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SUMMARY

A recent paper [1] considered stabilization of a class of continuous-time nonlinear sandwich systems via state
feedback. This paper is a discrete-time counterpart of it. The class of nonlinear sandwich systems consists of
saturation elements sandwiched between linear systems. We focus first on single-layer sandwich systems, which
consist of a single saturation sandwiched between two linear systems. For such systems, we present necessary and
sufficient conditions for semi-global and global stabilization by state feedback, and develop design methodologies
to achieve the prescribed stabilization. We extend the results to single-layer sandwich systems subject to additional
actuator saturation. Finally, we discuss further extension to general multi-layer sandwich systems with an arbitrary
number of saturations sandwiched between linear systems, both with and without actuator saturation. The design
methodologies can be viewed as extensions of classical low-gain design methodologies developed during 1990’s
in the context of stabilizing linear systems subject to actuator saturation. Copyright c© 2010 John Wiley & Sons,
Ltd.

1. Introduction

Physical systems are typically made up of interconnected subsystems, some of which are well-
characterized as linear, and some of which are distinctly nonlinear. Many systems can therefore be
described as an interconnection of separable linear and nonlinear parts. A common type of structure
consists of a static nonlinearity sandwiched between two linear systems. One of the ubiquitous static
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nonlinearities is a saturation element. We observe that the resulting sandwiched non-linear systems, as
shown in Figure 1 are extensive generalizations of linear systems subject to actuator saturation.

A recent paper [1] focuses on continuous-time sandwich systems where the static nonlinearity is
a saturation. This paper is a counterpart of the same problem, for discrete-time systems. As one can
expect, some aspects of development for discrete-time systems are analogous to those in continuous-
time systems. On the other hand, some other aspects are distinctly different and require subtle and
important changes. Hence, for continuity and readability, this paper is written independent of its
continuous-time version.

Linear 
System 1

Linear 
System 2

Input

Saturation
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Figure 1. Single-layer sandwich system

Figure 1 depicts a single-layer sandwich system, where the single layer refers to the saturation
element that is sandwiched between two linear systems. A natural extension of this class of systems is
depicted in Figure 2, which shows a single-layer sandwich system subject to actuator saturation. These
types of systems can be further extended to multi-layer sandwich systems, and multi-layer sandwich
systems subject to actuator saturation, shown in Figures 3 and 4.
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Figure 2. Single-layer sandwich system subject to actuator saturation

Figure 3. Multi-layer sandwich system
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Figure 4. Multi-layer sandwich system subject to actuator saturation

1.1. Previous work

Sandwiched systems such as those depicted in Figure 1 are a special case of so-called cascaded systems
which are linear systems whose output affects a nonlinear system. This research was initiated in [2]
but has also been studied for instance in [3, 4]. Note that in our case the nonlinear system has a very
special structure of an interconnection of a static nonlinearity with a linear system. Moreover, in these
references the nonlinear system is assumed to be stable and the goal was to see whether the output of
a stable linear system can affect this stability. The goal of this paper is focused on stabilization and
design of controllers and is inherently different.

Some researchers have previously studied linear systems with sandwiched nonlinearities. The most
recent activity in this area is the work of Tao et al. [5, 6, 7, 8]. The main technique used in these papers
is based on an approximate inversion of the nonlinearities. An example studied in these references is
a deadzone, which is a right-invertible nonlinearity. By contrast, a saturation has a very limited range
and cannot be inverted even approximately, except in a local region. The work of Tao et al. is therefore
not applicable to the case of a saturation nonlinearity. To achieve our goal of semi-global and global
stabilization, we need to face the saturation directly, by exploiting the structural properties of the given
linear systems.

The systems illustrated by Figures 1–4 are progressive generalizations of the class of systems
consisting of a single linear system with an actuator saturation. Over the past years there has been
a strong interest in stabilization of this class of systems. Several important results have appeared in the
literature, starting with the works of Fuller [9, 10], Sontag and Sussmann [11], Sussmann and Yang
[12], as well as Sussmann, Sontag, and Yang [13]. (See also two special issues of the International
Journal of Robust and Nonlinear Control [14, 15].) These works led to the development of low-gain
design methodologies for semi-global stabilization, and scheduled low-gain design methodologies for
global stabilization of linear systems subject to actuator saturation [16, 17, 18]. Since being developed
in the 1990’s, low-gain and scheduled low-gain design methodologies have formed an integral part of
several related design methodologies, such as low-and-high-gain design methodologies. The scheduled
low-gain design methodology is based on the concept of scheduling, developed by Megretski [19].

Recent research has also focused on linear systems subject to state constraints, where the controller
must guarantee that the output of a linear system remains in a given set (see, for instance,
[20, 21, 22, 23] and references therein). The approach developed in these works can be used for the
class of nonlinear sandwich systems, albeit with some drawbacks. First, the approach does not allow
arbitrary initial conditions. Instead, the initial conditions must belong to a constrained set known as
the admissible set of initial conditions to avoid constraints violation at time 0. Second, the approach
is based on limiting the input to avoid activation of all the saturations for all time, so that the closed-
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loop system only operates in the linear region. This requires either further restrictions on the initial
conditions or structural constraints on the zeros to be imposed. In our problem formulations, we allow
that the saturation is activated and in this way we avoid the above restrictions.

1.2. Contributions of this paper

In this paper, we first establish conditions for semi-global and global stabilizability of single-layer
sandwich systems, portrayed in Figure 1, and we construct appropriate control laws by state feedback.
We then extend the stabilization results to single-layer sandwich systems subject to actuator saturation,
portrayed in Figure 2. The design methodologies that emerge from this extension are generalizations
of the classical low-gain and scheduled low-gain design methodologies, developed for semi-global and
global stabilization of linear systems subject only to actuator saturation. Indeed, when the first linear
system is a static and invertible, the new design methodologies reduce to their classical counterparts,
and we therefore refer to the new design methodologies as generalized low-gain design (for semi-global
stabilization) and generalized scheduled low-gain design (for global stabilization). We furthermore
discuss the natural extension of the results to the multi-layer sandwich systems portrayed in Figures 3
and 4. We illustrate the results with an example.

2. Problem formulations and preliminaries

2.1. Problem formulation

In this section, we first describe the dynamic equations of the class of single-layer sandwich systems,
portrayed in Figure 1. We then formulate the semi-global and global stabilization problems for this
class of systems.

Single-layer sandwich systems consist of two interconnected systems, L1 and L2, given by

L1 :
{

x(k+1) = Ax(k)+Bu(k)
z(k) = Cx(k), (1)

and
L2 : ω(k+1) = Mω(k)+Nσ(z(k)) (2)

where x(k) ∈ Rn1 , ω(k) ∈ Rn2 , u(k) ∈ Rm1 and z(k) ∈ Rm2 .
As will become clear in the design procedure, different saturation levels do not cause any intrinsic

differences in controller design methodology except for some changes on ranges of certain design
parameters. Therefore, without loss of generality, we assume that all the saturation elements studied
in this paper are indeed the same and equal to the standard saturation function defined as σ(z) =
[σ1(z1), . . . ,σ1(zm2)]

′ where σ1(s) = sgn(s)min{|s|,∆} for some ∆ > 0.
The dynamics of system L1 can be modified to include an actuator saturation, and we refer to the

resulting system as L̄1. Single-layer sandwich systems subject to actuator saturation therefore consist
of two systems, L̄1 and L2, given by

