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SUMMARY

In this paper we study the disturbance response of open-loop neutrally stable linear systems with saturating
linear feedback controller. It is shown that the closed-loop states remain bounded if the disturbances consists
of those signals that do not have large sustained frequency components corresponding to the system’s
eigenvalues on the imaginary axis (continuous-time) or on the unit circle (discrete-time). The results in
this paper are extensions of previous results by [1]. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we study the control of open-loop neutrally stable systems subject to input saturation
and external disturbances. A linear system ρx = Ax+Bu is said to be neutrally stable if A has all its
eigenvalues in the closed left half plane (closed unit disc for discrete-time systems) and at least one
eigenvalue on the imaginary axis (unit circle for discrete-time systems); and all the eigenvalues on
the imaginary axis (unit circle for discrete-time systems) have Jordan block size 1.

In the literature dealing with external stability of linear systems subject to input saturation, the
types of disturbances studied may be classified as input-additive and non-input-additive. For the
input-additive case, it has been shown that there exists a linear state feedback that achieves Lp
(continuous-time) or !p (discrete-time) stability with finite gain for p ∈ [1,∞] [2, 3, 4]. On the other
hand, Lp (!p) stabilization with finite gain has been shown to be generally impossible in the non-
input-additive case [5]. The authors in [6] showed that for an open-loop neutrally stable system with
input saturation and non-additive disturbances, Lp (!p) stability without finite gain is attainable via
a linear state feedback; however, this result only applies to Lp (!p) disturbances for p ∈ [1,∞), and
not to signals belonging to L∞ (!∞) space. It is also shown in [7] (see also [2]) that for continuous-
time neutrally stable systems, finite gain L∞ stabilization via linear state feedback is possible if the
non-additive disturbances are sufficiently small. The same conclusion can be drawn for discrete-time
neutrally stable system as well, following the argument used in [3].
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2 X. WANG ET AL.

In continuous-time case, for signals in L∞ (!∞) that are non-additive, another direction of research
has focused on identifying classes of disturbances for which a controller can be designed to yield
bounded closed-loop state trajectories. Work along this line has been carried out by our group in
[8, 9, 1]. In that work, a set of integral-bounded signals has been defined as

S∞ =

{
d ∈ L∞ | ∃M s.t.∀t2 ≥ t1 ≥ 0,

∥∥∥∥
∫ t2

t1
d(t)dt

∥∥∥∥≤ M
}
.

The set S∞ represents signals that have a uniformly bounded integral over every time interval; that
is, signals that have no sustained DC bias. For neutrally stable systems consisting only of single
integrators (i.e., eigenvalues at the origin with Jordan block size 1), it has been shown that the
state trajectories remain bounded for all initial conditions and all integral-bounded disturbances.
Moreover, this result also holds if we add a sufficiently small DC signal to the disturbances.

The results for continuous-time single-integrator systems appeared in the larger context of
studying chains of integrators, for which it was shown that integral-bounded disturbances can be
handled by an appropriately chosen control law if they are matched with the input.

In this paper we shall extend the results for single-integrator systems to neutrally stable systems.
Although a similar result for discrete-time integrator-chain type system as obtained in [8, 9, 1]
is not available yet, we do observe a substantial similarity between continuous- and discrete-time
neutrally stable systems. The extension made to continuous-time system carries over to its discrete-
time counter part. Roughly speaking, we shall show that for disturbances that do not have large
sustained frequency components corresponding to the system’s eigenvalues on the stability margin,
a linear static state feedback can be employed to achieve boundedness of the trajectories for any
initial condition and at the same time yield a globally asymptotically stable equilibrium.

2. PRELIMINARIES

2.1. Notation

We first recall some standard notations. C− and C( denote the open left-half complex plane and
open unit disc. C! denotes the imaginary axis for continuous-time system and unit circle for
discrete-time system. For x ∈ Rn, ‖x‖ denotes its Euclidean norm and x′ denotes the transpose of x.
For X ∈ Rn×m, ‖X‖ denotes its induced 2-norm and X ′ denotes the transpose of X . For continuous-
time (discrete-time) signal y, ‖y‖∞ denotes it L∞ (!∞) norm. L∞(δ ) (!∞(δ )) represent a set of
continuous-time (discrete-time) signals whose L∞ (!∞) norm is less than δ .

