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SUMMARY

In this paper, we study control of a chain of integrators under actuator saturation and non-additive
disturbances. We shall show that boundedness of the states can be ensured if the disturbances are
matched and integral-bounded; misaligned and magnitude-bounded; or a combination of the two,
using either a static or a dynamic low-gain state feedback. This result is an extension of our earlier
work in [19]. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we study the response of a saturating feedback-controlled chain of integrators
to non-additive disturbances. Specifically, we are interested in the following system:

ẋ = Ax+Bσ(u) + Ed, x ∈ Rn, u ∈ R, d ∈ Rm, (1)

where x, A and B are given by

x =





x1

x2

x3
...
xn




, A =





0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0




, and B =





0
0
0
...
1




, (2)

and u is a control input. The function σ(·) denotes a standard saturation; that is, σ(u) =
sign(u)min{1, |u|}. If E = B, the disturbance is said to be matched with the control input.
Otherwise, the disturbance is said to be unmatched. We will also deal specifically with the
situation B′E = 0, in which case we say that the disturbance is misaligned with the input.

∗Correspondence to: xwang@eecs.wsu.edu

Contract/grant sponsor: The work of Xu Wang and Ali Saberi is partially supported by NAVY grants ONR
KKK777SB001 and ONR KKK760SB0012. The work of H̊avard Fjær Grip is supported by the Research Council
of Norway.

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using rncauth.cls [Version: 2010/03/27 v2.00]



2 X. WANG ET AL.

The goal is to identify a class of disturbances for which the boundedness of the state can be
ensured by a static or dynamic feedback controller.

Control of linear systems subject to actuator saturation has been an area of active research
over the past two decades, due to the recognition of saturation as one of the most ubiquitous
and inherent physical constraints in control systems; see, for instance, [1, 4, 5, 10, 16] and
references therein. For an integrator chain of order n = 2, it is well known that global stability
can be achieved by any linear feedback that stabilizes the corresponding unsaturated system.
For n > 2, however, it was shown in [3] that global stabilization requires nonlinear feedback.
Global stabilization can in this case be achieved by either a nonlinear control law using nested
saturations [17], or by a low-gain nonlinear controller with gain scheduling (see [9]).

1.1. Response to disturbances

Disturbances and uncertainties are inevitable in control engineering applications. Nevertheless,
the disturbance response of a chain of integrators with saturating feedback is still not
completely understood. Some previous work has been done for the double integrator (i.e.,
n = 2) with a linear static state feedback u = Fx [2, 15, 11, 20, 19]. In particular, Lp

stabilization was studied in [2, 15] and proven to be impossible for any p > 2. Furthermore, it
was shown in [11] that input-to-state stability (ISS) (see [13]) cannot be achieved with respect
to matched disturbances. In fact, for any linear feedback a disturbance with arbitrary small L∞
norm and suitable initial conditions can be found such that the states of the double integrator
diverge. This negative result was later extended in [20] to an even more restricted class of
disturbances. However, it was also shown that boundedness of the states can be preserved for
arbitrary initial condition if the disturbance has a uniformly bounded integral over all time
intervals. To be precise, for any M > 0, we define a parameterized set of disturbances as

Ω̄M =

{
d ∈ L∞(1) |

∣∣∣∣
∫ t2

t1

d(t) dt

∣∣∣∣ ≤ M, ∀ t2 ≥ t1 ≥ 0

}
,

where L∞(D) denotes the set of L∞ signals of L∞ norm less than D. For a given linear state
feedback, it was proven that for any M > 0 there exists a q∗ > 0 such that the states of the
double integrator remain bounded for arbitrary initial condition and any disturbance d(t) =
qs(t), where s(t) ∈ Ω̄M and q ≤ q∗. The magnitude restriction in Ω̄M and the attenuation
factor q were later removed in [19], where a broader class of integral-bounded disturbances was
defined for any M > 0 as follows

ΩM =

{
d ∈ L∞ |

∣∣∣∣
∫ t2

t1

d(t) dt

∣∣∣∣ ≤ M, ∀ t2 ≥ t1 ≥ 0

}
.

It was shown that for a priori known constants M > 0 and D > 0, the states of a double
integrator controlled by a properly designed saturating linear static state feedback remain
bounded for any initial condition if d ∈ ΩM for the matched case and d ∈ L∞(D) for the
misaligned case (see Theorem 2 and Lemma 3 in [19]).

