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Abstract

A system that enables continuous slip compensation for a Mars rover has been designed, imple-

mented, and field-tested. This system is composed of several components that allow the rover to

accurately and continuously follow a designated path, compensate for slippage, and reach intended

goals in high-slip environments. These components include: visual odometry, vehicle kinematics, a

Kalman filter pose estimator, and a slip-compensated path follower. Visual odometry tracks dis-

tinctive scene features in stereo imagery to estimate rover motion between successively acquired

stereo image pairs. The kinematics for a rocker-bogie suspension system estimates vehicle motion

by measuring wheel rates, and rocker, bogie, and steering angles. The Kalman filter processes mea-

surements from an Inertial Measurement Unit (IMU) and visual odometry. The filter estimate is

then compared to the kinematic estimate to determine whether slippage has occurred, taking into

account estimate uncertainties. If slippage is detected, the slip vector is calculated by differencing

the current Kalman filter estimate from the kinematic estimate. This slip vector is then used to

determine the necessary wheel velocities and steering angles to compensate for slip and follow the

desired path.

keywords: rover navigation, visual odometry, slip compensation, Kalman filter, rover kinematics.

1 INTRODUCTION

This paper describes the design, implementation, and experimental results of an integrated system

for Mars rover navigation in high-slip environments (see Figure 1). The presented algorithms enable

the rover to accurately follow a designated path, compensate for slippage, and reach intended goals

independent of the terrain over which it traverses (within the mechanical constraints of the mobility

system). The proposed system is comprised of several key components that were developed and refined
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Figure 1: Rocky8 on a Sandy Slope.

for this task and are described in detail below. These components include: visual odometry, full vehicle

kinematics, a Kalman filter pose estimator, and a slip-compensated path following algorithm. Figure 2

provides a high-level functional block diagram of the system. Visual odometry is an algorithm that

relies on stereo imagery to estimate rover motion independent of mechanical terrain properties and is

described in Section 2. The full vehicle kinematics, described in Section 3, uses position sensor inputs

from the joints and wheels of the rocker-bogie mobility system (see Figure 4) to estimate rover motion.

The Kalman filter combines inertial measurements from the onboard IMU with motion estimates from

the visual odometry to estimate rover motion at high sampling rates, and is detailed in Section 4.

Since both the IMU measurements and the visual odometry estimates are independent of the vehicle’s

interaction with the ground, the motion estimates from the Kalman filter can be compared to those

computed based on the vehicle kinematics (which are highly dependent upon the vehicle’s interaction

with its environment) to determine if any statistically significant slippage has occurred. If there is no

slippage, the vehicle kinematic motion estimates can contribute to the Kalman filter pose estimates. If,

however, slippage is detected, then the kinematic estimate and the Kalman filter estimate are differenced,

resulting in a rover slip vector. This slip vector is then used by the path following algorithm to calculate

the rover velocity commands required for following a path while compensating for slip. This algorithm

is described in greater detail in Section 6.

The individual components of the system as well as a simplified integrated system have been tested
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Figure 2: Block Diagram of the Slip-Compensated Path Following System.

onboard a rover. Several independent tests were performed using Rocky 8 (see Figure 1), a Mars rover

research platform. In the first test, visual odometry was tested onboard the rover in the JPL Mars Yard

over two 25 meter traverses. Under nominal conditions, wheel odometry accuracy is not better than

10% of the distance traveled and, in higher slip environments, it can be significantly worse. Results from

our first tests showed that at least 2.5% accuracy can be achieved by using visual odometry, regardless

of the mechanical soil characteristics. The second test was a field test that used the slip compensation

system described above, minus the Kalman filter. This test was a traverse of over 50 meters on sandy

slopes. The third set of tests was performed on a tiltable platform measuring 5×5 meters. In this last

set of tests, the continuous rover-slip compensation algorithm (see Section 6) was employed instead of

stopping the rover to estimate slippage, as was the case in previous tests. Results from these three sets

of experiments are provided in Section 7. This paper extends the work described in [1, 2]. Related

work includes rover trajectory generation [3], rover navigation [4, 5, 6], and path following [7]. To the

best of our knowledge this is the first time that an integrated robotic system for slip detection and

compensation is being presented and tested in realistic conditions.
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Figure 3: Feature Gap

2 VISUAL ODOMETRY ALGORITHM

Long distance mobile robot navigation on a remote planetary body requires an accurate method for

position estimation in an unknown or poorly known environment. Visual odometry, or image-based

ego-motion estimation, was originally developed by Matthies [8]. Following this work, a number of

variations and modifications have been suggested for improving its robustness and accuracy [9, 10]. The

key idea of this method is to determine the change in position and attitude by solving for the maximum

likelihood estimate of the transformation between a selection of 3D features extracted from consecutive

stereo images. The basic steps of this algorithm are described below. A more detailed description of

the ensuing derivations can be found in [2].