2.2. Problem formulation

Consider the following system

ρx = Ax+Bσ(u)+Ed, x(0) = x0, (1)

where x ∈ Rn, u ∈ Rm, d ∈ Rp and ρx represents ẋ for continuous-time systems and x(k+ 1) for
discrete-time systems. σ(·) denotes the standard saturation function defined as

σ(ξ ) =




sign(ξ1)min{1, |ξ1|}

...
sign(ξm)min{1, |ξm|}



 (2)

The pair (A,B) is stabilizable and A has all its eigenvalues in C− ∪C! for continuous-time system
and C( ∪C! for discrete-time system, with those on C! simple. We also assume d ∈ L∞ in the
continuous-time case and d ∈ !∞ in the discrete-time case.

In the sequel, we shall identify a class of disturbances for which a properly chosen linear state
feedback u = Fx can be found such that the states of closed-loop system remain bounded for any
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CONTROL OF NEUTRALLY STABLE SYSTEMS 3

initial condition and that in the absence of d the origin is globally asymptotically stable. Note that
system (1) can be decomposed into the following form:

[
ρxs
ρxu

]
=

[
As 0
0 Au

][
xs
xu

]
+

[
Bs
Bu

]
σ(u)+

[
Es
Eu

]
d,

where As is asymptotically stable, (Au,Bu) is controllable and Au only has eigenvalues on C! with
Jordan size 1. Since As is asymptotically stable, d ∈ L∞ or d ∈ !∞ and σ(·) is uniformly bounded,
it follows that the xs dynamics will remain bounded no matter what controller is used. Therefore,
without loss of generality, we can ignore the asymptotically stable dynamics and assume in (1)
that A has eigenvalues on C! with Jordan size 1. Equivalently, we can assume that A+A′ = 0 for
continuous-time systems or A′A = I for discrete-time systems.

To establish the results in this paper, we shall need two fundamental lemmas.

Lemma 1
Suppose A+A′ = 0 and (A,B) is controllable. Consider the system

ẋ = Ax−Bσ(B′x+ v1)+Bv2, x(0) = x0

We have that

1. In the absence of v1 and v2, the origin is globally asymptotically stable;
2. x ∈ L∞ for all v1 ∈ L∞, v2 ∈ L∞(1/2) and any initial condition.

Lemma 2
Suppose A′A = I and (A,B) is controllable. Consider

x(k+1) = Ax(k)−Bσ(κB′Ax(k)+ v1(k))+Bv2(k), x(0) = x0.

For κ such that 4κB′B ≤ I, we have

1. In the absence of v1 and v2, the origin is globally asymptotically stable;
2. x ∈ !∞ for all v1 ∈ !∞, v2 ∈ !∞(1/2) and any initial condition.

Lemma 1 is similar to Lemma 2 in [2] and Proposition 1 in [7]. Lemma 2 basically follows from
the same argument as used in proof of Proposition 2.3 in [4]. The detailed proofs are appended at
the end of the paper.

3. CONTINUOUS-TIME SYSTEMS

We first study a continuous-time system

ẋ = Ax+Bσ(u)+Ed

where x ∈ Rn, u ∈ Rm and d ∈ Rp. Also assume that (A,B) is controllable, A+A′ = 0 and d ∈ L∞.
We employ a linear static state feedback u =−B′x, which results in a closed-loop system

ẋ = Ax−Bσ(B′x)+Ed, x(0) = x0. (3)

Global asymptotic stability follows from Lemma 1. We focus here only on the boundedness of the
closed-loop states.

3.1. Extended class of disturbances

To present our results, we extend the definition of integral-bounded disturbances introduced in
[8, 9, 1] by defining a new set

Ω∞ = {d ∈ L∞ | ∀i ∈ 1, . . . ,q, d(t)sinωit ∈ S∞ and d(t)cosωit ∈ S∞}, (4)
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where ± jωi, i ∈ 1, . . . ,q, represents the eigenvalues of A. The set Ω∞ consists of those signals
that remain integral-bounded when multiplied by sinωit and cosωit. This definition is a natural
generalization of S∞, since Ω∞ = S∞ for ωi = 0 in a chain of integrators.

