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SUMMARY

In this paper, we consider the semi-global regulation of output synchronization problem for heterogeneous
networks of invertible linear agents subject to actuator saturation. That is, we regulate the output of
each agent according to an a priori specified reference model. The network communication infrastructure
provides each agent with a linear combination of its own output relative to that of neighboring agents, and
it allows the agents to exchange information about their own internal observer estimates, while some agents
have access to their own outputs relative to the reference trajectory. Copyright c© 2012 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The synchronization problem in a network has received substantial attention in recent years (see [1,
10,18,30] and references therein). Active research is being conducted in this context and numerous
results have been reported in the literature; to name a few, see [7, 11, 12, 13, 15, 16, 17, 23, 24, 25].

Much of the attention has been devoted to achieving state synchronization in homogeneous
networks (i.e., networks where the agent models are identical), where each agent has access to a
linear combination of its own state relative to that of neighboring agents (e.g., [10,11,12,16,17,19,
20, 21, 24, 32]). A more realistic case—that is, each agent receives a linear combination of its own
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2 T YANG ET AL.

output relative to that of neighboring agents—has been considered in [7,13,14,25,26]. A key idea in
the work of [7], which was expanded upon by Yang, Stoorvogel, and Saberi [34], is the development
of a distributed observer. This observer makes additional use of the network by allowing the agents
to exchange information with their neighbors about their own internal estimates. Many results on
the synchronization problem are rooted in the seminal work [28, 29].

1.1. Heterogeneous networks and output synchronization

Recent activities in the synchronization literature have been focused on achieving synchronization
for heterogeneous networks (i.e., networks where the agent models are non-identical). This problem
is challenging and only some results are available; see, for instance, [2, 5, 6, 9, 27, 31].

In heterogeneous networks, the agents’ states may have different dimensions. In this case,
the state synchronization is not even properly defined, and it is more natural to aim for output
synchronization—that is, asymptotic agreement on some output from each agent. Chopra and
Spong [2] studied output synchronization for weakly minimum-phase nonlinear systems of relative
degree one, using a pre-feedback to create a single-integrator system with decoupled zero dynamics.
Kim, Shim, and Seo [6] considered the output synchronization for uncertain single-input single-
output, minimum-phase linear systems, by embedding an identical model within each agent, the
output of which is tracked by the actual agent output. The authors have considered in [33] the
output synchronization problem for right-invertible linear agents, using pre-compensators and an
observer-based pre-feedback within each agent to yield a network of agents which are to a large
extent identical.

1.2. Introspective versus non-introspective agents

The designs mentioned in Section 1.1 generally rely on some sort of self-knowledge that is separate
from the information transmitted over the network. More specifically, the agents may be required
to know their own states or their own outputs. In [3, 4], we refer to agents that possess this type of
self-knowledge as introspective agents to distinguish them from non-introspective agents—that is,
agents that have no knowledge about their own states or outputs separate from what is received via
the network.

To our best knowledge, the only result besides [3,4] that clearly applies to heterogeneous networks
of non-introspective agents is by Zhao, Hill and Liu [35]. However, the agents are assumed to
be passive—a strict requirement that, among other things, requires that the agents are weakly
minimum-phase and of relative degree one.

1.3. Contributions of this paper

The regulation of output synchronization problem, where the objective is not only to achieve output
synchronization, but to make the synchronization trajectory follow an a priori given reference
trajectory generated by an arbitrary autonomous exosystem, has been considered in [4]. In [4], we
assume that the agents in the network are non-introspective except for some of the agents, which
know their own outputs relative to the reference trajectory. However, we do not have any constraints
on the magnitude of the agent’s input. In the real world, every physically conceivable actuator has
bounds on its input, and thus actuator saturation is a common phenomenon. In this paper, we extend
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SEMI-GLOBAL REGULATION OF OUTPUT SYNCHRONIZATION 3

the results in [4] to the case where all the agents are subject to actuator saturation, which introduces
significant complexities in terms of the analysis and design.

1.4. Notations

Given a matrix A ∈ Rm×n, A′ denotes its transpose. ImA is the range space of a matrix A ∈ Rm×n

defined as
ImA := {Ax | x ∈ Rn} .

A ∈ Rn×n is said to be Hurwitz stable if all its eigenvalues are in the open left-half complex plane.
The Kronecker product between two matrices A ∈ Rm×n and B ∈ Rp×q is defined as the Rmp×nq

matrix

A⊗B =





a11B . . . a1nB
...

. . .
...

am1B . . . amnB



 ,

where aij denotes element (i, j) of A. In denotes the identity matrix of dimension n. Similarly, 0n
denotes the square matrix of dimension n with all zero elements. We sometimes drop the subscript if
the dimension is clear in the context. When clear form the context, 1 denotes the column vector with
all entries equal to one. For a given vector v ∈ Cn, re v ∈ Rn and im v ∈ Rn denote respectively
vectors whose entries are the real part and imaginary part of the vector v.