2.1 Feature Selection

The first step in the visual odometry algorithm is to select features that can be easily matched between

stereo pairs and tracked across a single image step. To achieve this, the Forstner interest operator [12]

is applied to the left image of the first stereo pair. The pixels with higher interest values are better

features. In order to ensure that the detected visual points are evenly distributed across the image scene,

a minimum distance between any two features is enforced. Furthermore, the image scene is divided into

grids, with the grid size significantly larger than the minimum distance between features, so as to reduce

the volume of data that needs to be sorted. The one feature with the highest interest value in each grid

is selected as a viable candidate. Finally, a fixed number of these candidates with the highest interest

values which also meet the minimum distance constraint is selected.

2.2 Feature Gap Analysis and Covariance Computation

The 3D positions of the selected features are determined by stereo matching. A template around each

feature in the left image is correlated to a location in the right image. Knowing the location of the

features in the left and right images, a ray corresponding to the feature can be projected out of each

camera. Under perfect conditions, the rays of the same feature from the left and right images should

intersect in space. However, due to image noise and matching error, they do not always intersect. The

gap (the shortest distance between the two rays) indicates the goodness of the stereo matching. Features
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with large gaps are eliminated from further processing. Additionally, the error model is a function of

the gap. This effect is incorporated in the covariance matrix computation described below.

Assuming the stereo cameras are located at C1(X1, Y1, Z1) and C2(X2, Y2, Z2) (see Figure 3), r1 and

r2 are two unit rays from the same feature in both images. As mentioned before, due to noise, r1 and

r2 do not always intersect in space. The stereo point is selected to be the midway between the closest

points of the two rays.

Assuming the closest points between the two rays are P1 and P2 we have:

P1 = C1 + r1m1

P2 = C2 + r1m2 (1)

where m1 and m2 are the lengths of P1C1 and P2C2, respectively. Since P1 and P2 represent the same

point in space, we have

0 = (P2 − P1) · r1 = (C2 − C1 + r2m2 − r1m1) · r1

0 = (P2 − P1) · r2 = (C2 − C1 + r2m2 − r1m1) · r2 (2)

Solving for m1 and m2, yields

m1 =
1

δ
((r1 · r2)r2 − r1) · (C2 − C1)

m2 =
1

δ
(r2 − (r1 · r2)r1) · (C2 − C1) (3)

where δ = (r1 · r2)
2 − 1. The coordinates of point P are given by:

P = (P1 + P2)/2 (4)

where P1 and P2 are computed by substituting Equations (3) into (1). The covariance for the position

of point P is:

ΣP = J





Σl 0

0 Σr



 JT (5)

where J is the Jacobian matrix, i.e., the matrix of partial derivatives of P with respect to the 2D

feature locations in the left and right images, and Σl and Σr are 2×2 matrices whose elements are the

curvatures of the biquadratic polynomial along the vertical, horizontal, and diagonal directions, which

can be obtained directly from subpixel interpolation. The quality of a 3D feature is a function of its

relative location, the gap between the two stereo rays and the sharpness of the correlation peak. This

covariance computation fully reflects these three factors. For a more detailed derivation see [2].

2.3 Feature Tracking

After the rover moves some distance, a second pair of stereo images is acquired. The features selected

from the previous image are then projected into the second pair using the knowledge of the approximated
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motion provided by the onboard wheel odometry (forward kinematics). The features are first matched

in the new left image by searching an area around the projected feature locations. Stereo matching

is then performed on these tracked features on the second pair to determine their new 3D positions.

Because the 3D positions of those tracked features are already known from the previous step, the stereo

matching search range can be greatly reduced. Features whose initial and final 3D positions differ by

too large an amount are filtered out.

2.4 Motion Estimation

Given two sets of corresponding 3D features, the transformation between them is determined using a

motion estimation algorithm that takes into account the matching covariance of each feature. This

algorithm is decomposed into two sequential steps. Coarse motion is first computed with Schonemann

motion estimation, and then a more accurate motion estimate is determined by maximum likelihood

motion estimation.

Schonemann motion estimation [13] uses singular value decomposition (SVD) with an orthogonal

constraint to estimate the rotation matrix, R, and translation vector, T , that transforms the feature

positions in I1 to those found in I2. The Schonemann method is simple and fast, however, it is highly

unstable when large errors are involved. In order to overcome this problem, a least-median-of-squares

approach [14] is adopted. In this method, a subset of features is randomly selected. Then each feature

from the previous frame is projected to the current frame, and the distance error between that projection

and the position of the corresponding feature in I2 is computed. The total count of features under a

given error tolerance is calculated. This procedure is repeated multiple times. The motion with the

largest number of agreeable features is chosen as the best motion.