In practical terms, a signal that belongs to Ω∞ is a signal that has no sustained frequency
component at any of the frequencies ωi, i ∈ 1, . . . ,q. To see this, note that we can equivalently
write

Ω∞ =

{
d ∈ L∞ | ∃M s. t. ∀i ∈ 1, . . . ,q,∀t2 ≥ t1 ≥ 0,

∥∥∥∥
∫ t2

t1
d(t)e jωit dt

∥∥∥∥≤ M

}
. (5)

The integral
∫ t2

t1 d(t)e jωit dt is easily recognized as the value at ωi of the Fourier transform of the
signal d(t) truncated to the interval [t1, t2]. The definition of Ω∞ implies that this value must be
uniformly bounded regardless of the choice of t1 and t2.

In tune with the results for the single-integrator case, we shall show in the following sections that
the trajectories of the controlled system (3) remain bounded for all disturbances belonging to Ω∞.
Moreover, this result also holds if we add a sufficiently small signal that does not belong to Ω∞.

3.2. Second order single-frequency system

We start by considering an example system with a pair of complex eigenvalues at ± j:
[

ẋ1
ẋ2

]
=

[
0 1
−1 0

][
x1
x2

]
−
[

0
1

]
σ(x2)+

[
e1
e2

]
d,

[
x1(0)
x2(0)

]
= x0. (6)

Theorem 1
The trajectories of (6) remain bounded for any d ∈ Ω∞ and any x0.

Proof
To analyze the system, we start by introducing a rotation matrix

R =

[
cos t −sin t
sin t cos t

]
,

which represents a counterclockwise rotation by an angle t. The dynamics of the rotation matrix is
given by

Ṙ =−R
[

0 1
−1 0

]
.

We shall study the dynamics of x from a rotated coordinate frame, and toward this end we define
the rotated state y = Rx. The dynamics of y is given by

ẏ = Ṙx+Rẋ

= R
([

e1
e2

]
d −

[
0
1

]
σ(x2)

)

= R
([

e1
e2

]
d −

[
0
1

]
σ(

[
0 1

]
R′y)

)
, y(0) = x(0) = x0.

Next, define a fictitious system

˙̃y = R
[

e1
e2

]
d, ỹ(0) = x0. (7)

We know from the definition of Ω∞ that the signal d(t) is integral-bounded when multiplied by sin t
and cos t. It therefore follows that the right-hand side of (7) is integral-bounded, and hence ỹ ∈ L∞.
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CONTROL OF NEUTRALLY STABLE SYSTEMS 5

Consider the difference between y and the fictitious state ỹ, given by z = y− ỹ, with dynamics

ż =−R
[

0
1

]
σ(

[
0 1

]
R′y)

=−R
[

0
1

]
σ(

[
0 1

]
R′z+δ ), z(0) = 0

where δ = [0,1]R′ỹ ∈L∞. We rotate z back to the original coordinate frame by introducing w = R′z,
thereby obtaining the dynamics

ẇ = Ṙ′z+R′ż

=

[
0 1
−1 0

]
w−

[
0
1

]
σ(

[
0 1

]
w+δ ), w(0) = 0.

It follows from Lemma 1 that w ∈ L∞. Finally, we have x = w+R′ỹ, and hence x ∈ L∞.

To demonstrate the importance of the disturbance belonging to Ω∞, we shall now show that if
d contains a large frequency component at ± j, the states of (6) will diverge toward infinity for
any initial condition. Suppose therefore that d(t) = asin(t +θ), where a is an amplitude yet to be
chosen. For ease of presentation, we assume that [e1,e2]′ = [0,1]′. Consider the dynamics of the
rotated state y from the proof of Theorem 1. We have

ẏ = R
[

0
1

](
d −σ(

[
0 1

]
R′y)

)

= a
[
−sin t sin(t +θ)
cos t sin(t +θ)

]
+

[
sin t

−cos t

]
σ(·).