L̄1 :
{

x(k+1) = Ax(k)+Bσ(u(k)),
z(k) = Cx(k), (3)

and
L2 : ω(k+1) = Mω(k)+Nσ(z(k)), (4)
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where x(k) ∈ Rn1 , ω(k) ∈ Rn2 , u(k) ∈ Rm1 and z(k) ∈ Rm2 .
This type of system configuration can be generalized to an interconnection of n linear systems,

namely the multi-layer nonlinear sandwich systems. Consider the following interconnection of n
systems:

Li :






xi(k+1) = Aixi(k)+Biσ(ui(k)), i = 1, . . . ,n
zi(k) = Cixi(k), i = 1, . . . ,n−1
ui(k) = zi−1(k), i = 2, . . . ,n

(5)

where xi ∈ Rni , ui ∈ Rmi for i = 1, . . . ,n, zi ∈ Rmi+1 for i = 1, . . . ,n−1.
Let x̄ and u denote the state and input of the over-all sandwich systems. The semi-global and global

stabilization problems for the three sandwich systems as defined above can be formulated as follows:

Problem 1. Consider the (single layer, single layer with input saturation and multilayer) sandwich
nonlinear systems as defined above. The semi-global stabilization problem for sandwich nonlinear
systems is said to be solvable if for any compact subset W of whole state space, there exists a state
feedback control law u = f (x̄) such that the origin of the closed-loop system is asymptotically stable
with W contained in its domain of attraction.

Problem 2. Consider the (single layer, single layer with input saturation and multilayer) sandwich
nonlinear systems as defined above. The global stabilization problem for the sandwich systems is said
to be solvable if there exists a state feedback control law u= f (x̄) such that the origin of the closed-loop
system is globally asymptotically stable.

2.2. Low-gain state feedback design methodology

In this subsection, we recall the low-gain feedback design methodology for stabilization of discrete-
time system subject to input saturation.

Consider the system

x(k+1) = Ax(k)+Bσ(u(k)) (6)

where x ∈ Rn0 and u ∈ Rm0 . We have the following lemma:

Lemma 1. Assume that (A,B) is stabilizable and A has all its eigenvalues inside the closed unit disc.
Then the discrete-time algebraic Riccati equation

Pε = A′Pε A+ εI −A′Pε B(B′Pε B+ I)−1B′Pε A (7)

with ε ∈ (0,1] has a unique positive definite solution Pε . Moreover, this Pε has the following properties:

1. For any ε ∈ (0,1], Pε is such that A−B(B′Pε B+ I)−1B′PA is asymptotically stable.
2. limε→0 Pε = 0.

3. For all ε ∈ (0,1], there exists a Mp > 0 such that ‖[P
1
2

ε AP
− 1

2
ε ‖ ≤

√
Mp where

Mp = σmax(P
1
2

1 BB′P
1
2

1 )+1 (8)

and P1 is the solution of ARE (7) with ε = 1.
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Proof : Proof of properties 1 and 2 can be found in [24]. Property 3 is a direct result of Lemma 3.2 in
[24].

The low-gain state feedback developed in [24] is a family of parameterized state feedback laws given
by

uL(x) = Fε x =−(B′Pε B+ I)−1B′Pε Ax (9)

where Pε is the solution of (7). ε is called the low-gain parameter. Lemma 1 implies that the magnitude
of the control input can be made arbitrarily small by choosing sufficiently small ε . This implies that in
the case of input saturation and initial conditions in a compact set, we can avoid activating the actuator
saturation. It has been shown in [24] that this family of parameterized controllers solves the semi-global
stabilization problem for a discrete-time system with input saturation described by (6).

2.3. Scheduling of low-gain parameter

In the semi-global framework, with controller (9), the domain of attraction of the closed-loop system
is determined by a low-gain parameter ε , which is chosen according to any given a priori set of initial
conditions. In order to solve the global stabilization problem, the parameter ε can be scheduled with
respect to the state. This has been done in the literature [19].

We are looking for a scheduled parameter satisfying the following properties:

1. ε(x) : Rn0 → (0,1] is continuous and piecewise continuously differentiable.
2. There exists an open neighborhood O of the origin such that ε(x) = 1 for all x ∈ O .
3. For any x ∈ Rn0 , we have ‖Fε(x)x‖ ≤ δ where δ is a design parameter to be selected later.
4. ε(x)→ 0 as ‖x‖→ ∞.
5. { x ∈ Rn0 | x′Pε(x)x ≤ c } is a bounded set for all c > 0.

We basically choose the same scheduling as used in [25]:

ε(x) = max{r ∈ (0,1] | (x′Prx)‖B′PrB‖ ≤ δ 2

Mp
} (10)

where Pr is the unique positive definite solution of algebraic Riccati equation (7) with ε = r and Mp
is given by Lemma 1. Properties 1,2,4 and 5 follow directly from continuous-time result. Property 3
follows from the fact that

‖(B′Pε(x)B+ I)−1B′Pε(x)Ax‖

≤
∥∥(B′Pε(x)B+ I)−1∥∥

∥∥∥∥B′P
1
2

ε(x)

∥∥∥∥

∥∥∥∥P
1
2

ε(x)AP
− 1

2
ε(x)

∥∥∥∥

∥∥∥∥P
1
2

ε(x)x
∥∥∥∥

≤
√

x′Pε(x)x
∥∥∥∥B′P

1
2

ε(x)

∥∥∥∥

∥∥∥∥P
1
2

ε(x)AP
− 1

2
ε(x)

∥∥∥∥ .

Using Lemma 1 we find

‖(B′Pε(x)B+ I)−1B′Pε(x)Ax‖ ≤
√

Mpx′Pε(x)x‖(B′Pε(x)B)‖ ≤ δ .

A family of low-gain feedback controllers for global stabilization is given by

uL(x) = Fε(x)x =−(B′Pε(x)B+ I)−1B′Pε(x)Ax.
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It has been shown in [25], that this scheduled controller (9) with scheduling parameter ε defined by
(10) achieves global asymptotic stability of the origin of system (6).

In subsequent sections, we generalize the low-gain feedback design technology to solve the
stabilization problems as defined in Problems 1 and 2 for three types of discrete-time nonlinear
sandwich systems.

3. Necessary and sufficient conditions for stabilization of nonlinear sandwich systems

3.1. Single layer sandwich system

In this subsection, we present two theorems that give necessary and sufficient conditions for the
solvability of semi-global and global stabilization problems as defined in Problems 1 and 2 for a single
layer nonlinear sandwich system.

Theorem 1. Consider the interconnection of the two systems given by (1) and (2). Both the semi-global
and the global stabilization problems, as formulated in Problems 1 and 2 respectively, are solvable if
and only if,

1. The linearized cascaded system is stabilizable, i.e. (A ,B) is stabilizable, where

A =

(
A 0

NC M

)
and B =

(
B
0

)
. (11)

2. All the eigenvalues of M are in the closed unit disc.

Proof : Necessity of both the conditions is quite immediate. The system L2 needs to be stabilized
through a saturated signal and it is well known, see for instance [13], that this can only be done if the
eigenvalues of M are in the closed unit disc. The cascaded system is linear in a small neighborhood
around (0,0) and hence the stabilizability of the nonlinear cascaded system clearly requires the
stabilizability of the local linear system, which is equivalent to the stabilizability of the pair (A ,B).

Sufficiency is established in the next section by an explicit construction of a stabilizing controller.

Remark 1. Note that the existence conditions are the same but semi-global stabilization allows for a
linear controller at the expense of a compact but arbitrarily large domain of attraction.

3.2. Single layer nonlinear sandwich systems with input saturation

In this subsection, we present two theorems that give necessary and sufficient conditions for solving
Problems 1 and 2 for a single layer sandwich system with input saturation.