2. PROBLEM FORMULATION AND MAIN RESULT

2.1. Problem Formulation

Consider a network of N multiple-input multiple-output invertible agents of the form

ẋi = Aixi +Biσ(ui), (1a)

yi = Cixi +Diσ(ui), (1b)

for i ∈ {1, . . . , N}, where xi ∈ Rni , ui ∈ Rp, yi ∈ Rp, and

σ(ui) = [σ1(ui,1), . . . ,σ1(ui,p)]
′,

where σ1(u) is the standard saturation function

σ1(u) = sgn(u)min {1, |u|} ,

and where the quadruple (Ai, Bi, Ci, Di) is invertible.
The network provides each agent with a linear combination of its own output relative to that of

other agents. In particular, each agent i has access to the quantity

ζi =
N∑

j=1

aij(yi − yj), (2)
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4 T YANG ET AL.

where aij ≥ 0 and aii = 0 with i, j ∈ {1, . . . , N}. This network can be described by a weighted
directed graph (digraph) G with nodes corresponding to the agents in the network and edges with
weight given by the coefficients aij . In particular, aij > 0 means that there exists an edge with
weight aij from agent j to agent i, where agent j is called a parent of agent i, and agent i is called
a child of agent j.

We also define a matrix G = [gij ], where gii =
∑N

j=1 aij and gij = −aij for j %= i. The matrix
G, known as the weighted Laplacian matrix of the digraph G, has the property that the sum of the
coefficients on each row is equal to zero. In terms of the coefficients gij of G, ζi given by (2) can be
rewritten as

ζi =
N∑

j=1

gijyj . (3)

In addition to ζi given by (3), we assume that the agents exchange information about their own
internal estimates via the same network. That is, agent i has access to the quantity

ζ̂i =
N∑

j=1

aij(ηi − ηj) =
N∑

j=1

gijηj , (4)

where ηj ∈ Rp is a variable produced internally by agent j. This value will be specified as we
proceed with the design.

Our goal is to regulate the outputs of all agents towards an a priori specified reference trajectory
yr(t), generated by an arbitrary autonomous exosystem

ω̇ = Sω, ω(0) = ω0 ∈ Ω0, (5a)

yr = Crω, (5b)

where ω ∈ Rr, yr ∈ Rp, and Ω0 is a compact set of possible initial conditions for the exosystem.
That is, for each agent i ∈ {1, . . . , N}, we wish to achieve limt→∞(yi − yr) = 0. Equivalently, we
wish to regulate the synchronization error variable

ei := yi − yr

to zero asymptotically, where the dynamics of ei is governed by
[
ẋi

ω̇

]
=

[
Ai 0

0 S

][
xi

ω

]
+

[
Bi

0

]
σ(ui), (6a)

ei =
[
Ci −Cr

] [xi

ω

]
+Diσ(ui). (6b)

In order to achieve our goal, in addition to ζi given by (3) and ζ̂i given by (4) provided by the
network, it is clear that a non-empty subset of agents should observe its output relative to the
reference trajectory yr generated by (5) in order for the network of agents to follow the reference
trajectory. Specifically, let I ⊂ {1, . . . , N} denote such a subset. Then, each agent i ∈ {1, . . . , N}
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SEMI-GLOBAL REGULATION OF OUTPUT SYNCHRONIZATION 5

has access to the quantity

ψi = ιi(yi − yr), ιi =





1, i ∈ I,

0, i /∈ I.
(7)

Clearly, we need to restrict the initial conditions of the exosystem since, due to the input
saturation, the agents will only be able to track a limited set of reference trajectories. This is
formulated in the above by assuming that ω(0) ∈ Ω0 with the set Ω0 known a priori. Regarding
the initial conditions of the agents, we would ideally like to design a controller that achieves
limt→∞ ei(t) = 0 for all initial conditions subject to ω(0) ∈ Ω0, a problem that can be referred
to as global regulation of output synchronization. However, from the literature on linear systems
subject to actuator saturation, we know that global regulation of output synchronization in general
requires nonlinear controllers. In this paper, we would like to use linear controllers of the form:

ẋc
i = Ai,cx

c
i +Bi,c




ζi

ζ̂i

ψi



 , (8a)

ui = Ci,cx
c
i , ∀i ∈ {1, . . . , N} , (8b)

where xc
i ∈ Rci is the state of the controller for agent i. Thus, we restrict attention to the semi-global

regulation of output synchronization problem, which is defined as follows.

Problem 1 (Semi-global regulation of output synchronization)
Consider a network of N agents as given by (1) and the reference model given by (5) with
initial conditions in an a priori given compact set Ω0 ⊂ Rr. The semi-global regulation of output
synchronization problem is to find, if possible, for certain integers ci, i ∈ {1, . . . , N} a family of
controllers of the form (8) parameterized in a parameter ε such that for any arbitrarily large bounded
sets Xi ⊂ Rni and Pi ⊂ Rci , i ∈ {1, . . . , N}, there exists ε small enough for which

lim
t→∞

ei(t) = 0, ∀i ∈ {1, . . . , N} , (9)

for all initial conditions xi(0) ∈ Xi, xc
i (0) ∈ Pi, and ω(0) ∈ Ω0.

Remark 1
We would like to emphasize that our definition of the above semi-global regulation of output
synchronization problem does not view the set of initial conditions of the agents’ model (1) and
their controllers (8) as given data. The set of given data consists of the models of the agent (1),
the exosystem (5), and the set Ω0 of possible initial conditions for the exosystem. Therefore, the
solvability conditions must be independent of the set of initial conditions of the agents, Xi, and the
set of initial conditions for the controllers, Pi.

2.2. Assumptions

In this section, we present the assumptions about the network topology, the individual agents, and
the reference model for solving the semi-global regulation of output synchronization problem as
defined in Problem 1.
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6 T YANG ET AL.