Using trigonometric identities, the dynamics can be rewritten as

ẏ =
a
2

[
cos(2t +θ)− cos(θ)
sin(2t +θ)+ sin(θ)

]
+

[
sin t

−cos t

]
σ(·).

We have that either |sin(θ)| ≥
√

2/2 or |cos(θ)| ≥
√

2/2. Without loss of generality, we assume
|sin(θ)|≥

√
2/2. Let a be chosen such that a ≥ 4/

√
2(1+ε), where ε is a positive number. For the

trajectory y2(t), we have

|y2(t)|=
∣∣∣y2(0)+

∫ t

0

a
2
[sin(2τ +θ)+ sin(θ)]− cosτσ(·)dτ

∣∣∣.

Noting that the last term of the integrand is bounded by ±1, and using the bound |a/2sin(θ)| ≥√
2a/4 ≥ 1+ ε , we therefore have

|y2(t)|≥
∫ t

0
ε dτ − |y2(0)|−

a
2

∣∣∣∣
∫ t

0
sin(2τ +θ)dτ

∣∣∣∣

≥ εt − |y2(0)|−
a
2
.

This shows that y2(t) diverges toward infinity.

3.3. Connection to single-integrator case

Before moving on to the case of general multi-frequency systems, it is instructive to compare some
aspects of the above example with previous results for single-integrator systems. A single-integrator
system with a saturated control input and an external disturbance has the form

ẋ = σ(·)+ ed.
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In the absence of disturbances, the open-loop response of this system is stationary. It is intuitively
easy to see that a large DC bias in d would constitute a problem, because it would tend to dominate
the bounded control term σ(·), thus leading to unboundedness. The absence of such a DC bias is
guaranteed by d belonging to S∞.

The example system above has the form

ẋ =
[

0 1
−1 0

]
x+

[
0
1

]
σ(·)+

[
0
1

]
d.

In the absence of disturbances, the open-loop response of this system is oscillatory rather than
stationary, and it is less obvious why a disturbance that does not belong to Ω∞ may be problematic.
By introducing a rotated state y = Rx, however, we obtain the dynamics

ẏ = R
[

0
1

]
σ(·)+R

[
0
1

]
d.

In the absence of disturbances, the open-loop response of y is stationary, and the dynamics of y are
similar to the single-integrator case. In particular, it is easy to see that a large DC bias in the term
R[ 0

1 ]d would constitute a problem, because it would tend to dominate the bounded control term.
Analogous to the single-integrator case, the absence of such a bias is guaranteed if R[0

1 ]d belongs to
S∞, which is equivalent to d belonging to Ω∞.

In the single-integrator case, a DC bias in d can be tolerated if it is sufficiently small. Similarly,
a small signal that does not belong to Ω∞ can be tolerated for systems with complex eigenvalues.
This is demonstrated in the next section, which deals with general multi-frequency systems.

3.4. Multi-frequency systems

We first extend Theorem 1 to a multi-frequency neutrally stable system. Consider

ẋ = Ax−Bσ(B′x)+Ed, x(0) = x0 (8)

where A+A′ = 0 and (A,B) is controllable. Without loss of generality, we assume that

A =





A1
. . .

As
0




, x =





x1
...

xs
xo




(9)

where xi ∈ R2, i = 1, . . . ,s, xo ∈ Rn−2s and

Ai =

[
0 ωi

−ωi 0

]
, i = 1, . . . ,s

with 2s ≤ n. We have the following theorem

Theorem 2
The states of (8) remain bounded for any d ∈ Ω∞ and any x0.

Proof
Consider the matrix

R =





R1
. . .

Rs
I





where
Ri =

[
cosωit −sinωit
sinωit cosωit

]
.
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CONTROL OF NEUTRALLY STABLE SYSTEMS 7

Note that R is unitary, i.e. RR′ = I and moreover

Ṙ =−RA.

Define a transformed state y = Rx. As a result,

ẏ =−RB′σ(B′R′y)+REd, y(0) = x0.