Theorem 2. Consider the interconnection of the two systems given by (3) and (4). Both the semi-global
and the global stabilization problems, as formulated in Problems 1 and 2, are solvable if and only if,

1. All the eigenvalues of A are in the closed unit disc.
2. All the eigenvalues of M are in the closed unit disc.
3. The linearized cascaded system is stabilizable, i.e. (A ,B) is stabilizable where A and B are

given by (11).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 0:0–0
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Proof : Necessity of the conditions follows along the same lines as in the proof of Theorem 1. Also
in this case, sufficiency is established by an explicit construction of a suitable controller in the next
section.

3.3. Multi-layer nonlinear sandwich systems

In this subsection, we establish the necessary and sufficient conditions for solving Problems 1 and 2
for a multi-layer sandwich system.

Theorem 3. Consider the interconnection of Li, i = 1, . . . ,n as given by (5). The semi-global and
global stabilization problems defined in 1 and 2 are solvable if and only if

1. (A0,B0) is stabilizable, where

A0 =





A1 0 . . . 0
B2C1 A2 . . . 0

...
...

. . .
...

0 0 BnCn−1 An




, B0 =





B1
0
...
0




. (12)

2. All Ai have their eigenvalues inside the closed unit disc.

Proof : The necessity of Conditions 1 and 2 can be proved following the same line as previous
theorems. Sufficiency is proved in Section 6 by explicit construction of semi-globally stabilizing
controllers.

Remark 2. Note that for all three types of sandwich systems, the solvability conditions for semi-global
and global stabilization are the same. The intrinsic difference is that global stabilization, unlike the
semi-global stabilization, in general requires a nonlinear state feedback law.

4. Generalized low-gain design for single layer sandwich systems

4.1. Semi-global stabilization

In this section, we explicitly present a generalized low-gain design for solving Problem 1, concerning
semi-global stabilization of the origin of the single-layer sandwich system described by (1), (2). We
start by applying a preliminary state feedback u = Fx+v where F is such that A+BF is asymptotically
stable. Consider the resulting L1 system:

x(k+1) = (A+BF)x(k)+Bv(k)
z(k) = Cx(k). (13)

We have

z(k) =C(A+BF)kx(0)+
k−1

∑
i=0

C(A+BF)k−i−1Bv(i) (14)

=C(A+BF)kx(0)+ z0(k). (15)
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Define

δ1 =
1

2∑∞
k=0 ‖C(A+BF)kB‖

. (16)

Since A+BF is asymptotically stable, the above summation is well defined. We know that if

‖v(k)‖< δ1 ∀k > 0, (17)

then ‖z0(k)‖< 1
2 . Next we consider the system

x̄(k+1) = ˜A x̄(k)+Bv(k) (18)

where

x̄(k) =
(

x(k)
ω(k)

)
, ˜A =

(
A+BF 0

NC M

)
, B =

(
B
0

)
. (19)

Note that Conditions 1 and 2 of Theorem 1 and asymptotic stability of A+BF together imply that
( ˜A ,B) is stabilizable and ˜A has all its eigenvalues in the closed unit disc.

Our next objective is, for any a priori given compact set W , to find a stabilizing controller for the
system (18) such that W is contained in its domain of attraction and ‖v(k)‖< δ1 for all k > 0.

We note that there exists a unique Pε > 0 satisfying

Pε = ˜A ′Pε ˜A + εI − ˜A ′PεB(B′PεB+ I)−1B′Pε ˜A . (20)

The following lemma is already obtained in [17].

Lemma 2. Consider the system (18) with constraint ‖v(k)‖ < δ1, and assume that ( ˜A ,B) is
stabilizable and ˜A has all its eigenvalues in closed unit disc. For any a priori given compact set
W̄ ∈ Rn1+n2 , there exists an ε∗ such that for any 0 < ε < ε∗, the feedback:

v =−(B′PεB+ I)−1B′Pε ˜A x̄ (21)

achieves asymptotic stability of the equilibrium x̄ = 0 with W̄ contained in its domain of attraction.
Moreover, for any initial condition in W̄ , the constraint does not get violated for any k > 0.

We can now use Lemma 2 to prove that a particular family of control laws achieves semi-global
stability of the single-layer nonlinear sandwich system.

Theorem 4. Consider the interconnection of the two systems given by (1) and (2) satisfying Conditions
1 and 2 of Theorem 1. Let F be an arbitrary matrix such that A+BF is asymptotically stable while
Pε > 0 is the solution of (20). We define what is known as a low-gain state feedback by

u = Fx− (B′PεB+ I)−1B′Pε ˜A x̄ = F1,ε x+F2,ε ω. (22)

For any compact set of initial conditions W ∈ Rn1+n2 there exists an ε∗ > 0 such that for all ε
with 0 < ε < ε∗ the controller (22) asymptotically stabilizes the equilibrium (0,0) with a domain
of attraction containing W .

Proof : Condition 2 of Theorem 1 immediately implies the existence and uniqueness of Pε > 0
satisfying (20). Moreover, Condition 1 immediately implies Pε → 0 as ε → 0. This immediately implies
that F1,ε → F and F2,ε → 0 as ε → 0. Note that the initial conditions are in some compact set W and
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hence there exist compact sets X and Ω such that x(0) ∈ X and ω(0) ∈ Ω. Define a family of sets
V (c1) = {x̄ ∈ Rn1+n2 | x̄′Pε x̄ ≤ c1}.

Note that if we apply u = Fx, there exists a K > 0 such that for any x(0) ∈ X we have

‖C(A+BF)kx(0)‖< 1
2

for all k > K and there exists a compact set X̄ such that x(k) ∈ X̄ for all 0 ≤ k ≤ K. This immediately
follows from the asymptotic stability of A+BF .

Since ω(0) ∈ Ω which is a compact set and σ(z(k)) is bounded we find that, independent of ε , there
exists a compact set Ω̄ such that ω(k) ∈ Ω̄ for all 0 ≤ k ≤ K.

Next, there exists an ε# > 0 such that for u(k) = F1,ε x(k)+F2,ε ω(k) and ε < ε# we have x(k) ∈ 2X̄
for all 0 ≤ k ≤ K. This follows from the fact that F1,ε → F and F2,ε → 0 while ω(k) is bounded in Ω̄.
Let c1 be such that

c1 = sup
ε∈(0,1]

x̄∈2X̄ ×Ω̄

x̄′Pε x̄.

Define a family level sets V (c1) = {x̄ ∈ Rn1+n2 | x̄′Pε x̄ ≤ c1}.
From Lemma 2, we also note that there exists an ε∗ < ε# such that, for ε < ε∗, the controller

v =−(B′PεB+ I)−1B′Pε ˜A x̄

stabilizes the system (18), and satisfies ‖v‖ < δ1 for all k > 0 given x̄(K) ∈ V (c1). This implies that
z(k) generated by (13) satisfies ‖z(k)‖ < 1 for k > K. Then the interconnection of (1) and (2) with
controller (22) for k > K is equivalent to the interconnection of (18) with controller (21) for k > K. The
asymptotic stability of the latter system follows from Lemma 2. Hence we have x(k)→ 0, ω(k)→ 0.
Since this follows for any (x(0),ω(0)) ∈ W , we find that W is contained in the domain of attraction
as required.

Remark 3. For semi-global stabilization, we can enlarge the domain of attraction by choosing a
sufficiently small low-gain parameter. However, this incurs a deterioration of closed-loop performance
near the origin since a small low-gain parameter results in conservativeness in feedback gain and
hence does not allow full utilization of control capacity when the state is close to the origin. In
order to rectify this problem, a generalized low-and-high gain feedback design methodology for
continuous-time sandwich nonlinear systems is recently introduced in [26]. It was shown that a refined
performance can be achieved with the so-called low-and-high-gain feedback controller. Because of
some inherent differences between continuous- and discrete-time systems, development of a low-and-
high-gain design for discrete-time counter-part remains an open research problem.