Assumption 1
Every node of the digraph G is a member of a directed tree whose root is contained in I.

Remark 2
It is possible for I to consist of a single node, in which case Assumption 1 requires this node to be
the root of a directed spanning tree of G.

Assumption 2
For each agent i ∈ {1, . . . , N} as given in (1)

1. all the eigenvalues of Ai are in the closed left-half complex plane;
2. the pair (Ai, Bi) is stabilizable; and
3. the pair (Ci, Ai) is observable;

Remark 3
Conditions 2 and 3 are natural assumptions. Condition 1 is a necessary condition, since if Ai has
one observable eigenvalue in the open right-half complex plane for some i ∈ {1, . . . , N}, then for
sufficiently large initial conditions xi(0), the output of that system yi will be exponentially growing,
and the bounded input σ(ui) can influence this exponentially growing signal only in a limited sense.
Therefore, we cannot guarantee that this output will track yr.

Assumption 3
For the reference model (5),

1. the pair (Cr, S) is observable;
2. all the eigenvalues of S are in the closed right-half complex plane; and
3. the matrix S is neutrally stable.

Remark 4
Condition 1 is a natural assumption. Condition 2 is made without loss of generality because
asymptotically stable modes vanish asymptotically, and therefore they play no role asymptotically.
Condition 3 is reasonable since the output of an agent cannot be expected to track exponentially
growing signals with a bounded input. Polynomially growing reference signals can be easily
included but it requires very restrictive solvability conditions in case of input saturation and hence,
for ease of presentation, we have excluded this case.

Assumption 4
The equations

ΠiS = AiΠi +BiΓi, (10a)

Cr = CiΠi +DiΓi, (10b)

commonly known as the regulator equations are solvable with respect to Πi ∈ Rni×r and Γi ∈
Rp×r, and there exists a δ > 0 such that for each agent i ∈ {1, . . . , N},

‖Γiω(t)‖∞ ≤ 1− δ, (11)

for all t > 0 and all ω(t) with ω(0) ∈ Ω0.
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SEMI-GLOBAL REGULATION OF OUTPUT SYNCHRONIZATION 7

Remark 5
Note that if the regulator equations (10) have a solution, then the solution is unique, as a consequence
of the invertibility of the quadruple (Ai, Bi, Ci, Di). Therefore, one can easily verify (11).

2.3. Necessity of Assumption 4

Assumptions 1, 2, and 3 are natural as discussed in Remarks 3 and 4. On the other hand, Assumption
4 is critical. Essentially, this assumption is necessary for solving the semi-global regulation of
output synchronization problem as defined in Problem 1. The following lemma, which is proven
in Appendix A, shows this fact and gives the necessary condition for solving Problem 1.

Lemma 1
Suppose that each agent i ∈ {1, . . . , N} has access to full information. Assume that Ω0 contains 0

in its interior. Then for any initial condition ω(0) ∈ Ω0, there exist initial conditions xi(0) and an
input ui(t) that leads to ei(t) → 0 as t → ∞ only if the regulator equations (10) are solvable, and
moreover the solution of the regulator equation must satisfy

‖Γiω(t)‖∞ ≤ 1 (12)

for all t > 0.

2.4. Main Result

Theorem 1
Consider a network of N agents as given by (1) and the reference model given by (5). Let
Assumptions 1, 2, 3, and 4 hold. Then the semi-global regulation of output synchronization problem
as defined in Problem 1 is solvable.

Proof
The proof of Theorem 1 is given in Section 3 by explicit construction of a controller for each
agent.

3. DESIGN OF CONTROL LAW FOR EACH AGENT

In this section, we describe the construction of a controller for each agent to solve the semi-global
regulation of output synchronization problem as defined in Problem 1. The construction is carried
out in three steps.

In Step 1, we construct a new state x̄i, via a transformation of xi and ω, such that the dynamics
of the synchronization error variable ei can be described by equations

˙̄xi = Āix̄i + B̄iσ(ui) :=

[
Ai 0

0 Āi22

]
x̄i +

[
Bi

0

]
σ(ui), (13a)

ei = C̄ix̄i + D̄iσ(ui) :=
[
Ci −C̄i2

]
x̄i +Diσ(ui). (13b)
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The purpose of this state transformation is to reduce the dimension of the model underlying ei—the
dimension of x̄i is generally lower than that of [x′

i,ω
′]′—by removing redundant modes that have

no effect on ei. In particular, the model (6) may be unobservable, but the model (13) is always
observable.

In Step 2, we construct a low-gain state feedback for ui assuming x̄i is known. This feedback is
parameterized in ε and regulates ei to zero for any arbitrarily large bounded set of initial conditions
of the agent’s models by choosing the low-gain parameter ε sufficiently small. Moreover, by making
the low-gain parameter ε small enough, we can guarantee that the amplitude of the control law is
less than any given α, where 1− δ < α < 1. Since the agent i has neither the internal state xi nor
the state ω of the exosystem available, this controller is not directly implementable. This brings us
to Step 3 of the design.

In Step 3, we follow the procedure as given in our previous paper [4], that is, we construct a
decentralized high-gain observer that makes an estimate of x̄i available to agent i. However, as we
shall see later, our state feedback design and high-gain observer are coupled. This will be illustrated
in Section 3.1.

3.1. Design procedure for agent i

Step 1: State transformation
Let Oi be the observability matrix corresponding to the system (6).