Introduce a fictitious system
˙̃y = REd, ỹ(0) = x0.

It follows from the definition of Ω∞ that ỹ ∈ L∞. Next, define the difference between y and ỹ by
z = y− ỹ. We get

ż =−RBσ(B′R′z+B′R′ỹ), z(0) = 0.

Finally transform z back to the original coordinates by defining w = R′z. Note that

Ṙ′ = AR′.

Hence
ẇ = Aw−Bσ(B′w+B′R′ỹ), w̃(0) = 0.

Lemma 1 shows that w ∈ L∞. Since x = w+R′ỹ and ỹ ∈ L∞ is bounded for all t, we conclude that
x ∈ L∞.

Next, we shall prove that the states of (8) also remain bounded if a small signal that does not
belong to Ω∞ is added on top of the original signal in Ω∞. Consider the system

ẋ = Ax−Bσ(B′x)+E1d1 +E2d2, x(0) = x0 (10)

where A+A′ = 0 and (A,B) is controllable. Without loss of generality we assume that A is in the
form of (9).

Theorem 3
The states of system (10) remain bounded for any x0, any d1 ∈ Ω∞ and d2 ∈ L∞(δ ) with δ
sufficiently small..

Proof
Using the same sequence of transformations as introduced in the proof of Theorem 2, we get the
following transformed system

ẇ = Aw−Bσ(B′w+B′R′ỹ)+E2d2, w(0) = 0

where w = x−R′ỹ and
˙̃y = RE1d1, ỹ = x0.

The fact that d1 ∈ Ω∞ implies that ỹ ∈ L∞. Introduce another fictitious system

˙̄w = (A−BB′)w̄+E2d2, w̄(0) = 0.

Since A−BB′ is Hurwitz stable and d2 ∈ L∞(δ ), we have that w̄ ∈ L∞ and moreover ‖B′w̄‖∞ ≤ 1
2

for sufficiently small δ .
Define w̃ = w− w̄. Then w̃ has the following dynamics

˙̃w = Aw̃−Bσ(B′w̃+ v1)+Bv2, w̃ = 0

where v1 = B′w̄+B′R′ỹ and v2 = B′w̄. It follows from Lemma 1 that w̃ ∈L∞. Since x = w̄+ w̃+R′ỹ
and w̄,R′ỹ ∈ L∞, we conclude that x ∈ L∞.
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4. DISCRETE-TIME SYSTEMS

In this section, we deal with discrete-time systems. Consider the following system

x(k+1) = Ax(k)+Bσ(u(k))+Ed(k), x(0) = x0. (11)

We assume that (A,B) is controllable and A′A = I.
We use a linear state feedback controller u =−κB′Ax which gives a closed-loop system as

x(k+1) = Ax(k)+Bσ(−κB′Ax(k))+Ed(k), x(0) = x0.

For κ such that 4κB′B ≤ I, the global asymptotic stability of the origin in the absence of d follows
from Lemma 2. As such, as in continuous-time case, we focus here only on the boundedness of
closed-loop states with disturbances.

4.1. Extended class of disturbances

As in continuous-time case, we define a set of discrete disturbances

Ω∞ =

{
d ∈ !∞ | ∃M > 0, s. t.∀i ∈ 1, . . . ,q, ∀k2 ≥ k1 ≥ 0,

∥∥∥∥∥

k2

∑
k=k1

d(k)cos(θik)

∥∥∥∥∥≤ M,

∥∥∥∥∥

k2

∑
k=k1

d(k)sin(θik)

∥∥∥∥∥≤ M

}
, (12)

where e jθi , i ∈ 1, . . . ,q, represents the eigenvalues of A.
Ω∞ contains signals which do not have sustained component at discrete frequency θi. Like in the

continuous-time case, we can also rewrite the above definition as

Ω∞ =

{
d ∈ !∞ | ∃M > 0, s. t.∀i ∈ 1, . . . ,q, ∀k2 ≥ k1 ≥ 0,

∥∥∥∥∥

k2

∑
k=k1

d(k)zk
i

∥∥∥∥∥ ≤ M

}
, (13)

where zi = e jθi , i = 1, ...,q, denotes the eigenvalues of A. Since d ∈ !∞, the power series ∑∞
0 d(z)zk

or the z-transform of d(k) always has a radius of convergence 1. On |z|= 1, definition (12) implies
all partial sums of the power series is bounded at z = zi.