The best motion estimate determined by employing the above procedure is refined using Maximum

Likelihood (ML) motion estimation. The ML estimation algorithm takes into account the 3D feature

position differences and the associated error models in order to estimate motion. Let P
(1)
j and P

(2)
j be

the observed feature positions before and after a robot motion. Then we have

P
(2)
j = RP

(1)
j + T + ej (6)

where R = R(Θ) and T are the rotation and translation of the robot and ej is the combined errors

in the observed positions of the jth features. In this estimation process, the 3-axis rotations (Θ) and

translation (T ) are directly determined by minimizing the summation in the exponents Σje
T
j Wjej where

ej = P
(2)
j −RP

(1)
j −T and Wj is the inverse covariance matrix of ej . The minimization of this nonlinear

problem is implemented by iterative linearization [8]. Two nice properties of ML estimation make this

algorithm significantly more accurate compared to the Schonemann method. First, it estimates the

3-axis rotations (Θ) directly so that it eliminates the error caused by rotation matrix estimation (which

occurs with least-squares estimation). Second, it incorporates error models for the feature positions in

the estimation process (see Equation (5)), which greatly improves the achieved accuracy.

6



Figure 4: Rocky 8.

3 KINEMATIC ALGORITHMS

The forward and inverse kinematics were determined for the rover (Rocky 8) shown in Figure 2. The

forward kinematics of the vehicle are used for estimating rover motion given the wheel rates and rocker,

bogie, and steering angles. The inverse kinematics of the vehicle are employed for calculating the

necessary wheel velocities and steering angles to create a desired rover motion.

These algorithms are specific to the rocker-bogie configuration with six steerable wheels (see Fig-

ure 4). However, the techniques used to derive these algorithms could be applied to any vehicle con-

figuration, though there may be a fewer number of observable degrees of freedom (DOFs) for different

configurations. Additionally, these forward kinematic algorithms can be used directly for rovers with a

subset of functionality (e.g., a rocker-bogie rover with only four of six wheels capable of steering, such

as the Mars Exploration Rovers; or a rover with only four wheels with or without a rocker, etc.) simply

by restricting the relevant parameters to be constant.

The motivation for developing the full kinematics of this class of vehicles, rather than adopting the

more common planar simplification, is twofold. First, it allows for the observation of 5 DOFs, whereas

the planar approximation limits this to 3 DOFs. Second, as terrain becomes rougher, the errors due

to the planar assumption grow. These errors can become significantly large (up to 30% of the distance

traveled) and affect the slip calculations and, consequently, the slip compensation controller.

The formulation of the forward and inverse kinematics closely follows that of [15, 16], with significant

extensions being made for 6-wheel steering. A detailed description of the kinematic derivations can be

found in [2, 15, 16, 17].
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Figure 5: Coordinate Frame Definition for the Right Side of the Rover (all dimensions in cm).

3.1 Rocker-Bogie Configuration

The rocker-bogie configuration is a suspension system that is commonly used for planetary rovers and

their prototypes. The configuration analyzed in this work consists of 15 DOFs: 6 steerable/drivable

wheels (12 DOFs), a rocker, and two bogies (all of these DOFs are sensed using either encoders or

potentiometers).1 In what follows, we show that under two assumptions the rocker-bogie system allows

for the observation of 5 of the 6 DOFs of the rover. These assumptions are: 1) the wheel/terrain contact

point is in a constant location relative to the wheel axle, and 2) slip between the wheel and the terrain

only occurs about the steering axis (e.g., no side or rolling slip). These slip assumptions, however, are

only made for the kinematics algorithm and not for the slip compensation system as a whole. The

second assumption is what makes the difference between the Kalman filter motion estimate and the

kinematic motion estimate a measurement of vehicle slippage.

3.2 D-H Table Formulation

The Denavit-Hartenberg convention was adopted for defining the frames of each of the 15 DOFs [19].

From the frame definitions (see Figure 5), a unique set of D-H parameters can be derived that completely

describes the kinematics of the rover. From these parameters, wheel Jacobians are computed as described

in [2].