Remark 4. To implement the semi-globally stabilizing controller, it is necessary to find appropriate
low-gain parameters ε . It is difficult to derive tight upper bounds on ε analytically, and thus the
parameters are typically found experimentally, by gradually decreasing them until the desired stability
is achieved.

4.2. Global stabilization

In what follows, we show that the family of controllers defined by (22), with ε replaced by a scheduled
low-gain parameter ε(x̄), solves Problem 2. We consider the scheduling introduced in Section 2 as
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10 X. WANG ET AL.

given by:

ε(x̄) = max{r ∈ (0,1] | (x̄′Prx̄)‖B′PrB‖ ≤ δ 2
1

Mp
} (23)

where Pr is the unique positive definite solution of algebraic Riccati equation (20) with ε = r, δ1 is
defined by (16),

Mp = σmax(P
1
2

1 BB′P
1
2

1 )+1

and P1 is the solution of (20) with ε = 1. It has been shown in Section 2 that this scheduling guarantees
that

‖(B′Pε(x)B+ I)−1B′Pε(x) ˜A x‖ ≤ δ1.

To prove Theorem 1, we need the following lemma from [19], which defines a control law that
stabilizes the linear system (18).

Lemma 3. Consider the system (18) and assume that ( ˜A ,B) as given by (19) is stabilizable, and that
the eigenvalues of ˜A are within the closed unit disc. The control law

v =−(B′Pε(x̄)B+ I)−1B′Pε(x̄) ˜A x̄ (24)

achieves global stability of the equilibrium x̄ = 0.

We can now use Lemma 3 to prove that a particular family of control laws achieves global stability
of the single-layer nonlinear sandwich system.

Theorem 5. Consider the systems given by (1) and (2), satisfying Conditions 1 and 2 of Theorem 1.
Choose an arbitrary matrix F such that A+BF is asymptotically stable. Let Pε(x̄) be the unique positive
definite solution of ARE (20), with ε replaced by the scheduled low-gain parameter ε(x̄) defined by
(23). Then, the control law

u = Fx− (B′Pε(x̄)B+ I)−1B′Pε(x̄) ˜A x̄ (25)

achieves global asymptotic stability of the origin where ˜A and B are given by (19).

Proof :
If we consider the interconnection of (1) and (2), then we note that close to the origin the saturation

does not get activated. Moreover, close to the origin the feedback (25) is given by:

u = Fx− (B′P1B+ I)−1B′P1 ˜A x̄

where P1 is the solution of (20) with ε = 1. This immediately yields that the interconnection of (1), (2)
and (25) is locally asymptotically stable. It remains to show that we have global asymptotic stability.

Consider an arbitrary initial condition x(0) and ω(0). Then there exists a K > 0 such that

‖C(A+BF)kx(0)‖< 1
2

for k > K. Moreover, by construction

v =−(B′Pε(x̄)B+ I)−1B′Pε(x̄) ˜A x̄

yields ‖v(k)‖ ≤ δ1 for all k > 0. However, this implies that z(k) generated by (13) satisfies ‖z(k)‖< 1
for all k > K. But this yields that the interconnection of (1) and (2) with controller (25) behaves for
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k > K like the interconnection of (18) with controller (24). From Lemma 3, global asymptotic stability
of the latter system then implies that x̄(k) → 0 as k → ∞. Since this property holds for any initial
condition and we have local asymptotic stability we can conclude that the controller yields global
asymptotic stability. This completes the proof.

5. Generalized scheduled low-gain design for single layer sandwich systems with input saturation

5.1. Semi-global stabilization

We now present a generalized low-gain design for solving Problem 1 concerning the semi-global
stabilization of the origin of the single-layer sandwich system subject to input saturation described
by (3), (4).

Let P1,ε1 = P′
1,ε1

> 0 be the unique positive-definite solution of the algebraic Riccati equation

P1,ε1 = A′P1,ε1 A+ ε1I −A′P1,ε1 B(B′P1,ε1 B+ I)−1B′P1,ε1 A, (26)

and define

F1,ε1 =−(B′P1,ε1 B+ I)−1B′P1,ε1 A. (27)

Next, let P2,ε2 = P′
2,ε2

> 0 be the unique positive-definite solution of the algebraic Riccati equation

P2,ε2 =
˜A ′P2,ε2

˜A + ε2I − ˜A ′P2,ε2B(B′P2,ε2B+ I)−1B′P2,ε2
˜A , (28)

and define

F2,ε2 =−(B′P2,ε2B+ I)−1B′P2,ε2
˜A , (29)

where ˜A and B are given by

˜A =

(
A+BF1,ε1 0

NC M

)
, B =

(
B
0

)
.

We define the following family of control laws:

u = F1,ε1 x+F2,ε2 x̄. (30)

The family of control laws is parameterized by the parameters ε1,ε2 > 0, and we show in the next
theorem that semi-global stabilization is achieved for suitably chosen values of these parameters.

Theorem 6. Consider the systems given by (3) and (4), satisfying Conditions 1, 2, and 3 of Theorem
2. For any compact set of initial conditions W ∈ Rn1+n2 , there exists an ε∗1 > 0 such that for any ε1
with 0 < ε1 < ε∗1 , there exists an ε∗2 (ε1) such that for all 0 < ε2 < ε∗2 (ε1), the controller defined by (30)
asymptotically stabilizes the origin with a domain of attraction containing W .

Proof : By Conditions 1 and 2 of Theorem 2, we know that the eigenvalues of A and M are in the
closed unit disc. This implies that limε1→0 P1,ε1 = 0 and limε2→0 P2,ε2 = 0, and hence we know that

lim
ε1→0

F1,ε1 = 0, lim
ε2→0

F2,ε2 = 0. (31)
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12 X. WANG ET AL.

Note that the initial conditions belong to some compact set W , and hence there exist compact
sets X ⊂ Rn1 and Ω ⊂ Rn2 such that x(0) ∈ X and ω(0) ∈ Ω. Define a family of sets V1(c) =
{x ∈ Rn1 | x′P1,ε1 x ≤ c}.

If we apply u = F1,ε1 x, it is proved in [24] that there exists an ε∗1 > 0 such that for all 0 < ε1 < ε∗1
and for all x(0) ∈ X ,

‖F1,ε1(A+BF1,ε1)
kx(0)‖ ≤ 1

4 . (32)

Moreover, there exists a K > 0, dependent on ε1, such that x(K) ∈ V1(c1) for all x(0) ∈ X . Here c1 is
such that x ∈ V1(c1) implies that ‖Cx‖ ≤ 1

4 and ‖F1,ε1 x‖ ≤ 1
4 . Since ω(0) ∈ Ω, where Ω is a compact

set, and σ(z(k)) is bounded, it follows that there exists a compact set Ω̄, independent of ε2, such that
ω(k) ∈ Ω̄ for all 0 ≤ k ≤ K. Define a family of sets

V2(c) =
{

x̄ ∈ Rn1+n2 | x′P1,ε1 x+ x̄′P2,ε2 x̄ ≤ c
}
.

Next, we note that for u = F1,ε1 x, we have x(K) ∈ V1(c1). From (31) and our earlier conclusion that
ω(k) is bounded for 0 ≤ k ≤ K, we see that if we apply u = F1,ε1 x+F2,ε2 x̄ then there exists an ε∗2 ,
dependent on ε1, such that for all 0 < ε2 < ε∗2 , the following properties hold:

• x(K) ∈ 2V1(c1).
• If x ∈ 2V1(c1) and ω ∈ Ω̄, then x̄ ∈ 3V2(c1).
• For any x̄ such that x̄ ∈ 3V2(c1), we have ‖F2,ε2 x̄‖< 1

4 .

