 500 linear 0.033483 0.056666 31.61 25 0.79 ‘ ‘

descent 500 nonlinear 0.033615 0.056834 82.33 25 0.30

approach 50 linear 0.028092 0.024439 2.4 7 291

approach 50 nonlinear 0.023936 0.021443 3.94 7 1.77

approach 500 linear 0.01861 0.017992 13.42 7 0.52

approach 500 nonlinear 0.018938 0.15937 24.05 7 0.29 0.0221996 0.169442




rotations with axes perpendicular to the camera Z-axis sincefor terrain hazard assessment and comet absolute position

rotations about the camera Z axis are unnecessary forestimation.

pointing to surface targets. For a 30° field of view, a 20 pixel ~ The algorithm we have presented can be used to estimate

average disparity corresponds to a rotation of 0.6° awaymotion with respect to any proximal surface. Consequently,

from the optical axis. Simulations showed that given theseit can be used for precision landing on comet nuclei.

parameters, a rotational motion estimation accuracy ofasteroids and small moons. It can also be used for proximity

0.006 degrees or 1% of the rotational motion is expected. operations during rendezvous and docking between two

spacecraft. Another application is estimating the attitudinal

motion of a orbiter or satellite during precision pointing to
Descent angle and scene surface scale dictates whiclsurface targets. Rotational motion is completely determined

scale estimation mode to use during descent. Simulationgrom image-based motion estimation, so a laser altimeter is

were performed to determine at which descent angle theunnecessary for this application.

transition between scale estimation modes should occur.

This angle is dependent on scene scale and is defined as theeferences
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