1It is beyond the scope of this paper to describe the benefits of such a mobility system; the interested reader is referred

to [18] for a discussion on this topic.
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3.3 Forward Kinematics

Once the wheel Jacobians are known, rover motion estimation can be performed using the least-squares

formulation




v

η̇



 = (ATA)−1AT · Jcompq̇comp (7)

where v =
[

ẋ ẏ ż φ̇ ṗ ṙ
]

T is the vector of rover linear and rotational velocities, η̇ is a vector

of unobservable wheel turning rates (the sum of the rotational slip rate and the steering rate), A is the

matrix of the unsensed elements of the Jacobians, Jcomp is the block-diagonal composite matrix of the

wheel Jacobians, and q̇comp is the composite vector of the measured joint kinematic rates. For details

on the derivation and simplified solution to this least-squares problem see [15, 17]. Note that it is not

necessary to actually perform the inversion of ATA. The matrix equations can be greatly simplified

algebraically to make these computations significantly more efficient.

3.4 Inverse Kinematics

As depicted in Figure 2, the inverse kinematics algorithm receives as input the commanded rover motion,

and the current kinematic angles and angle-rates, and produces six steering angles and six wheel rates.

An interesting feature of the six steerable wheels is the fact that this configuration creates a holonomic

rover, under the assumption of instantaneous steering. Consequently all three controllable DOFs of

the rover, [ ẋ, ẏ, φ̇ ], are independent, which enables the isolation of several different control loops as

described in Section 6.2.

The first step of the inverse kinematics algorithm is to calculate an instantaneous center of rotation,

[ xO yO ], in the rover frame, by employing the following equations

xO = ẏcmd/φ̇cmd

yO = ẋcmd/φ̇cmd (8)

where ẋcmd, ẏcmd, and φ̇cmd are the commanded vehicle velocities from the slip-compensated path

follower (see Section 6). Because the z-axis of each wheel is the steerable axis, the instantaneous center

of rotation needs to be projected from the rover frame {R} to the x-y plane of the steering contact

coordinate frame {Mi}, i = 1 . . . 6, by employing the first two rows of the transformation matrix TMi

R

between these frames:





xO

yO





Mi

=





1 0 0 0

0 1 0 0



 · TMi

R ·

















xO

yO

0

1

















R

(9)

The steering angle for each wheel is then calculated using

ψi = arctan(xO,Mi
/yO,Mi

) , i = 1 . . . 6 (10)
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and each wheel rate is determined as

θ̇i = [JT
ai∆(Jui)Jai]

−1JT
ai∆(Jui)E · vcmd , i = 1 . . . 6 (11)

where

∆(Jui) = Jui(J
T
uiJui)

−1JT
ui − I , (12)

E =











1 0 0 0 0

0 1 0 0 0

0 0 0 1 0











T

, (13)

vcmd =
[

ẋcmd ẏcmd φ̇cmd

]T

, (14)

and Jai and Jui are the actuated and un-actuated Jacobians defined in [17]. Note that Equation (11)

is the actuated inverse solution from Muir and Neumann [17]. As before, these matrix inversions can

be algebraically simplified so that each wheel-rate calculation is relatively simple and computationally

efficient.

4 KALMAN FILTER

In this section, we present our approach for estimating the position and orientation of the rover using

inertial measurements from the IMU and relative pose (position and orientation measurements) from

visual odometry and vehicle odometry (forward kinematics). Since our formulation is based on sensor

modeling, we use the indirect form of the Extended Kalman Filter (EKF) that estimates the errors in

the estimated states instead of the states themselves. The interested reader is referred to [21, 23, 24] for

a detailed description of the advantages of the indirect KF vs. the direct KF. Within this framework,

the IMU measurements are integrated in order to propagate the state estimate [20, 22], while the visual

odometry and vehicle kinematics (only when no slip has occurred), are employed for updating the state

estimate and providing periodic corrections. The equations of the EKF designed for this particular

nonlinear system are described in detail in [22].

4.1 System Propagation Model

The state vector of interest in this estimation problem is:

xT =
[

qT bTg vT bTa pT
]

(15)

where q is the 4×1 quaternion of rotation that represents the attitude of the vehicle, v and p are the

3×1 vectors of linear velocity and position of the rover, and bg and ba are the 3×1 vectors of biases in

the gyroscope and accelerometer signals. The corresponding error state vector is:

∆xT =
[

δθT ∆bTg ∆vT ∆ba
T ∆pT

]

(16)
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where ∆ζ = ζ − ζ̂ is the algebraic difference (error) between the real value of a state ζ ∈ {bg, v, ba, p}

and its estimate ζ̂ , and δθ is the 3×1 error vector of the tilt angles determined based on the small angle

approximation:

q = δq ⊗ q̂, δqT =
[

(1/2)δθT 1
]

(17)