At time k = K, we have x̄ ∈ 3V2(c1). This immediately implies that ‖F2,ε2 x̄‖ ≤ 1
4 . Note that for any

x̄ ∈ 3V2(c1)
x′P1,ε x ≤ x′P1,ε x+ x̄′P2,ε2 x̄ ≤ 9c1,

and hence x∈ 3V1(c1). But this implies that ‖F1,ε1 x‖≤ 3
4 . Therefore, we have that ‖F1,ε1 x+F2,ε2 x̄‖≤ 1.

Similarly for any x̄ ∈ 3V2(c1), we have x ∈ 3V1(c1) and this implies that ‖Cx‖ ≤ 3
4 . Therefore, for

any x̄ ∈ 3V2(c1), both saturations are inactive.
We know at time K, the closed-loop system is linear and can be written as

x̄(k+1) = ( ˜A +BF2,ε2)x̄(k). (33)

It is straightforward to see that (33) is asymptotically stable and 3V2(c1) is invariant. We know that
the two saturations will remain inactive for all k ≥ K. The asymptotic stability of (33) implies x̄(k)→ 0
as k → ∞. Since this holds for any x̄(0) ∈W , it follows that W is contained in the domain of attraction.
This completes the proof.

5.2. Global stabilization

We now present a generalized scheduled low-gain design for solving Problem 2 concerning the global
stabilization of the single-layer sandwich system subject to input saturation described by (3), (4). As
in previous section, this controller is formed by equipping semi-global controller (30) with scheduled
parameters.

Let P1,ε1 = P′
1,ε1

> 0 be the unique positive-definite solution of the algebraic Riccati equation (26)
and F1,ε1 be defined as (27) with scheduled parameter ε1 = ε1(x).

Similar to that in the preceding section, a particular choice of scheduling is given by

ε1(x) = max{r ∈ (0,1] | (x′P1,rx)‖B′P1,rB‖ ≤ 1
4M2

} (34)
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where P1,r is the solution of ARE (26) with ε1 = r, M2 = σmax(P
1
2

1,1BB′P
1
2

1,1)+1 and P1,1 is the solution
of ARE (26) with ε1 = 1. It has been shown that above scheduling guarantees that

∥∥(B′P1,ε1(x)B+ I)−1B′P1,ε1(x)x
∥∥≤ 1

2 .

Let !> 0 be such that
(λmax(P1,1)+

1
2 )!

2 ≤ 1
4M2‖B′P1,1B‖ ,

and let P2,ε2 = P′
2,ε2

> 0 be the unique positive-definite solution of the algebraic Riccati equation (28)
and F2,ε2 be defined by (29) where in both (28) and (29), we take

˜A =

(
A+BF1,1 0

NC M

)
, B =

(
B
0

)
, (35)

and ε2 = ε2(x̄) is a scheduled parameter. Choose

δ2 = min
{

1
2
,

!2

2(3‖B′P1,1B‖+1)
,

1
2ρ

}
, (36)

where ρ = ∑∞
k=0 ‖C(A+BF1,1)kB‖. Consider an associated scheduled parameter given by

ε2(x̄) = max{r ∈ (0,1] | (x̄′P2,rx̄)‖B′P2,rB‖ ≤ δ 2
2

M3
} (37)

where M3 = σmax(P
1
2

2,1BB′P
1
2

2,1) + 1. We have ‖F2,ε‖ ≤ δ2. The following theorem shows that a
particular control law achieves global stability of the single-layer nonlinear sandwich system subject
to input saturation.

Theorem 7. Consider the two systems given by (3) and (4), satisfying Conditions 1, 2 and 3 of Theorem
2. Let P1,ε1(x) be the solution of (26) with ε1 replaced by the scheduled low-gain parameter ε1(x)
defined by (34). Let P2,ε2(x̄) be the solution of (28) with ˜A and B given by (35) and ε2 replaced by the
scheduled low-gain parameter ε2(x̄) defined by (37). The control law

u = F1,ε1(x)x+ ε1(x)F2,ε2(x̄)x̄ (38)

achieves global asymptotic stability of the origin where F1,ε1(x) and F2,ε2(x̄) are respectively defined by
(27) and (29) with ε1 and ε2 replaced by ε1(x) and ε2(x̄).

Proof : Note that our scheduled parameter guarantees that ‖u(k)‖≤ 1 for all k ≥ 0. The input saturation
is always inactive.

Considering the interconnection of (3) and (4), we note that the sandwiched saturation is not
activated near the origin. Moreover, near the origin the control law (38) is given by u = F1,1x+F2,1x̄.
This means that state matrix of the interconnection of (3), (4), and (38) equals ˜A +BF2,1 which is
asymptotically stable by the properties of the algebraic Riccati equation. We have therefore established
local asymptotic stability. It remains to show that we have global asymptotic stability.

Define V = x′Pε1(x)x and V1 = {x ∈ Rn1 | ‖x‖ ≤ !} and V2 = {x ∈ Rn1 | V (x) ≤ (λmax(P1,1) +

1/2)!2}. Since ‖x(k)‖ ≤ ! implies that V (x) ≤ λmax(Pε1(x(k)))‖x(k)‖2 ≤ λmax(P1,1)!2, we have that
V2 ⊃ V1. Moreover, from definition of !, we have that ε1(x) = 1 for x ∈ V2. We first want to establish
that V (k) is strictly decreasing in time when x -∈ V1.
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Assume that this is not the case and we can find x(k) -∈ V1 such that V (k+ 1)−V (k) ≥ 0. Denote
ε1(x(k)) and P1,ε1(x(k)) by ε1(k) and P1(k) respectively. We obtain

V (k+1)−V (k)≤−ε1(k)x(k)′x(k)− x(k+1)′P1(k)x(k+1)+ x(k+1)′P1(k+1)x(k+1)−
2x(k)′A′P1(k)Bv2(k)−2v1(k)′B′P1(k)Bv2(k)+ v2(k)′B′P1(k)Bv2(k)

where v1(k) = F1,ε1(k)x(k) and v2(k) =−ε1(k)F2,ε2(k)x̄(k).
Our scheduling guarantees that ‖v1(k)‖ ≤ 1

2 and ‖v2(k)‖ ≤ ε1(k)δ2 and hence

‖x(k)′A′P1(k)Bv2(k)‖= ‖v1(k)′(B′P1(k)B+ I)v2(k)‖ ≤ 1
2 ε1(k)(

∥∥B′P1,1B
∥∥+1)δ2

‖v1(k)′B′P1(k)B′v2(k)‖ ≤ 1
2 ε1(k)

∥∥B′P1,1B
∥∥δ2 (39)

‖v2(k)′B′P1(k)Bv2(k)‖ ≤ ε1(k)2∥∥B′P1,1B
∥∥δ 2

2 ≤ ε1(k)
∥∥B′P1,1B

∥∥δ2.

Therefore

V (k+1)−V (k)

≤− ε1(k)x′(k)x(k)+ x(k+1)′(P1(k+1)−P1(k))x(k+1)+ ε1(k)(3
∥∥B′P1,1B

∥∥+1)δ2

≤− ε1(k)x′(k)x(k)+ x(k+1)′(P1(k+1)−P1(k))x(k+1)+ 1
2 ε1(k)!2 (40)

≤− 1
2 ε1(k)‖x(k)‖2 + x(k+1)′(P1(k+1)−P1(k))x(k+1),

where we use that x(k) /∈ V1 and hence ‖x(k)‖ ≥ !. Since V (k+ 1)−V (k) ≥ 0, the properties of our
scheduling imply that x(k+1)′(P1(k+1)−P1(k))x(k+1)≤ 0. We get

V (k+1)−V (k)≤− 1
2 ε1(k)‖x(k)‖2 < 0.