Note that the set Ω∞ in (12) and (13) are a discrete equivalent of (4) and (5).

4.2. Multi-frequency systems

Next we shall prove the boundedness of closed-loop trajectories with disturbances that belong to
Ω∞ as defined in (12). The philosophy of the proof is basically the same as in continuous-time
case. We apply a sequence of successive rotations to state coordinates and eventually convert the
non-input-additive disturbances to input-additive disturbances using the property of Ω∞. Since this
procedure has been made clear in the preceding section, we shall skip the proof for second-order
single-frequency systems and only work on the general case.

Theorem 4
Consider the system

x(k+1) = Ax(k)−Bσ(κB′Ax(k))+Ed(k), x(0) = x0 (14)

where (A,B) is controllable, A′A = I and d ∈ Ω∞. Then for κ such that 4κB′B ≤ I, we have x(k)
bounded for all k ≥ 0 and for any initial condition.

Proof
Define R(k) = (A′)k. Since A′A = I, R(k) represents a time-varying rotation matrix with difference
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CONTROL OF NEUTRALLY STABLE SYSTEMS 9

equation
R(k+1) = R(k)A′

Also define
y(k) = R(k)x(k)

The transformed system becomes

y(k+1) = y(k)−R(k)A′Bσ(κB′AR′(k)y(k))+R(k)A′Ed(k), y(0) = x0.

Introduce a fictitious system

ỹ(k+1) = ỹ(k)+R(k)A′Ed(k), ỹ(0) = x0.

Note that d ∈ Ω∞ implies that there exists a M > 0 such that

∀k2 > k1 > 0,

∥∥∥∥∥

k2

∑
k1

(A′)kEd(k)

∥∥∥∥∥≤ M.

Therefore, we find ỹ ∈ !∞. Let z = y− ỹ. We get

z(k+1) = z(k)−R(k)A′Bσ(κB′AR′(k)z(k)+κB′AR′(k)ỹ(k)), z(0) = 0.

Finally, define w(k) = R′(k)z(k). The dynamics of w is given by

w(k+1) = Aw(k)−Bσ(κB′Aw(k)+ v(k)), w(0) = 0.

where v(k) = κB′Ak+1ỹ(k). It follows from Lemma 2 that the above system is !∞ stable with respect
to v given 4κB′B ≤ I. Thus ỹ∞ implies w ∈ !∞. Note that x(k) = w(k)+R′(k)ỹ(k). Therefore, we
conclude x ∈ !∞.

The next theorem shows that a small disturbance that does not belong to Ω∞ can also be tolerated.

Theorem 5
Consider the discrete-time system

x(k+1) = Ax(k)−Bσ(κB′Ax(k))+E1d1(k)+E2d2(k), x(0) = x0. (15)

For κ such that 4κB′B ≤ I, we have x(k) bounded for all k ≥ 0 and for any x0, d1 ∈ Ω∞ and
d2 ∈ !∞(δ ) with δ sufficiently small.

Proof
Following the same lines as in the proof of Theorem 4, we shall get a transformed system

w(k+1) = Aw(k)−Bσ(κB′Aw(k)+κB′AR′(k)ỹ(k))+E2d2(k),w(k) = 0

where w(k) = x(k)−R′(k)ỹ(k) and ỹ satisfies

ỹ(k+1) = ỹ(k)+R(k)A′E1d1(k), ỹ(0) = x0,

and hence ỹ ∈ !∞. Introduce an auxiliary system

w̄(k+1) = (A+BF)w̄(k)+E2d2(k), w̄(0) = 0,

where F is such that A+BF is asymptotically stable. Since d2 ∈ !∞(δ ), we find that Fw̄ ∈ !∞.
Moreover, we have ‖Fw̄‖∞ ≤ 1/2 with sufficiently small δ .