The continuous-time equation for the error-state propagation is

δẋ(t) = Fc(t)δx(t) +Gc(t)w(t) (18)

where w(t) is the white zero-mean continuous time noise process affecting the IMU signals,

Fc(t) =























−bω̂c −I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−CT (q̂)bâc 03×3 03×3 −CT (q̂) 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3























, Gc(t) =























−I3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 −CT (q̂) 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3























,

bω̂c (bâc) is the skew-symmetric matrix of the vector ω̂ = ωm−b̂g (â = am−b̂a), ωm (am) is the measured

rotational velocity (linear acceleration) vector, and CT (q̂) is the rotational matrix that projects vectors

from the sensor to the global coordinate frame. By discretizing Equation (18) we obtain:

δxk+1 = Fk(tk+1, tk)δxk + wk (19)

where Fk(tk+1, tk) = e
R t

k+1
t
k

Fc(τ)dτ , and wk is the equivalent discrete-time white zero-mean noise process

with covariance Qk =
∫ tk+1

tk

Fk(tk+1, τ)Gc(τ)QcG
T
c (τ)F T

k (tk+1, τ)dτ , Qc is a block diagonal matrix with

matrix elements σ2
i I3×3, i = 1 . . . 4, and σ2

i is the power of the gyroscope, gyroscope-bias, accelerometer,

and accelerometer-bias continuous-time noise components, respectively. The interested reader is referred

to [22] for the details of the derivation for Equations (18) and (19).

4.2 Relative Pose Measurement Model

The motion measurement provided by the visual odometry and/or the forward kinematics of the vehicle

corresponds to a relative pose measurement, i.e., the algebraic difference in position zp and attitude

quaternion zq. In order to process measurements that relate state estimates at different time steps (e.g.,

tk and tk+m), the state vector needs to be augmented with a copy of the vehicle state estimate at tk.

This process enables the filter to explicitly account for the correlations of the vehicle state estimates

between the time instants that e.g., two sets of images were recorded [25]. In what follows, we assume

that at time tk the vehicle is at position Gp(tk) = p1 with quaternion attitude 1
Gq(tk) = q1, and after m

steps it has moved to position Gp(tk+m) = p2 with attitude 2
Gq(tk+m) = q2. Frames {G}, {1}, and {2}

are the inertial frames of reference attached to the vehicle at times t0, tk, and tk+m respectively.
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The errors in the relative position and attitude (pose) measurements are given by:

∆z̃k+m =





∆zp

∆z̃q



 = X





∆zp

∆zq





= Γ
[

Jx1
Jx2

]





∆x1

∆x2



 + Xnr = H





∆x1

∆x2



 + ñr (20)

where Γ is a 6×6 block diagonal matrix with both 3×3 matrix elements equal to the rotational matrix

1
GC(q), and Jx1

, Jx2
are the measurement Jacobians with respect to the state vector at the two time

instants tk and tk+m, correspondingly. In this last expression, X is the 6×7 block diagonal matrix

with matrix elements the 3×3 identity matrix and the 3×4 Jacobian matrix that projects the algebraic

quaternion difference to the tilt angles’ error. All these quantities are described in detail in [22]. Both

the original measurement noise nr and the projected ñr are assumed to be a zero-mean white noise

Gaussian processes with covariances:

Rr = E[nrn
T
r ] =





Rq Rpq

Rpq Rq



 , R̃r = E[ñrñ
T
r ] = XRrX

T

As is evident from Equation (20), the relative pose measurement error is expressed in terms of the

current 4x2 = 4x(tk+m) and the previous 4x1 = 4x(tk) (error) state of the system. Note that tk

and tk+m are the time instants when, e.g., the two images (encoder readings) processed by the visual

(vehicle) odometry algorithm were recorded and thus the relative pose (motion estimate) measurement

provided by it corresponds to the time interval [ tk tk+m ].

4.3 Augmented-state propagation

If 4xk/k is the state estimate at time tk (when the first image or encoder measurement was recorded)

we augment the state vector with a second copy of this estimate:

4x̆ =
[

4xT
k/k 4xT

k/k

]T

Since initially, at time tk, the two copies of the state estimate are identical, the covariance matrix for

the augmented system would be:

P̆k/k =





Pkk Pkk

Pkk Pkk





where Pkk is the covariance matrix for the (error) state of the vehicle at the time tk. In order to conserve

the estimate of the state at tk, necessary for evaluating the relative pose measurement error at tk+m,

only the second copy of the state estimate is propagated during this interval, while the first remains

stationary. The propagation equation for the augmented system is:





∆xs

∆x





k+1/k

=





I 0

0 Fk+1









∆xs

∆x





k/k

+





0

I



wk
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or

∆x̆k+1/k = F̆k+1∆x̆k/k + Ğk+1wk

where ∆xs is the stationary copy of the error state of the vehicle and wk is the system noise due to

errors in the IMU measurements [22]. The covariance of the augmented system is propagated and after

m steps it is:

P̆k+m/k =





Pkk PkkF
T

FPkk Pk+m/k



 (21)

where F =
∏m

i=1 Fk+1 and Pk+m/k is the propagated covariance of the evolving state at time tk+m.