This yields a contradiction. Hence when x(k) -∈ V1 we have that V (k) is strictly decreasing, and it
follows that x(k) enters V1 within finite time, say K1. When x(k)∈V1, we have either V (k+1)−V (k)≤
0 or x(k+1)′(P1(k+1)−P1(k))x(k+1)≤ 0, and (40) yields that

V (k+1)−V (k)≤ 1
2 ε1(k)!2 ≤ 1

2!
2.

This implies that V (k + 1) ≤ λmax(P1,1)!2 + 1
2!

2 and hence x(k + 1) ∈ V2. We find that if x(k) ∈ V1
then x(k + 1) ∈ V2. On the other hand, if x(k) ∈ V2\V1 then V (k) is strictly decreasing and hence
x(k+ 1) ∈ V2. Therefore, x(k) will enter V2 and it cannot escape from V2. On V2 we have ε1(k) = 1.
The L1 system then becomes:

x(k+1) = (A+BF1,1)x(k)+Bv2(k)
z(k) = Cx(k), (41)

where ‖v2(k)‖ ≤ δ2. We have for any k > K1

z(k) =C(A+BF1,1)
k−K1x(K1)+ z0(k)

where

z0(k) =
k−1

∑
i=K1

C(A+BF1,1)
k−i−1Bv2(i). (42)
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Given that δ2 ≤ 1
2ρ as given by (36), we have ‖v(k)‖ < 1

2ρ for all k > K1. But this guarantees that
‖z0(k)‖ < 1

2 for all k > K1, where z0(k) is defined by (42). Therefore there exists a K2 such that for
k ≥ K2

‖C(A+BF1,1)
k−K1x(K1)‖ ≤ 1

2

and hence ‖z(k)‖ ≤ 1 for k ≥ K2. We can then apply Lemma 3 as in the previous subsection, and we
conclude that the system therefore behaves like a stable system after a finite amount of time, and it
follows that x(k)→ 0 and ω(k)→ 0 as k → ∞.

6. Generalized low-gain design for multi-layer sandwich systems

6.1. Semi-global stabilization

Now we construct a linear semi-globally stabilizing controller for the multi-layer sandwich system
which solves semi-global stabilization as formulated in Problem 1.

Consider the interconnection of Li as defined in (5). Let Pi be the positive definite solution of Riccati
equation

Pεi = A ′
i PεiAi + εiI −A ′

i PεiBi(B
′
iPεiBi + I)−1B′

iPεiAi (43)

and define

Fεi =−(B′
iPεiBi + I)−1B′

iPεiAi (44)

where

A1 = A1, Ai =

(
Ai−1 +Bi−1Fεi−1 0

BiCi−1 Ai

)
for i = 2, . . . ,n

and

Bi =
(
B′

1 0 · · · 0
)′
, Ci =

(
0 . . . 0 Ci

)
(45)

are of appropriate dimensions. The parameters εi, i = 1, . . . ,n are to be determined appropriately
shortly. We have the following theorem:

Theorem 8. Consider interconnection of n systems as given by (5), satisfying Conditions 1, 2 of
Theorem 3. Let Pεi be the solution of Riccati equations in (43) with εi ∈ (0,1], i = 1, . . . ,n. For any
compact set W ⊂ R∑n

i=1 ni , we can determine εi, i = 1, . . . ,n such that the controller

u =
n

∑
i=1

Fεi χi (46)

renders the origin asymptotically stable with a domain of attraction containing W where

χi =
(
x′1 · · · x′i

)′
. (47)

Proof : For simplicity of presentation, denote Pεi and Fεi by Pi and Fi.
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Conditions (1) and (2) of Theorem 3 and the fact that Ai +BiFi is asymptotically stable imply that

lim
εi→0

Pi = 0, lim
εi→0

Fi = 0 (48)

Define function Vi(χi) = ∑i
j=1 χ ′

jPjχ j and set Vi(c) =
{

χi ∈ R∑i
j=1 n j |Vi(χi)≤ c

}
.

Since W is compact, there exist for i = 1, . . . ,n, compact sets Wi such that χn(0) ∈ W implies that
xi(0) ∈ Wi. Next we determine εi recursively.

Determine ε1: Let’s consider applying a controller v1 = F1χ1 = F1x1.
Note that (48) implies the existence of an ε∗1 such that for any ε ∈ (0,ε∗1 ] and x1(0) ∈ W1, we have

‖F1(A1 +B1F1)
kx1(0)‖ ≤ 1

4n−1

for all k ≥ 0. Let c1 be such that, x1 ∈V1(c1) implies ‖F1x1‖≤ 1
4n−1 and ‖C1x1‖≤ 1

3n−1 . Since A1+B1F1
is asymptotically stable, there exists a K1 such that for all x1 ∈ W1, we have x1(K1) ∈ V1(c1).

Determine ε2: Since x2(0) ∈ W2 and the input to L2 is bounded, there exists a W̄2 such that

x2(k) ∈ W̄2, for k ≤ K1.

Let ε1 be fixed. Consider applying the controller v2 = F1x1 +F2χ2. Due to (48), given x2 ∈ W2, there
exists an ε∗2 (ε1) such that the following properties hold:

1. For any ε2 ∈ (0,ε∗2 (ε1)], x1(K1) ∈ 2V1(c1).
2. For any ε2 ∈ (0,ε∗2 (ε1)], x1 ∈ 2V1(c1) and x2 ∈ W̄2 imply χ2 ∈ 3V2(c1).
3. For any ε2 ∈ (0,ε∗2 (ε1)], χ2 ∈ 3V2(c1) implies ‖F2χ2‖ ≤ 1

4n−1 .

At time k = K1, we know χ2 ∈ 3V2(c1). For any χ2 ∈ 3V2(c1), ‖F2χ2‖ ≤ 1
4n−1 . Also note that

χ2 ∈ 3V2(c1) implies then V1(x1)≤ 9c1 and hence F1x1 ≤ 3
4n−1 and ‖C1x1‖ ≤ 1

3n−2 . We have

‖u‖= ‖F1x1 +F2χ2‖ ≤ 1
4n−2 .

Therefore two saturations are both inactive in 3V2(c1), it is straightforward to see that with controller
v2, χ2(k) ∈ 3V2(c1) for all k ≥ K1 and moreover χ2(k)→ 0 as k → ∞.

Let c2 be such that χ ′
2P2χ2 ≤ c2 implies ‖C1x1‖ ≤ 1

3n−2 , ‖C2χ2‖ ≤ 1
3n−2 . There exists a K2 such that

for all χ2(K1) ∈ 3V2(c1), we have χ2(K2) ∈ V2(c2). At time K2, we get

1. χ2(K2) ∈ V2(c2).
2. ‖C1x1(K2)‖ ≤ 1

3n−2 and ‖C2χ2(K2)‖ ≤ 1
3n−2 .

3. ‖F1x1 +F2χ2‖ ≤ 1
4n−2 for all χ2 ∈ V2(c2) and k ≤ K2.