1.2. Contributions

This work is a further extension of the results in [11, 20, 19] for n > 2. To the best of our
knowledge, the only available result in the literature that is related and may be applied to
the problems studied in this paper is in [14] where the authors show that for a general linear
system in the form of (1), Lp stabilization without finite gain can be achieved for p ∈ [1,∞).
However, for sustained disturbances that are in L∞ space, the problem remains unsolved.
In this paper, we shall show that a result similar to the double-integrator case holds for the
case n > 2 as well; namely, that by the proper choice of feedback law, boundedness of the
states can be ensured for both (i) matched, integral-bounded disturbances; (ii) misaligned,
magnitude-bounded disturbances; and (iii) a combination of the two.
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CONTROL OF A CHAIN OF INTEGRATORS 3

The paper is organized as follows: In Section 2, we recall some standard notations and present
the main results of the paper. In Section 3, we first recall the classical low-gain feedback design,
which we use to develop a nonlinear dynamic low-gain feedback. In Section 4, we prove our
main results based on the feedback laws developed in Section 3.

2. MAIN RESULT

We first recall some standard notations used in this paper. Let the vectors e1, . . . , en denote
the standard basis for Rn; that is, ei is a unit vector with the ith entry equal to 1. For a vector
x ∈ Rn, ‖x‖ denotes its Euclidean norm and x′ denotes its transpose. For a matrix X ∈ Rn×m,
‖X‖ denotes its induced 2-norm and X ′ denotes its transpose. For a positive-definite matrix
X ∈ Rn×n, C = X1/2 ∈ Rn×n is a non-singular matrix such that X = C ′C.

We define a class of signal

Ω∞ =

{
d ∈ L∞ | there exsits M > 0 such that

∣∣∣∣
∫ t2

t1

d(t) dt

∣∣∣∣ ≤ M, ∀ t2 ≥ t1 ≥ 0

}
.

We now present the main theorems of this paper. The first theorem shows that if the
disturbance is misaligned with the input (i.e., B′E = 0), then boundedness of the state can be
ensured for any bounded disturbance by using a nonlinear static state feedback.

Theorem 1
Consider the system (1) with B′E = 0. There exists a nonlinear state feedback such that the
closed-loop system satisfies the following properties:

1. In the absence of d, the origin is globally asymptotically stable.
2. If d ∈ L∞, then x ∈ L∞ for any x(0) ∈ Rn.

If the disturbance is matched with the input (i.e. E = B), then the boundedness of the state
trajectories can be preserved if the disturbance is integral-bounded.

Theorem 2
Consider the system (1) with B = E. There exists a nonlinear state feedback such that the
closed-loop system satisfies the following properties:

1. In the absence of d, the origin is globally asymptotically stable.
2. If d ∈ Ω∞, then x ∈ L∞ for any x(0) ∈ Rn.

We can combine the matched and the misaligned cases to obtain a more general case of
mismatched disturbances. Specifically, consider the system

ẋ = Ax+Bσ(u) + E1d1 + E2d2, (3)

where B′E1 = 0 and E2 is given by

E2 =

[
Ē2

α

]
, (4)

where α is either a non-zero real number or a row vector with only non-zero elements and Ē2

can be an arbitrary matrix with appropriate dimension. Based on the previous theorems, we
can prove the following result.

Theorem 3
Consider the system (3). There exists a nonlinear state feedback such that the closed-loop
system satisfies the following properties:

1. In the absence of d, the origin is globally asymptotically stable.
2. If d1 ∈ L∞ and d2 ∈ Ω∞, then x ∈ L∞ for any x(0) ∈ Rn.
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4 X. WANG ET AL.

3. CONTROLLER DESIGN

In this section we shall construct controllers that will be used to prove our main results. We
start with a brief review of classical low-gain state feedback design.

3.1. Classical low-gain state feedback design

Classical low-gain feedback provides a family of parameterized stabilizing static feedback gains
that vanish asymptotically as the parameter approaches zero. The philosophy behind classical
low-gain design is that, by choosing the parameter small enough, the feedback gain can be
made sufficiently small so that the saturation remains inactive in the whole state space or
within any pre-specified compact subset. Classical low-gain design can be carried out using
one of three approaches, namely, the method of direct eigen-structure assignment [7]; the H2

and H∞ ARE-based method [8, 18]; or the parametric Lyapunov-based method [21]. In this
paper, we choose the parametric Lyapunov-based method because of its convenient properties
when applied to a chain of integrators.