At this point, we should note that by employing the error models for the propagation and update

(see Section 4.2), the state vector can be updated every time a relative pose measurement from the

visual odometry or the kinematics algorithm becomes available. The equations for the augmented-state

Kalman filter are described in detail in [22, 25].

5 MAHALANOBIS COMPARATOR (SLIP ESTIMATION)

In this section, we present our approach to rover slippage detection. Based on the kinematic equations of

the rover and assuming no wheel slippage, the wheel and rocker-bogie joint measurements are processed

to produce a relative position and orientation measurement over a certain time (sampling) interval.

Before updating the state estimate of the EKF, this kinematics-based displacement measurement needs

to be validated by comparing it to the equivalent one estimated by the EKF. If significant wheel slippage

has occurred, the residual (i.e., difference between odometry-based and EKF-based displacement) will

be significantly larger compared to the case where the rover moves on solid ground without any of the

wheels slipping. A statistical measure for assessing the validity of these measurements is the Mahalanobis

distance

md = rT
k,k+mS

−1rk,k+m (22)

where rk,k+m is the residual and S is the corresponding residual covariance matrix. In the case of this

vehicle’s odometry measurement, the Mahalanobis distance follows a chi-square distribution with five

degrees of freedom. A sufficient test for validating vehicle odometry measurements zk,k+m is to require

that these match the expected (estimated by the EKF) measurements ẑk,k+m of the same quantities

with a certain level of confidence. By requiring the fit between the expected and actual measurements

to be valid with probability, e.g., p=95%, odometric measurements are processed by the EKF only

when md ≤ t , with t = 11.07. If this inequality does not hold, these measurements are discarded and

wheel slippage is detected. In this case, the residual is provided to the slip compensation algorithm for

appropriately modifying the rover steering and driving commands.

The incentive to include the kinematics measurement in the Kalman filter estimator, when it passes

the Mahalanobis distance criterion (as shown in Figure 2), is mainly for off-nominal conditions, when

visual odometry does not perform at 2.5% accuracy (for example, under rare conditions, when it does
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Figure 6: Carrot Heading Calculation.

not converge to a solution). Under nominal conditions for visual odometry, and when the vehicle is

slipping, is when the vehicle kinematics are most useful since they allow for the estimation of slippage.

6 SLIP-COMPENSATED PATH FOLLOWER

At the center of Figure 2 is the slip-compensated path following controller. This is comprised of two

algorithms that are used in close conjunction to achieve the system’s end-goal of enabling the traversal

of a desired path through high-slip environments. At the highest level, the algorithms receive a 3×1 slip

vector
[

ẋ ẏ φ̇
]

slip
, a 3×1 rover pose vector

[

x y φ
]

pose
, and a 2×n desired path vector (where

n is the number of waypoints)
[

x y
]

path
, and then outputs a 3×1 commanded rover velocity vector

[

ẋ ẏ φ̇
]

cmd
.

6.1 Carrot Heading Algorithm

The carrot heading algorithm calculates the desired heading, φcarrot, of the vehicle given the desired

path and the current rover pose. This algorithm was employed for its robustness to path error [26, 27].

The desired path consists of a set of linear segments between waypoints. The waypoints, however,

can be spaced at any distance apart, thus allowing for paths of arbitrary complexity. The algorithm

determines the desired heading by calculating the intersection of a circle centered on the rover frame

origin with the desired path and computing the direction of that point (Figure 6). The intersection

point, (xcarrot, ycarrot), that is furthest along the path is always selected. The heading error is then

computed as:

φerr = φcarrot − φpose (23)

A large radius results in a smooth motion of the rover, but tends to filter out small features of the path.

A small radius reduces the total path following error. It requires, however, large heading changes of the

rover for small path errors, which is extremely inefficient. A circle radius is selected that balances the
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desire to closely follow the path and the magnitude of the heading changes. Under nominal conditions,

the rover path error will always be smaller than the circle radius. If this is not the case, then the radius

is grown until an intersection occurs.