Determine ε3, . . . ,εn: Consider system Li, i ≥ 3. At this moment, ε j, c j and Kj for j ≤ i− 1 have
been determined in previous i−1 steps. The resulting controller vi−1 = ∑i−1

j=1 Fjχ j yields

1. χi−1(Ki−1) ∈ Vi−1(ci−1).
2. ‖C jχ j(Ki−1)‖ ≤ 1

3n−i+1 for all j ≤ i−1.
3. ‖∑i−1

j=1 Fjχ j‖ ≤ 1
4n−i+1 for all χi−1 ∈ Vi−1(ci−1).
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Since the input to Li is bounded and xi(0) ∈ Wi, we know that there exists a W̄i such that xi(k) ∈ W̄i
for all k ≤ Ki−1. Consider the controller vi = ∑i

j=1 Fjχ j. Then (48) implies the existence of an
ε∗i (ε1, . . . ,εi−1) such that the following properties hold:

1. χi−1(Ki−1) ∈ 2Vi−1(ci−1).
2. χi−1 ∈ 2Vi−1(ci−2) and xi ∈ W̄i imply that χi ∈ 3Vi(ci−1).
3. χi ∈ 3Vi(ci−1) implies Fiχi ≤ 1

4n−i+1 .

Therefore, we get at k = Ki−1, χi(Ki−1) ∈ 3Vi(ci−1), i.e Vi(χ) ≤ 9ci−1. But this implies that
Vi−1(χ) ≤ 9ci−1. Hence we have ‖C jχ j‖ ≤ 1

3n−i for all j = 1, . . . , i − 1 and that ‖Fiχi‖ ≤ 3
4n−i+1 .

Moreover

‖vi‖= ‖Fjχi‖+‖
i−1

∑
j=1

Fjχ j‖ ≤ 1
4n−i+1 +

3
4n−i+1 = 1

4n−i .

In conclusion, the first i saturations are inactive for any χi ∈ 3Vi(ci−1). It is easy to see that with
controller vi, χ(k) ∈ 3Vi(ci−1) for all k ≥ Ki−1 and moreover χi(k)→ 0 as k → ∞.

Let ci be such that Vi(χi) ≤ ci implies that ‖C jχ j‖ ≤ 1
3n−i for all j ≤ i. There exists a Ki such that

χi(Ki) ∈ V (ci) for all χi(Ki−1) ∈ 3Vi(ci−1). At time Ki, we have

1. χi(Ki) ∈ Vi(ci).
2. ‖C jχ j(Ki−1)‖ ≤ 1

3n−i for all j ≤ i.
3. ‖∑i

j=1 Fjχ j‖ ≤ 1
4n−i for all χi ∈ Vi(ci).

Repeating this procedure, we can determine ε1, . . . ,εn, cn, Kn and a controller u(χn) = vn(χn) =
∑n

i=1 Fiχi such that for k ≥ Kn we have:

1. χn(Kn) ∈ Vn(cn).
2. ‖C jχ j(Kn)‖ ≤ 1 for all j ≤ n.
3. ‖∑n

j=1 Fjχ j‖ ≤ 1 for all χi−1 ∈ 3Vi−1(c0).

Then the interconnection of n systems is equivalent to

χ̇ = (An +BnFn)χn.

The stability of this system implies that χn(k)→ 0 as k → ∞. This completes the proof.

6.2. Global stabilization

In this section we construct global stabilizing controller for multi-layer systems to prove sufficiency
of Conditions 1 and 2 in Theorem 3. This controller is formed by assembling semi-global stabilizing
controller (46) with scheduled parameters.

Let Pεi(χi) be the positive definite solution of Riccati equation (43) and Fεi(χi) be defined by (44)
where εi = εi(χi) is a scheduled parameter, B is given by (45) and

A1 = A1, Ai =

(
Ai−1 +Bi−1Fi−1,1 0

BiCi−1 Ai

)
, i = 2, . . . ,n (49)

where Fi,1 =−(B′
iPεiBi + I)−1B′

iPεiAi with εi = 1.
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We need n scheduled parameters which satisfy similar properties as given in Section 2. Choose

δ1 =
1
n , δi = min

{
1
n
, δi−1,

!2
i−1

2(n− i+1)2( n+2
n

∥∥B′
i−1Pi−1,1Bi−1

∥∥+ 2
n )
,

1
2(n− i+1)ρi−1

}
(50)

for i = 2, . . . ,n where !i is such that

(λmax(Pi,1)+
1
2 )!

2
i ≤

δ 2
i

Mi‖B′Pi,1B‖

and
ρi =

∞

∑
k=0

‖Ci(Ai +BiFi,1)
kBi‖}.

Consider the following scheduled parameters

εi(χi) = max{r ∈ (0,1] | (χ ′
i Prχi)‖B′

iPrBi‖ ≤
δ 2

i
Mi

} (51)

where χi is given by (47), Pr is the solution of (43) with εi = r, Mi = σmax(P
1
2

i,1BiB′
iP

1
2

i,1)+1 and Pi,1 is
the solution of (43) with εi = 1. Consider the controller

u1 =
n

∑
i=1

(
i−1

∏
j=0

ε j(χ j))Fεi(χi)χi (52)

with ε0 = 1. It has been shown that our scheduling with δi defined in (50) guarantees that ‖Fεi(χi)χi‖≤ 1
n

and hence ‖u1‖ ≤ 1. This implies that the input saturation to the first system never gets activated. The
following theorem shows that the controller (52) with tuning parameters defined by (51) achieves global
asymptotic stability of the origin for multi-layer nonlinear sandwich system.

Theorem 9. Consider interconnection of system Li given in (5), satisfying Conditions 1, 2 of Theorem
3. The control (52) achieves global asymptotic stability of the origin.

Proof : For the simplicity of presentation, we denote εi(χi(k)), Pεi(χi(k)) and Fεi(χi(k)) by εi(k), Pi(k)
and Fi(k) respectively. But we emphasize that they always depend on χi.

When the state is sufficiently close to the origin, all saturation elements are inactive and εi(χi) = 1
for all i = 1, . . . ,n. The state matrix of the closed-loop system is given by An +BnFn,1. From the
property of ARE, we know that the above matrix is asymptotically stable. Then local stability follows.

We shall prove global attractivity using induction. We have argued that for all k ≥ 0, the input
saturation on L1 remains inactive and by construction ε0 = 1. Suppose there exists a Ki with 1 ≤ i ≤
n− 1 such that ε j = 1 for j ≤ i− 1 and the first i saturations are inactive for all k ≥ Ki. We shall
show that there exists a Ki+1 such that εi = 1 and saturation on Li+1 will be inactive for all k ≥ Ki+1.
By assumption, for k ≥ Ki, the interconnection of first i systems is equivalent to the following linear
system

χ̇i = Aiχi +Biv1 (53)

where Ai is given by (49) and v1 is given by

v1 = v1,1 + v1,2 = Fiχi +
n

∑
j=i+1

(
j−1

∏
t=i

εt)Fjχ j.
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Define Vi(k) = χ ′
i Piχi and the family of sets Vi,1 = {χi ∈ R∑i

j=1 n j | ‖χi‖ ≤ !i } and Vi,2 = {χi ∈
R∑i

j=1 n j | Vi ≤ (λmax(Pi,1)+1/2)!2
i }. Since x(k) ∈ Vi,1 implies

Vi(k)≤ λmax(Pi(k))‖χi(k)‖2 ≤ λmax(Pi,1)!
2
i ,

we find that Vi,1 ⊂ Vi,2. Moreover, the definition of !i implies that εi(k) = 1 for χi(k) ∈ Vi,2.
Evaluating Vi(k+1)−Vi(k) along the trajectories yields:

Vi(k+1)−Vi(k)≤−εi(k)χi(k)′χi(k)−χi(k+1)′Pi(k)χi(k+1)+χi(k+1)′Pi(k+1)χi(k+1)−
2χi(k)′A ′

i Pi(k)Biv1,2(k)−2v1,1(k)′B′
iPi(k)Biv1,2(k)+ v1,2(k)′B′

iPi(k)Biv1,2(k)

where

v1,1(k) = Fi(k)χi(k), v1,2(k) =
n

∑
j=i+1

(
j−1

∏
t=i

εt(k))Fj(k)χ j(k).