Oi =





Ci −Cr

...
...

CiA
ni+r−1
i −CrSni+r−1



 .

Let qi denote the dimension of the null space of matrix Oi, and define ri = r − qi. Next, define
Λiu ∈ Rni×qi and Φiu ∈ Rr×qi such that

Oi

[
Λiu

Φiu

]
= 0, rank

[
Λiu

Φiu

]
= qi.

Since the pair (Ci, Ai) and the pair (Cr, S) are observable, it is easy to see that Λiu and Φiu

have full column rank (see [4, Appendix A]). Let therefore Λio and Φio be defined such that
Λi := [Λiu,Λio] ∈ Rni×ni and Φi := [Φiu,Φio] ∈ Rr×r are nonsingular.

From the proof of [3, Lemma 2], we know that

SΦi = ΦiRi, (14)

where

Ri =

[
Ui Ri12

0 Ri22

]
.

Since S is anti-Hurwitz stable and neutrally stable, we know that S is diagonalizable, and hence Ri

is diagonalizable. This implies that Ri has r independent right eigenvectors. Let vi,1, · · · , vi,r be r

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
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SEMI-GLOBAL REGULATION OF OUTPUT SYNCHRONIZATION 9

independent right eigenvectors of Ri, such that

vi,j =

[
ṽi,j

0

]

for j = 1, . . . , qi, where ṽi,j are right eigenvectors of Ui. In that case we choose Vi11 ∈ Rqi×qi such
that

ImVi11 = span{re ṽi,j , im ṽi,j | j = 1, · · · , qi}

and we choose Vi12 ∈ Rqi×ri and Vi22 ∈ Rri×ri such that

Im

[
Vi12

Vi22

]
= span{re vi,j , im vi,j | j = qi + 1, · · · , r}.

We then construct:

Vi =

[
Vi11 Vi12

0 Vi22

]
.

It can be easily verified that span{re vi,j , im vi,j} is an invariant subspace of Ri for any j = 1, . . . r.
This implies:

RiVi = Vi

[
Λi1 0

0 Λi2

]
, (15)

One way of choosing the matrix Vi is choosing
[
Λi1 0

0 Λi2

]

to be the real Jordan form of Ri ordered in such a way that Λi1 is the real real Jordan form of Ui.
From (15), we obtain that

V −1
i11 UiVi11 = Λi1, V −1

i22 Ri22Vi22 = Λi2, (16)

and
UiVi12 − Vi12Λi2 = −Ri12Vi22. (17)

We then define

Φ̄i := [Φ̄iu, Φ̄io] = Φi

[
Iqi Vi12V

−1
i22

0 Iri

]
. (18)

We then define a new state variable x̄i ∈ Rni+ri as

x̄i =

[
x̄i1

x̄i2

]
:=

[
xi − ΛiMiΦ̄

−1
i ω

NiΦ̄
−1
i ω

]
,

where Mi ∈ Rni×r and Ni ∈ Rri×r are defined as

Mi =

[
Iqi 0

0 0

]
, Ni =

[
0 Iri

]
.
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Note that the system (6) can be transformed into the system (13), with a block upper-triangular
structure if we use the transformation Φi as shown in [4]. However, with the matrix Φ̄i given by
(18), which is a special case of the transformation previously used in [4], everything from our
previous results still holds. Moreover, the system (13) has a block-diagonal structure. The following
lemma, which is proven in Appendix B, shows this.

Lemma 2
The synchronization error variable ei is governed by dynamical equations of (13), where the pair
(C̄i, Āi) is observable and the eigenvalues of Āi22 are a subset of the eigenvalues of S.

Remark 6
If the unforced system for an agent i is the same as the exosystem, i.e., if Ci = Cr and Ai = S, then
it is easy to see that the dynamics of system (13) reduces to the dynamics of system (1).

Step 2: State feedback control design
For any arbitrarily large bounded set Xi, we design a controller as a function of x̄i such that
limt→∞ ei(t) = 0 for all xi(0) ∈ Xi and ω(0) ∈ Ω0. Consider the following regulator equations with
unknowns Πr

i ∈ Rni×ri and Γr
i ∈ Rp×ri for system (13)

Πr
i Āi22 = AiΠ

r
i +BiΓ

r
i , (19a)

C̄i2 = CiΠ
r
i +DiΓ

r
i . (19b)

The following lemma shows that the regulator equations (19) are solvable if and only if the regulator
equations (10) are solvable, and gives the mapping between the solutions of the two regulator
equations. Note that if the regulator equations (19) (or the regulator equations (10)) have a solution,
then it is unique due to the invertibility of the quadruple (Ai, Bi, Ci, Di).

Lemma 3
If (Πr

i ,Γ
r
i ) is the solution of the regulator equations (19), then (Πi,Γi) given as

Πi = Πr
iNiΦ̄

−1
i + ΛiMiΦ̄

−1
i , Γi = Γr

iNiΦ̄
−1
i (20)

is the solution of the regulator equations (10). On the other hand, if (Πi,Γi) is the solution of the
regulator equations (10), then (Πr

i ,Γ
r
i ) given as

Πr
i = ΠiΦ̄io, Γr

i = ΓiΦ̄io (21)

is the solution of the regulator equations (19).