6.2 Slip-Compensated Path Following Algorithm

When the Mahalanobis comparator determines that slippage has actually occurred, the calculation of

rover slip is made by comparing the output from the Kalman Filter and the output from the forward

kinematics. If statistically significant slippage is not detected then the slip vector consists of zeros and

the compensation algorithm described below converges to a heading controller.

The slip compensation algorithm consists essentially of two separate control loops. The first control

loop, the heading controller, is described by the equation:

φ̇cmd = (K1 · φerr +K2 · φ̇slip)/Ts (24)

This loop determines the commanded yaw rate of the vehicle as a combined function of the heading

error, φerr (as calculated by the carrot heading algorithm), and the yaw slip rate, φ̇slip. It attempts

to achieve the optimal heading, determined by the carrot algorithm, even when slipping in the yaw

direction. The second loop is described by the equation:

ẏcmd = K3 · ẏslip/Ts (25)

This loop calculates the rate of the rover along the y-axis based entirely on the slip in the y direction

during the previous sample period. A ẏcmd command results in a crabbing maneuver, where all six

wheels have a steering angle offset in the same direction. ẋslip is implicitly compensated for by the rover

driving for a longer period of time along the path towards the goal. In Equations (24) and (25), K1, K2,

and K3 are tuned controller gains and Ts is the controller sample period. ẋcmd is then determined to be

the maximum value allowed that keeps the rover within its operational constraints (i.e., the maximum

speed of the drive motors). These rover commands, [ ẋ ẏ φ̇ ]cmd , are then passed to the inverse

kinematics.

6.3 Continuous Motion

With minor changes made to the algorithm it was possible to allow continuous motion of the rover while

compensating for slippage. Images are taken, visual odometry is run, the slip vector is estimated, and

the compensation command is then computed, all while the rover is moving.

There are many benefits for selecting a continuous motion profile: (i) more efficient motion (both

in energy and time); (ii) less slippage due to smaller changes in momentum (this becomes particularly

significant as the rover increases in mass and the terrain becomes steeper); and (iii) it enables a higher

rate of slip compensation, thus achieving greater accuracy when following a path. It also removes the

requirement of many navigation algorithms to use arcs as the fundamental motion of the rover and
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Table 1: Rocky 8 Rover Specifications

number of driveable wheels 6

number of steerable wheels 6

wheel diameter (meters) 0.20

wheel width (meters) 0.10

mass (kg) 60

wheelbase (meters) 0.75

track width (meters) 0.62

maximum linear velocity (meters/sec) 0.09

maximum rotational velocity (rad/sec) 0.24

camera resolution (pixels) 640×480

camera field of view (horizontal ◦× vertical ◦) 79.5×64.0

camera baseline (meters) 0.084

camera angle from horizontal (◦) 45.0

processor type and speed (GHz) PentiumIII 1.2

permits more complex spline paths to be the basis of path planning. Another advantage is that it

supports more optimal spacing between navigation stops (allowing for other requirements, such as IMU

bias zeroing, to determine the appropriate spacing between stops).

7 EXPERIMENTAL RESULTS

Three sets of experiments have been performed using Rocky 8 (Figure 4), a Mars rover research platform

developed at JPL. This rover has a very similar mobility system to Sojourner, Mars Exploration Rovers

(MER), and the current design of the 2009 Mars Science Laboratory (MSL) rover. Rocky 8 utilizes

a rocker-bogie suspension (see Section 3.1) which allows for excellent mobility over very rough terrain

[18]. Specifications of the Rocky 8 rover are in Table 1.

With the processor onboard the rover, visual odometry runs at approximately 1 Hz. This rate dictates

the sample period of the slip-compensated path follower, Ts. Several parameters of the slip-compensated

path follower also had to be tuned in the field. The three gains of the control loops K1, K2, and K3 in

Equations (24) and (25) were tuned by first increasing K1 until the heading error was maintained at an

acceptably low value without inducing oscillations in the heading of the rover. Then K2 was increased

until the rover acceptably compensated for yaw slippage under the conditions experienced in the field.

Finally K3 was increased until the slippage in the y direction was effectively compensated for without

inducing crabbing oscillations. Additionally, a radius of the carrot heading algorithm was determined

that balanced the need to closely follow the path with the need to minimize heading changes.