Our scheduling guarantees that ‖v1,1(k)‖ ≤ 1
n and ‖v1,2(k)‖ ≤ εi(k)(n− i)δi+1 and hence

‖χi(k)′A ′
i Pi(k)Biv1,2(k)‖= ‖v1,1(k)′(B′

iPi(k)Bi + I)v1,2(k)‖ ≤ εi(k)
(n−i)2

n (
∥∥B′

iPi(k)Bi
∥∥+1)δi+1

‖v1,1(k)′B′
iPi(k)Biv1,2(k)‖ ≤ εi(k)

(n−i)2

n

∥∥B′
iPi(k)Bi

∥∥δi+1

‖v1,2(k)′B′
iPi(k)Biv1,2(k)‖ ≤ εi(k)(n− i)2∥∥B′

iPi(k)Bi
∥∥δi+1.

With the above inequalities, we have

Vi(k+1)−Vi(k)

≤− εi(k)‖χi(k)‖2 +χi(k+1)′(Pi(k+1)−Pi(k))χi(k+1)+ εi(k)(n− i)2( n+4
n

∥∥B′
iPi(k)Bi

∥∥+ 2
n )δi+1

≤− εi(k)‖χi(k)‖2 +χi(k+1)′(Pi(k+1)−Pi(k))χi(k+1)+ 1
2 εi(k)!2

i .

Using the same argument as in the proof of Theorem 7, we can show that if χi(k) /∈ Vi,1 then Vi(k) is
strictly decreasing and hence χi will enter Vi,1 within finite time. On the other hand, if χi(k) ∈ Vi,1 then
χi(k+ 1) ∈ Vi,2. Since Vi,1 ⊂ Vi,2, we conclude that χi will enter Vi,2 within finite time, say Ki,1, and
can not escape from it. On Vi,2 we have εi(k) = 1.

Consider zi(k) =Cixi(k) = Ciχi(k) for k ≥ Ki,1. Since εi(k) = 1, we have

zi(k) = Ci(Ai +BiFi,1)
k−Ki,1 χi(Ki,1)+ zi,0(k)

where

zi,0(k) =
k−1

∑
j=Ki,1

Ci(Ai +BiFi,1)
k− j−1Biv1,2( j).

Our scheduling guarantees that

v1,2 ≤ (n− i)δi+1 ≤ 1
2ρi

=
1

2∑∞
k=0 ‖Ci(Ai −BiFi,1)kBi‖

.

This implies that ‖zi,0(k)‖ ≤ 1
2 for all k ≥ Ki,1. Since Ai +BiFi,1 is asymptotically stable, there exists

a Ki+1 > Ki,1 such that for all k ≥ Ki, we have ‖zi(k)‖ ≤ 1.
Therefore the input saturation on Li+1 will be inactive and εi = 1 for all k ≥ Ki+1. By induction,

there exists a Kn such that all the saturations are inactive for k ≥ Kn and εi = 1 for all i = 0, . . . ,n−1.
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Then the interconnection of n systems (5) and controller (52) is equivalent to the interconnection of
linear system

χn(k+1) = Anχn(k)+Bnv1

with controller v1 = Fεn(χn)χn =−(B′
nPεn(χn)Bn + I)−1B′

nPεn(χn)Anχn. It follows from Lemma 3 that
the closed-loop system is globally asymptotically stable, i.e. χn(k)→ 0 as k → ∞. This shows global
attractivity of the origin and completes the proof.

7. Example

7.1. Single layer sandwich system

Consider the following two systems:

L1 :





x(k+1) =

(
0 −1
1 0

)
x(k)+

(
0
1

)
u(k),

z(k) =
(
1 0

)
x(k),

(54)

and

L2 : ω(k+1) =
(

0.8 0.6
−0.6 0.8

)
ω(k)+

(
0
1

)
σ(z(k)), (55)

and W = [−2,2]× [−2,2]× [−2,2]× [−2,2]. We shall design controllers for both semi-global and
global stabilization of the origin of (54) and (55). The initial condition for simulations is x(0)= (−2,2)′
and ω(0) = (2,−2)′.

7.1.1. Semi-global stabilization

• Choose F =
(
−0.7321 0

)
.

• From (16), we calculate δ1 = 0.366.
• Determine ε according to W and δ1. We choose ε = 3×10−3.
• The feedback controller is given by

u =
(
−0.7145 −0.055 −0.0740 −0.0087

)
x̄.

The simulation data is shown in Figure 5.

7.1.2. Global stabilization

• Choose F =
(
−0.7321 0

)
.

• From (16), we compute δ1 = 0.366.
• The global stabilizing controller is formed by semi-global controller together with scheduled

parameter.

The simulation data is shown in Figure 6 and 7.
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Figure 5. Semi-global stabilization of single layer sandwich system
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Figure 6. Global stabilization of single layer sandwich system

7.2. Single layer sandwich system with input saturation

Consider the systems as given by (56) and (57)

L1 :





x(k+1) =

(
0 −1
1 0

)
x(k)+

(
0
1

)
σ(u(k)),

z(k) =
(
1 0

)
x(k),

(56)

and
L2 : ω(k+1) =

(
0.8 0.6
−0.6 0.8

)
ω(k)+

(
0
1

)
σ(z(k)), (57)

and W = [−2,2]× [−2,2]× [−2,2]× [−2,2]. The initial condition for simulation is x(0) =
(
−2 2

)′

and ω(0) =
(
2 −2

)′.
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Figure 7. Time evolution of ε

7.2.1. Semi-global stabilization

• According to W , we choose ε1 = 0.05.
• According to W and ε1, we choose ε2 = 3×10−3.
• The controller is given by u =

(
−0.2674 −0.0442 −0.0738 0.0119

)
x̄

The simulation data and I/O of saturation elements are shown respectively in Figure 8 and 9:
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Figure 8. Semi-global stabilization of single layer sandwich system with input saturation

7.2.2. Global stabilization Note that the theoretical bounds on δ in Theorem 7 as given by (36)
certainly suffice to prove solvability but it might be unnecessarily conservative in practice, since it is
derived based on a worst-scenario estimation of v1, v2 and z0 in (39) and (42). A proper δ can be
obtained by relaxing one or more conservative bounds in (36) and reducing it again if necessary until
stability is achieved as well as reasonable performance.

• We use δ = 0.2. This choice is verified by a simulation of an 1296-point array of initial conditions
without any observation of instability.
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Figure 9. I/O of saturation elements in semi-global stabilization of single layer sandwich system with input
saturation

• M2 = 3.7321 and M3 = 6.5474.
• The controller is formed by the semi-global stabilizing controller together with scheduling (34)

and (37).

The simulation data is shown in Figure 10.

8. Conclusion

In this paper, we have considered a class of nonlinear sandwich systems, where the nonlinear element
is a saturation. At first we dealt with single-layer sandwich systems, consisting of a single saturation
sandwiched between two linear systems. We have established necessary and sufficient conditions for
semi-global and global internal stabilization of such systems, and we have presented generalized low-
gain and generalized scheduled low-gain design methodologies to achieve the prescribed stabilization.
We have extended the design methodology to single-layer sandwich systems subject to input saturation,
and further to multi-layer sandwich systems.

For ease of presentation, we have chosen to base the design methodologies in this paper on Riccati
equations. It is also possible to generalize the classical eigenstructure assignment method from [17] to
achieve the same results.

Current research is focused on constructing measurement feedback controllers to solve the semi-
global and global internal stabilization problems, as well as external stabilization problems.
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