Proof
Let (Πr

i ,Γ
r
i ) be the solution of the regulator equations (19). And define (Πi,Γi) by (20) and

Wi = [Iqi 0]. From (20), it is easy to see that

Πi =
[
Πr

i 0
] [Ni

Wi

]
Φ̄−1

i + ΛiMiΦ̄
−1
i , Γi =

[
Γr
i 0

] [Ni

Wi

]
Φ̄−1

i .
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SEMI-GLOBAL REGULATION OF OUTPUT SYNCHRONIZATION 11

With some algebra, we obtain that

ΠiSΦ̄i =
[
Πr

i 0
] [Ni

Wi

]
Φ̄−1

i SΦ̄i + ΛiMiΦ̄
−1
i SΦ̄i

=
[
0 Πr

i

] [Ui 0

0 Āi22

]
+
[
Λiu 0

] [Ui 0

0 Āi22

]

=
[
ΛiuUi Πr

i Āi22

]
, (22)

where we have used that SΦ̄i = Φ̄iR̄i shown in Appendix B. Moreover,

(AiΠi +BiΓi)Φ̄i = Ai

[
Πr

i 0
] [Ni

Wi

]
+AiΛiMi +Bi

[
Γr
i 0

] [Ni

Wi

]

=
[
0 AiΠr

i

]
+
[
AiΛiu 0

]
+
[
0 BiΓr

i

]

=
[
ΛiuUi AiΠr

i +BiΓr
i

]
, (23)

where we have used that AiΛiu = ΛiuUi, shown in our previous paper [4].
From (19a), (22), and (23), it is then easy to see that ΠiSΦ̄i = (AiΠi +BiΓi)Φ̄i. Since Φ̄i is

non-singular, this implies that (10a) is satisfied.
Similarly, we obtain that

CrΦ̄i =
[
CrΦ̄iu CrΦ̄io

]
=
[
CiΛiu C̄i2

]
, (24)

where we have used that CrΦ̄iu = CiΛiu and C̄i2 = CrΦ̄iN ′
i = CrΦ̄io, shown in our previous

paper [4]. Moreover,

(CiΠi +DiΓi)Φ̄i = Ci

[
Πr

i 0
] [Ni

Wi

]
+ CiΛiMi +Di

[
Γr
i 0

] [Ni

Wi

]

=
[
CiΛiu CiΠr

i +DiΓr
i

]
. (25)

From (19b), (24), and (25), it is then easy to see that C̄rΦ̄i = (CiΠi +DiΓi)Φ̄i. Since Φ̄i is non-
singular, this implies that (10b) is satisfied. Hence, (Πi,Γi) given by (20) is the solution of the
regulator equations (10).

Now let (Πi,Γi) be the solution of the regulator equations (10). And define (Πr
i ,Γ

r
i ) by (21). With

just a little bit algebra, we obtain that

AiΠ
r
i +BiΓ

r
i = AiΠiΦ̄io +BiΓiΦ̄io (26)

and
Πr

i Āi22 = ΠiΦ̄ioĀi22 = ΠiSΦ̄io, (27)

where we have used that SΦ̄io = Φ̄ioĀi22, which follows from the fact that SΦ̄i = Φ̄iR̄i.
From (10a), (26), and (27), it is easy to see that Πr

i Āi22 = AiΠr
i +BiΓr

i , that is, (19a) is satisfied.
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Finally, we obtain that
CiΠ

r
i +DiΓ

r
i = CiΠiΦ̄io +DiΓiΦ̄io. (28)

This together with the fact that C̄i2 = CrΦ̄iN ′
i = CrΦ̄io and (10b) yields C̄i2 = CiΠr

i +DiΓr
i ,

that is, (19b) is satisfied. Hence, (Πr
i ,Γ

r
i ) given by (21) is the solution of the regulator equations

(19).

Remark 7
In view of Lemma 3 and (11) of Assumption 4, we see that ‖Γr

i x̄i2‖ = ‖Γiω‖ ≤ 1− δ. !

Since agent i is subject to actuator saturation, we design the state feedback controller by using
a low-gain technique, which is widely used for the semi-global stabilization problem for linear
systems subject to actuator saturation, see for instance, [8, 22]. There exist in the literature several
low-gain design algorithms. For conceptual clarity, we use here the one based on the solution of a
continuous-time algebraic Riccati equation, parameterized in a low-gain parameter ε ∈ (0, 1]. More
specifically, we form a family of parameterized state feedback gain matrices Fi,ε for x̄i1 as

Fi,ε = −B′
iPi,ε,

where Pi,ε = P ′
i,ε > 0 is the unique solution of the continuous-time algebraic Riccati equation

defined as
Pi,εAi +A′

iPi,ε − Pi,εBiB
′
iPi,ε + εIni = 0. (29)

It follows from Lemma 3 and and Condition 1 of Assumption 4 that the regulator equations (19)
have a unique solution (Πr

i ,Γ
r
i ). We use the unique (Πr

i ,Γ
r
i ) and the feedback gain matrix Fi,ε to

define a family of parameterized state feedback controllers in terms of x̄i as

ui =
[
Fi,ε Γr

i − Fi,εΠr
i

]
x̄i. (30)

Then for any given arbitrarily large bounded set of initial conditions, there exists an ε∗ ∈ (0, 1],
such that for all ε ∈ (0, ε∗], the family of linear state feedback controllers of the form (30) ensures
that limt→∞ ei(t) = 0 for all initial conditions belong to the given arbitrarily large bounded set and
ω(0) ∈ Ω0. This is a well known result, see [22, Theorem 3.3.2].