The first set of experiments was performed in the JPL Marsyard, a 20×20 meter space designed as an
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Figure 7: Mars Yard Run 1 Visual Odometry Results.

analogue (in rock size/distribution and soil characteristics) to the Viking Lander sites. The experiment

consisted of two consecutive 25-meter runs with visual odometry running onboard. The second set

of experiments was performed in the Mojave Desert. The terrain of this area contains slopes up to

25◦ consisting of loose granular sand (Figure 1). This set of experiments was a test of a simplified

integrated slip-compensated path following system. It was simplified in the sense that the Kalman filter

and Mahalanobis comparator had not yet been implemented, however, a slip estimate was calculated

and compensated for every time the visual odometry provided a new estimate, which was approximately

every 20-30 cm. Another simplification, due to limitations of the vehicle, was to assume the rocker and

bogie angles were zero. The third set of experiments was performed on JPL’s tiltable platform, a 5×5

meter “sandbox” that could be tilted in discrete increments from 0◦ to 30◦. The terrain on the tiltable

platform can be characterized as cohesionless beach sand. In the experiments presented here it was set

at 10◦. This set of experiments consisted of multiple runs at varying approach angles (ranging from

straight up the 10◦ slope to horizontally across the slope), and used the updated continuous motion

algorithm described in Section 6.2.

In the first two sets of experiments, ground truth data were collected with a Leica Total Station (LTS),

which is a laser-based position measurement system. The LTS was used to measure the absolute position

of four prisms mounted on the vehicle (Figure 4) every time the rover was stationary (approximately

every 20-30cm). This system gives an accuracy of ±2 mm in position and ±0.2◦ in attitude. In the field

test experiments the waypoints for the rover were also designated using the LTS and a single prism. In

the third set of experiments, the LTS could only be used for ground truth at the beginning and end of

the runs because the rover did not stop during each test.

7.1 Visual Odometry Results

Visual odometry results are shown from the Marsyard (Figures 7 and 8) and the Mojave Desert ex-

periments (Figure 9). The errors at the end of both Marsyard runs are less than 2.5% of the distance

traveled. As shown in Figure 9, the error (0.37 m) at the end of the field test run, at the Mojave Desert,

is less than 1.5% of the distance traveled (29 m).
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Figure 8: Mars Yard Run 2 Visual Odometry Results.

7.2 Slip-Compensated Path Follower Results

Results of the slip-compensated path following algorithm are shown in Figures 10 and 11. The entire

section of the path shown in Figure 10 was on a slope of between 10◦ and 15◦. Figure 10 is an expansion

of the box shown in Figure 9 (note that the axes of Figure 10 have been rotated in order to minimize

the vertical size of the plot). Figure 11 is an expansion of the box shown in Figure 10. These two

figures show three important pieces of information that the slip-compensated path following algorithm

uses to calculate the rover commands: visual odometry pose (as described in Section 2), kinematics

pose (as described in Section 3), and the desired path. From this information the slip-compensated path

follower calculates the rover commands as described in Section 6. Carrot heading, which is calculated

in an intermediate step, is also shown. In Figure 10, the rover was able to accurately and efficiently

follow the desired path, despite significant slippage. As can be seen in Figure 11, there is a noticeable

bias between the visual odometry pose and the kinematics pose in the y direction. This is due to the

downhill slippage of the rover; this bias is being compensated for by the slip compensation algorithm,

as is evident from the fact that the rover accurately follows the desired path.

7.3 Continuous Motion Results

Results from the continuous motion slip compensation experiments are shown in Figure 12 (see Sec-

tion 7.2 for a description of the elements of this plot). The top graph in the figure shows a 4.5 meter

run using continuous slip compensation on a 10◦ slope (the slope is going down towards the positive

y-axis). Again, notice the constant offset between the kinematic and visual odometry estimates, indi-

cating slippage. The bottom graph shows an identical run without using slip compensation. As can be

seen, the significant slippage shown in the bottom graph was compensated for in the run shown in the

top graph. The mean square path offset error is 0.05 and 0.54 meters2 for the runs with and without

slip compensation, respectively. This is a significant improvement in performance.
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Figure 11: Expanded Slip Compensation Results.
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compensation disabled).

8 CONCLUSIONS

In this paper, we have described the design, implementation, and testing of a system that enables a rover

to accurately follow a designated path, compensate for slippage, and reach intended goals, independent

of terrain geometry and soil characteristics along the path (within the mechanical constraints of the

mobility system). Individual components have been simulated and tested; additionally, an integrated

system has been tested onboard a rover in a desert field test. The results from the individual and

integrated tests are encouraging. Visual odometry is able to consistently estimate rover motion to

within 2.5% of distance traveled. Given this knowledge, the slip-compensated path following algorithm

is able to accurately estimate and effectively compensate for slip and thus accurately follow a desired

path and reach the intended goal while traversing through a high-slip environment. The algorithm has

also been extended to allow for continuous motion slip compensation. Future work includes integration

of this slip-compensated path following algorithm with a path planning/obstacle avoidance system such

as Morphin or GESTALT [28, 29].
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