Consider the system (1) and let Pε be the unique positive-definite solution of the parametric
Riccati equation

A′Pε + PεA− PεBB′Pε + εPε = 0. (5)

The classical low-gain state feedback is given by

u = −B′Pεx. (6)

It is shown in [21] that (6) solves the semi-global stabilization problem for the system (1). In
the global setting, the feedback takes the same form as in (6), but the low-gain parameter ε,
instead of being fixed, is scheduled as a function of the state of the system. Such a scheduling
has to satisfy the following properties for some design parameter δ ≤ 1.

1. There exists an open neighborhood O of the origin such that for all x ∈ O, εa(x) = 1.
2. For any x ∈ Rn, |B′Pεa(x)x| ≤ δ.
3. εa(x) → 0 =⇒ ‖x‖ → ∞.
4. For each c > 0, the set {x ∈ Rn | x′Pεa(x)x ≤ c} is bounded.
5. There is a function g : [0,∞) → (0, 1] such that for all x *= 0, εa(x) = g(x′Pεa(x)x).

A particular choice of εa(x), given in [9], is

εa(x) = max
{
r ∈ (0, 1] | (x′Prx)× (B′PrB) ≤ δ2

}
, (7)

where Pr is the solution of (5) with ε = r. Based on this scheduling, the feedback law is given
by

u = −B′Pεa(x)x. (8)

3.2. Dynamic low-gain state feedback design

We now consider the chain of integrators and construct controllers that will be used to prove
all the theorems of Section 2. For the case of misaligned disturbances, which is treated in
Theorem 1, we can simply apply the classical scheduled low-gain state feedback (8) and (7)
with δ = 1. However, for the matched case, treated in Theorem 2, and the combined case,
treated in Theorem 3, we construct a dynamic controller as follows:

{
ẏ = σ(−B′Pεa(x̄)x̄),
u = −B′Pεa(x̄)x,

(9)

where Pεa(x̄) is the solution of (5) with

ε = εa(x̄) := max
{
r ∈ [0, 1] | (x̄′Prx̄)× (B′PrB) ≤ 1

4

}
(10)
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CONTROL OF A CHAIN OF INTEGRATORS 5

and

x̄ =





x1
...

xn−1

y




.

4. PROOFS OF MAIN RESULTS

We first prove Theorem 1 for the misaligned case B′E = 0.

Proof of Theorem 1
Consider the scheduled static low-gain state feedback (8) and (7) with δ = 1.

Define a Lyapunov function V (x) = x′Pεa(x)x. Differentiating V (x) along the trajectories
yields

V̇ = x′A′Pεa(x)x+ x′Pεa(x)Ax− 2x′Pεa(x)BB′Pεa(x)x+ 2x′Pεa(x)Ed+ x′ dPεa(x)

dt x

≤ −εV + 2x′Pεa(x)Ed+ x′ dPεa(x)

dt x.

In absence of d, we have that

V̇ ≤ −εV + x′ dPεa(x)

dt x

It was shown in [6] that (7) implies that V̇ and x′ dPεa(x)

dt x can not have the same sign. Therefore,
we find that

V̇ < 0

for all x ∈ Rn. This shows global asymptotic stability. We proceed to prove Property 2. Lemma
4 given in the appendix implies that if B′E = 0, then there exists an M > 0 depending on
system data such that

‖P 1/2
ε E‖ ≤ εM

for ε ∈ [0, 1].
For d ∈ L∞, we have

V̇ ≤ −εV + 2‖x′P 1/2
εa(x)

‖‖P 1/2
εa(x)

E‖‖d‖∞ + x′ dPεa(x)

dt x

≤ −εV + 2εM
√
V ‖d‖∞ + x′ dPεa(x)

dt x

= −ε
√
V (

√
V − 2M‖d‖∞) + x′ dPεa(x)

dt x.

For V ≥ 4M2‖d‖2∞, we have

V̇ ≤ x′ dPεa(x)

dt x.

The scheduling (7) guarantees that V̇ and x′ dPεa(x)

dt x cannot have the same sign. This implies

that V̇ < 0 for V ≥ 4M2‖d‖2∞. Hence, V is bounded for all t ≥ 0. Boundedness of x follows
from Property 4 of the scheduling.

Next, we proceed to the matched case E = B.