Remark 8
If the unforced system for an agent i is the same as the exosystem, i.e., if Ci = Cr and Ai = S, then
it is easy to see that Πi = I and Γi = 0 is the solution of regulator equations (10). Thus, Assumption
4 is always satisfied for that agent.

Step 3: Observer-based implementation

Following the design procedure given in the proof of [22, Theorem 3.3.4], one can obtain, for a
given set of initial conditions, suitable state feedback controllers for which input saturation is not
active. This is done by properly choosing the low-gain parameter ε. Then such a state feedback law
must be implemented by a suitable designed distributed observer. This will be done next.
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We will design a high-gain decentralized observer to produce an estimate of x̄i, denoted by ˆ̄xi.
We follow the procedure as given in our previous paper [4], to be self-contained, we reproduce the
design here.

Let n̄ denotes the maximum order among the all the systems (13) for i ∈ {1, . . . , N}, that is,
n̄ = maxi=1,...,n(ni + ri). Define χi = Tix̄i, where

Ti =





C̄i

...
C̄iĀ

n̄−1
i



 .

Note that Ti is injective since the pair (C̄i, Āi) is observable, which implies that T ′
iTi is nonsingular.

In term of χi, we can write the system equations

χ̇i = (A+ Li)χi + Biσ(ui), χi(0) = Tix̄i(0), (31a)

ei = Cχi +Diσ(ui), (31b)

where

A =

[
0 Ip(n̄−1)

0 0

]
, C =

[
Ip 0

]
, Li =

[
0

Li

]
, Bi = Ti

[
Bi

0

]
, Di = Di,

for some matrix Li ∈ Rp×n̄p. Note that the matrices A and C are the same for all the agents
i ∈ {1, . . . , N}, and the special form of these matrices implies that (C,A) is observable.

Next, define the matrix Ḡ = G+Diag(ι1, . . . , ιn) and τ = mini=1,...,n Re(λi(Ḡ)) > 0. Let P =

P ′ > 0 be the unique solution of the algebraic Riccati equation

AP + PA′ − τPC′CP + In̄p = 0. (32)

We then design the observer

˙̂χi = (A+ Li)χ̂i + Biσ(ui) + S(-)PC′(ζi − ζ̂i) + S(-)PC′(ψi − ιi(Cχ̂i +Diσ(ui))), (33a)

ˆ̄xi = (T ′
iTi)

−1T ′
i χ̂i, (33b)

where S(-) = blk diag(Ip-, Ip-2, . . . , Ip-n̄) and - > 1 is a high-gain parameter.
Based on the observer estimate, we define the variable ηi = Cχ̂i +Diσ(ui) to be shared with

the other agents via the network communication infrastructure as described in Section 2.1, and the
observer-based control law

ui =
[
Fi,ε Γr

i − Fi,εΠr
i

]
ˆ̄xi. (34)

Together, the observers for agents i ∈ {1, . . . , N} form a distributed observer parameterized by a
high-gain parameter -. It has been shown in [4, Lemma 4] that the estimation errors dynamics are
globally exponentially stable, that is, limt→∞(x̄i − ˆ̄xi) = 0, by choosing the high-gain parameter -
sufficiently large.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
Prepared using rncauth.cls DOI: 10.1002/rnc



14 T YANG ET AL.

Remark 9
If all the agents have the same dynamics, it is not necessary to design an observer based on the
high-order system (31) and one can design an observer based on the original system (13).

In summary, for any given arbitrarily large bounded sets Xi ⊂ Rni and Pi ⊂ Rpn̄, there exist ε∗

with the property that for any ε ∈ (0, ε∗] there exists -∗ such that for - ≥ -∗, the observer-based
implementation (33) and (34), ensure that

lim
t→∞

ei(t) = 0, ∀i ∈ {1, . . . , N} , (35)

for all initial conditions xi(0) ∈ Xi, χ̂i(0) ∈ Pi, and ω(0) ∈ Ω0.

3.2. Comparison with the case where the agents have no actuator magnitude constraints

Let us make a few comments to compare our result to the case where the agents do not have actuator
saturation.

• The regulator equations (10) have to be solvable for the case with actuator magnitude
constraints. In our previous work for the case without saturation we assumed existence of
a solution of the regulator equations but in that case this existence is not necessary.

• For the case with actuator magnitude constraints, we only achieve semi-global regulation of
output synchronization.

• For the case with actuator magnitude constraints, it is required that all the eigenvalues of
agents’ system matrices are in the closed left-half complex plane.

• For the case with actuator magnitude constraints, we have constraints on the size of the
synchronized output trajectory as given by (11).

4. EXAMPLE

In this section, we illustrate our design procedure by considering a network of ten agents. Agents 1
and 2 are composed as the cascade of a second-order oscillator and a single integrator:

Ai =




0 1 0

0 0 1

0 −1 0



 , Bi =




0

0

1



 , Ci =
[
1 0 0

]
, Di = 0.

Agents 3, 4, and 5 have the following dynamics:

Ai =

[
0 1

0 0

]
, Bi =

[
0

1

]
, Ci =

[
1 0

]
, Di = 2.

Agents 6, 7, and 8 have the following dynamics:

Ai = 0, Bi = 1, Ci = 1, Di = 1.
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Finally, Agents 9 and 10 are second-order mass-spring-damper systems:

Ai =

[
0 1

−2 −2

]
, Bi =

[
0

1

]
, Ci =

[
1 0

]
, Di = 0.