Define w̃ = w− w̄. Then we get

w̃(k+1) = Aw̃(k)−Bσ(κB′Aw̃(k)+ v1(k))+Bv2(k), w̃(0) = 0.

where v1 = κB′Aw̄+κB′Ak+1ỹ and v2 = Fw̄.
Lemma 2 shows that w̃ ∈ !∞. Since x = w̃+ w̄+R′(k)ỹ, we conclude that x ∈ !∞ for any initial

condition.
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5. CONCLUSION

In this paper, we study the dynamics of an open-loop neutrally stable linear system controlled
by a saturating linear feedback controller in the presence of external disturbances. Two classes
of disturbances have been identified for which we can achieve bounded states of the closed-loop
system. This paper extends the results for a single-integrator system as reported in [1] to a neutrally
stable system. It is evident that the class of disturbances identified in this paper is a natural extension
of the class of integral-bounded disturbances for a chain of integrator. The more general case of
critically unstable systems which have complex eigenvalues with Jordan block size great than 1 is
subject to current research.

APPENDIX

We shall develop proof for Lemma 1 and 2. In order to do so, we need the following inequalities,
which were proven in [6]:

Lemma 3
For two vectors u,w ∈ Rm, the following statements hold:

|u′[σ(u+w)−σ(u)]|≤ 2
√

m‖w‖; (16)

2u′[σ(w)−σ(w−u)]≥ u′σ(u), ‖w‖ ≤ 1
2 ; (17)

‖u−σ(u)‖ ≤ u′σ(u); (18)

−u′[σ(u)+w]≤ ‖w‖2

4 , ‖w‖ ≤ 1, (19)

where σ(·) is the standard saturation function defined in (2).

Proof of Lemma 1
Item 1 has been proven in [2]. We only prove item 2. Denote u = B′x and define V1 = 1

3‖x‖3.
Differentiating V1 along the trajectories yields

V̇1 = ‖x‖u′ [σ(−u+ v1)+ v2]

≤ ‖x‖(u− v1)
′ [−σ(u− v1)+ v2]+2‖x‖‖v1‖∞

= ‖x‖
{
(u− v1)

′[−σ(u− v1)+σ(u− v1 + v2)]

+(u− v1)
′[−σ(u− v1 + v2)+σ(v2)]

}
+2‖x‖‖v1‖∞

≤− 1
2‖x‖(u− v1)σ(u− v1)+2

√
m‖x‖‖v2‖∞ +2‖x‖‖v1‖∞.

The last inequality results from (16), (17) and the condition ‖v2‖ ≤ 1
2 .

Next, since A−BB′ is Hurwitz stable, there exists a P > 0 satisfying

(A−BB′)′P+P(A−BB′) =−I.

Define V2 = x′Px. There exists an α such that

V̇2 =−‖x‖2 +2x′P[Bσ(−u+ v1)+Bu+Bv2]

=−‖x‖2 +2x′P[B(σ(−u+ v1)+u− v1)+Bv2 +Bv]

≤−‖x‖2 +2α‖x‖(u− v1)σ(u− v1)+2α‖x‖‖v2‖∞ +2α‖x‖‖v1‖∞,

where inequality (18) is used to derive the last inequality.
Finally, define a Lyapunov candidate V = 4αV1 +V2. We find that

V̇ ≤−‖x‖2 +(8α
√

m+2α)‖x‖‖v2‖∞ +10α‖x‖‖v1‖∞

=−‖x‖
[
‖x‖− (8α

√
m+2α)‖v2‖∞ −10α‖v1‖∞

]
.
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Hence V̇ ≤ 0 for ‖x‖ ≥ (8α
√

m+2α)‖v2‖∞ +10α‖v1‖∞. Let c be such that

{x | V (x)≤ c}⊃ {x | ‖x‖ ≤ (8α
√

m+2α)‖v2‖∞ +10α‖v1‖∞}.

We have V̇ ≤ 0 for x /∈ {x | V (x)≤ c}. This implies that x(t) ∈ {x | V (x)≤ c} for all t ≥ 0.