The reference trajectory yr is generated by an exosystem with

S =




0 1 0

0 0 1

0 −1 0



 , Cr =
[
1 0 0

]
,

and initial conditions Ω0 =
{
ω ∈ R3 : ‖ω‖ ≤ 0.1

}
.

The communication topology of the network is given by the digraph depicted in Figure 1, and
agent 2 has access to the information y2 − yr.
Step 1

For illustrative purpose, we give the details for agent 3. In Step 1,

O3 =





1 0 −1 0 0

0 1 0 −1 0

0 0 0 0 −1

0 0 0 1 0

0 0 0 0 1




=⇒ q3 = 1, r3 = 2,

We may choose

Λ3u =

[
1

0

]
, Φ3u =




1

0

0



 ,

and hence we can set Λ3 = I2 and Φ3 = I3. Following the design procedure, we have

V311 = 1, V312 =
[
0 1

]
, and V322 =

[
1 0

0 −1

]

for (16) and (17). Therefore, from (18), we obtain that

Φ̄3 = Φi

[
Iq3 V312V

−1
322

0 Iri

]
=




1 0 −1

0 1 0

0 0 1



 ,

thus, it follows that

x̄3 =





1 0

0 1

0 0

0 0




x3 −





1 0 1

0 0 0

0 −1 0

0 0 −1




ω,
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then the dynamics of x̄i with output ei takes the form of (13) with

Ā322 =

[
0 1

−1 0

]
, C̄32 =

[
0 −1

]
.

Step 2

We now need to solve the regulator equations (19), which are easily found to have the unique
solution

Πr
3 =

[
0 1

−1 0

]
, Γr

3 =
[
0 −1

]
.

We then select the matrix F3,ε = −B′
3P3,ε, where P3,ε = P ′

3,ε is the unique solution of (29), and the
value of ε will be determined later.

We perform the same procedure for the other agents, to identify appropriate state feedbacks. For
agents 1 and 2, there is no need for solving the regulator equations (19); for agents 6, 7, and 8, we
obtain

Πr
6 =

[
− 1

2 − 1
2

]
, Γr

6 =
[
1
2 − 1

2

]
,

and for agents 9 and 10, the system (6) is observable, moreover x̄i2 = ω. We then find the unique
solution of the regulator equations (10) as

Π9 = Πr
9 =

[
1 0 0

0 1 0

]
, Γ9 = Γr

9 =
[
2 2 1

]
.

Note that
Γ9ω ≤ 0.5,

therefore, we choose δ = 0.5, such that

Γ9ω ≤ 1− δ

for all ω(0) ∈ Ω0. It is also easy to check that δ = 0.5 works for all other agents.
Step 3

In Step 3 we design the decentralized observer that allows the feedbacks to be implemented based
on observer estimates. It is easy to check that n̄ = 5, then we have

A =

[
0 I4

0 0

]
, C =

[
1 0 · · · 0

]
.

Note that in order to implement the observer-based feedback (33) and (34), we need to determine
the value of the low-gain parameter ε ∈ (0, ε∗]. For the set given by Xi = {xi ∈ Rni : ‖xi‖ ≤ 1}
and Pi = {xi ∈ Rci : ‖xc

i‖ ≤ 1}, we can confirm that ε∗ = 0.1, thus we choose ε = ε∗ = 0.1. Now,
we construct the weighted Laplacian G from the digraph in Figure 1, note that the digraph contains
a directed spanning tree with agent 2 being the root. Given fact that ι2 = 1 while ιi = 0 for all
other i. we find that τ = mini=1,...,10 re(λi(G+Diag(ι1, . . . , ι10))) ≈ 0.2749. Solving the algebraic
Riccati equation (32) and implementing observer-based feedback (33) and (34), we find that we
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Figure 1. Network topology

achieve stability with - = 2. Figure 2 shows the resulting simulated output of four agents and the
synchronization trajectory, while Figure 3 shows the resulting simulated input of four agents.
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A. PROOF OF LEMMA 1

Proof
If the quadruple (Ai, Bi, Ci, Di) has no invariant zeros which are eigenvalues of the matrix S, then
the existence of solutions to the regulator equations follows from the fact that the system is right-
invertible (see Corollary 2.5.1 of [22]).

On the other hand, assume that the quadruple (Ai, Bi, Ci, Di) has an invariant zero λ which is an
eigenvalue of the matrix S. In that case let (v, w) be such that

(
v′ w′

)(Ai − λI Bi

Ci Di

)
= 0 (36)

and ω0 such that
Sω0 = λω0.

Since Ω0 contains 0 in its interior, we can, without loss of generality, assume that ω0 ∈ Ω0.
We first assume that w′Crω0 %= 0 and we will establish a contradiction with the fact that there

exists for ω(0) = ω0, an input ui and an appropriate initial condition xi(0) such that ei(t) → 0 as
t → ∞.

Since (Ai, Bi, Ci, Di) is right-invertible, we note that the subsystem from u to z = w′y (which
has a scalar output) can be described by a polynomial description:

d

(
d
dt

)
z(t) = N

(
d
dt

)
u(t),

where N(s) is a non-zero polynomial row vector while d(s) is a scalar polynomial. Since, the
subsystem from u to z is right-invertible and has a zero in λ, we find that N has a zero in λ.
Moreover, if d also has a zero in λ then N has a zero in λ whose order is at least one higher than the
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zero in λ of d. We define:

z̄(t) = e−λtz(t), ū(t) = e−λtu(t),

and
d̄(s) = d(s+ λ), N̄(s) = N(s+ λ).

We note that (
d
dt

+ λ

)
z̄(t) = e−λt d

dt
z(t),

and similarly for u, ū. Hence,

d̄

(
d
dt

)
z̄(t) = e−λtd

(
d
dt

)
z(t),

and
N̄

(
d
dt

)
ū(t) = e−λtN

(
d
dt

)
u(t).

Assume that the input u is such that tracking is achieved, then we have:

z(t) → w′Crω(t) = eλtw′Crω0

as t → ∞ and hence
z̄(t) → w′Crω0

as t → ∞. Without loss of generality we assume that w′Crω0 = δ > 0. In that case, there exists
t0 > 0 such that we have

1
2δ ≤ z̄(t) ≤ 3

2δ

for all t > t0. On the other hand, given that λ is on the imaginary axis and that u(t) is bounded, we
have that there exists an M > 0 such that

‖ū(t)‖ ≤ M

for all t > 0. We have
d̄

(
d
dt

)
z̄(t) = N̄

(
d
dt

)
ū(t)

Define
d̄(s) = dis

i + di+1s
i+1 + · · ·+ dns

n,

and
N̄(s) = Ni+1s

i+1 + · · ·+Nns
n,
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such that di %= 0. Here we used that N had a zero in λ and, if d has a zero as well in λ then it is of
strictly lower order. We find that

∣∣∣∣∣∣∣∣∣

∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

d̄

(
d
dt

)
z̄(t)

∣∣∣∣∣∣∣∣∣

≥

(
|di|(t2 − t1)

n−i − 3
n∑

j=i+1

|dj |(t2 − t1)
n−j

)
1
2δ

for all t2, t1 > t0. On the other hand,
∣∣∣∣∣∣∣∣∣

∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

N̄

(
d
dt

)
ū(t)

∣∣∣∣∣∣∣∣∣

≤ M
n∑

j=i+1

‖Ni‖(t2 − t1)
n−j

for all t2, t1 > t0. This yields a contradiction as t2 → ∞ since we have:

∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

d̄

(
d
dt

)
z̄(t) =

∫ t2

t1

∫ t2

t1

· · ·
∫ t2

t1︸ ︷︷ ︸
n

N̄

(
d
dt

)
ū(t)

and our inequalities imply that the left-hand side grows like (t2 − t1)n−i while the right-hand side
can at most grow like (t2 − t1)n−i−1.

Since, assuming that w′Crω0 %= 0, we obtain a contradiction we must have that w′Crω0 = 0.
Using this property we will establish that (10) has a solution. Without loss of generality and using

Assumption 3, we can assume that:

S =





ω1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 ωr




, Cr =

(
Cr,1 · · ·Cr,r

)
,

and we also decompose the potential solutions of the regulator equations as:

Πi =
(
Πi,1 · · ·Πi,r

)
, Γi =

(
Γi,1 · · ·Γi,r

)
.

We obtain that (10) is equivalent to:

Πi,jωj = AiΠi,j +BiΓi,j ,

Cr,j = CiΠi,j +DiΓi,j

for j = 1, . . . , r. This can be rewritten as:
(
Ai − ωjI Bi

Ci Di

)(
Πi,j

Γi,j

)
=

(
0

Cr,j

)
,
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which is solvable if

Im

(
0

Cr,j

)
⊂ Im

(
Ai − ωjI Bi

Ci Di

)
,

and the latter condition is equivalent to:

(
v′ w′

)(Ai − ωjI Bi

Ci Di

)
= 0 =⇒

(
v′ w′

)( 0

Cr,j

)
= 0.

Since the latter is equivalent to w′Crej = 0 where Sej = ωjej , we note that this implication is
exactly the condition that we have proven above.

The fact that we need (12) is a consequence of Corollary 3.3.1 in [22].

B. PROOF OF LEMMA 2

Proof
If we use the transformation Φi, from the proof of [3, Lemma 1], we know that ei is governed by
the following dynamical equations

˙̄xi = Āix̄i + B̄iσ(ui) :=

[
Ai Āi12

0 Āi22

]
x̄i +

[
Bi

0

]
σ(ui), (38a)

ei = C̄ix̄i + D̄iσ(ui) :=
[
Ci −C̄i2

]
x̄i +Diσ(ui), (38b)

where

Āi12 = Λi

[
Ri12

0

]
, Āi22 = Ri22, C̄i2 = CrΦiN

′
i .
†

Note that Āi of the system (38) is block-upper triangular. Therefore, we need to show that with the
transformation Φ̄i given by (18), the system (38) is block-diagonal.

From (16) and (17), it is easy to show that
[
Ui Ri12

0 Ri22

][
Iqi Vi12V

−1
i22

0 Iri

]
=

[
Iqi Vi12V

−1
i22

0 Iri

][
Ui 0

0 Ri22

]
. (39)

Now post multiplying both sides of (14) by
[
Iqi Vi12V

−1
i22

0 Iri

]
,

we obtain that SΦ̄i = Φ̄iR̄i, where

R̄i =

[
Ui 0

0 Ri22

]
. (40)

Thus Āi12 = 0.

†Note that the variable x̄i2 has a sign difference from that of [4].
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