To prove Lemma 2, we borrow the next lemma from [6]

Lemma 4
Assume that A′A = I and κB′B ≤ 2I for some κ > 0 Then Ã = A−κBB′A is Schur stable if and only
if (A,B) is controllable.

Proof of Lemma 2
In order the prove the above result, we first need the following lemma.

Denote κB′Ax by u. Define V1 = ‖x‖2. We have that

V1(k+1)−V1(k) = ‖Ax+Bσ(−u+ v1)+Bv2‖2 −‖x‖2

= 2
κ u′[σ(−u+ v1)+ v2]+

[
σ(−u+ v1)

′+ v′2
]

B′B
[
σ(−u+ v1)

′+ v′2
]

≤ 2
κ [u− v1]

′[σ(−u+ v1)+ v2]+
2
κ v′1[σ(−u+ v1)+ v2]+

1
4κ ‖σ(−u+ v1)+ v2‖2

where we use condition 4κBB′ ≤ I. Since ‖v2‖ ≤ 1
2 and σ(·) is bounded by ±1, we find that

v′1[σ(−u+ v1)+ v2]≤ 2‖v1‖. This yields that

V1(k+1)−V1(k)≤ 2
κ [u− v1]

′[σ(−u+ v1)+ v2]+
1

2κ ‖σ(−u+ v1)‖2 + 1
2κ ‖v2‖2 + 4

κ ‖v1‖
≤ 2

κ [u− v1]
′[σ(−u+ v1)+ v2]+

1
2κ ‖σ(−u+ v1)‖2 + 1

2κ ‖v2‖+ 4
κ ‖v1‖.

Note that

2
κ [u− v1]

′[σ(−u+ v1)+ v2] =
1
κ [u− v1]

′σ(−u+ v1)+
1
κ [u− v1]

′[σ(−u+ v1)+2v2]

≤ 1
κ [u− v1]

′σ(−u+ v1)+
1
κ ‖v2‖2

≤ 1
κ [u− v1]

′σ(−u+ v1)+
1
κ ‖v2‖

where we use (19) and ‖v2‖ ≤ 1
2 . Therefore,

V1(k+1)−V1(k)≤ 1
κ [u− v1]

′σ(−u+ v1)+
1

2κ ‖σ(−u+ v1)‖2 + 3
2κ ‖v2‖+ 4

κ ‖v1‖
≤ 1

2κ [u− v1]
′σ(−u+ v1)+

3
2κ ‖v2‖+ 4

κ ‖v1‖. (20)

Since 4κB′B ≤ I, Ã = A−κBB′A is Schur stable. Let P be the solution to the Lyapunov equation

Ã′PÃ−P+ I = 0.

Define V2 = ‖P1/2x‖. We have

V2(k+1)−V2(k) = ‖P1/2Ãx+P1/2B[u− v1 −σ(u− v1)+(v2 + v1)]‖−‖P1/2x‖
≤ ‖P1/2Ãx‖+‖P1/2B[u− v1 −σ(u− v1)+(v2 + v1)]‖−‖P1/2x‖.

For x /= 0, there exists a β > 0 such that

‖P1/2Ãx‖−‖P1/2x‖= ‖P1/2Ãx‖2 −‖P1/2x‖2

‖P1/2Ãx‖+‖P1/2x‖
=

−‖x‖2

‖P1/2Ãx‖+‖P1/2x‖
≤ −β‖x‖.

Obviously, the above also holds for x = 0. Hence

V2(k+1)−V2(k)≤−β‖x‖+‖P1/2B‖‖(u− v1)−σ(u− v1)‖+‖P1/2B‖(‖v2‖+‖v1‖)
≤−β‖x‖+‖P1/2B‖(u− v1)

′σ(u− v1)+‖P1/2B‖(‖v2‖+‖v1‖) (21)
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where we use (18) of Lemma 3.
Define V = 2κ‖P1/2B‖V1 +V2. We obtain from (20) and (21) that

V (k+1)−V (k)≤−β‖x‖+9‖P1/2B‖‖v1‖+4‖P1/2B‖‖v2‖. (22)

This immediately implies that x ∈ !∞ for any initial condition.
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