Proof of Theorem 2
Consider the nonlinear dynamic low-gain state feedback controller (9) and (10). Define
ȳ = xn − y. We have

˙̄y = σ(−B′Pεa(x̄)x)− σ(−B′Pεa(x̄)x̄) + d.

Note that x̄ = x−Bxn +By = x−Bȳ. Hence

˙̄y = σ(−B′Pεa(x̄)x̄−B′Pεa(x̄)Bȳ)− σ(−B′Pεa(x̄)x̄) + d.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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We therefore have
˙̄x = ẋ−B ˙̄y = Ax̄+Bσ(−B′Pεa(x̄)x̄) + en−1ȳ.

In the new coordinates (x̄, ȳ), the closed-loop system is given by

{
˙̄x = Ax̄+Bσ(−B′Pεa(x̄)x̄) + en−1ȳ,
˙̄y = σ(−B′Pεa(x̄)x̄−B′Pεa(x̄)Bȳ)− σ(−B′Pεa(x̄)x̄) + d.

(11)

We first show global asymptotic stability in the absence of disturbances. Close to the origin,
we have εa(x̄) = 1, and all the saturations are inactive. Equation (11) then reduces to a linear
system {

˙̄x = Ax̄−BB′P1x̄+ en−1ȳ,
˙̄y = −B′P1Bȳ,

where P1 is the solution of (5) with ε = 1. Local stability is therefore obvious. To prove global
attractivity, consider the dynamics of ȳ. Define a Lyapunov function V1 = ȳ2. We then have

V̇1 = 2ȳ
[
σ(−B′Pεa(x̄)x̄−B′Pεa(x̄)Bȳ)− σ(−B′Pεa(x̄)x̄)

]
.

The scheduling (10) guarantees that |B′Pεa(x̄)x̄| ≤ 1
2 . Therefore, owing to Lemma 6 in the

appendix, we find that

V̇1 ≤ −ȳσ(B′Pεa(x̄)Bȳ). (12)

This shows that ȳ is bounded. Since B′en−1 = 0, Theorem 1 implies that x̄ is bounded for
all t ≥ 0. Hence εa(x) is bounded away from zero, which, together with (12) implies ȳ → 0 as
t → 0.

Next consider the dynamics of x̄. Define another Lyapunov function V2(x̄) = x̄′Pεa(x̄)x̄ and
a set

K = {x̄ | V2(x̄) ≤ 1
2B′P1B

}.

It can be easily seen from (10) that for x̄ ∈ K, εa(x̄) = 1. Differentiating V2 along the trajectory,
we have

V̇2 ≤ −εa(x̄)V2 + 2x̄′Pεa(x)en−1ȳ + x̄′ dPεa(x̄)

dt x̄

≤ −εa(x̄)V2 + 2|ȳ|
√

V2‖P 1/2
εa(x̄)

en−1‖+ x̄′ dPεa(x̄)

dt x̄

≤ −εa(x̄)V2 + 2M2εa(x̄)|ȳ|
√

V2 + x̄′ dPεa(x̄)

dt x̄

= −εa(x̄)
√

V2(
√

V2 − 2M2|ȳ|) + x̄′ dPεa(x̄)

dt x̄.

Since ȳ → 0, for given ȳ(0) and x̄(0), there exists a T such that |y(t)| ≤ min{ 1
2 ,

1
4M2

√
B′P1B

}
for t ≥ T . Therefore, for t ≥ T and x̄ /∈ K,

√
V2 − 2M2|ȳ| ≥

√
V2

2 , and thus

V̇2 ≤ − εa(x̄)
2 V2 + x̄′ dPεa(x̄)

dt x̄.

Since V̇2 cannot have the same sign as x̄′ dPεa(x̄)

dt x̄, we conclude that V̇2 < 0 for x̄ /∈ K. This
implies that x̄ will enter K within finite time after t = T and remain in K thereafter. For t > T
and x̄ ∈ K, we have εa(x̄) = 1 and |y| ≤ 1

2 . All saturations are inactive and the system becomes
linear. It therefore follows that x̄ → 0, which shows that the origin is globally attractive.

When disturbances are present, Lemma 5 shows that |ȳ| ∈ L∞ given d ∈ Ω∞. Boundedness
of x̄ therefore follows from Theorem 1.

Finally, we prove Theorem 3 for the combined case by using Theorems 1 and 2.
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Proof of Theorem 3
This proof is basically a combination of those of Theorems 1 and 2. Consider the dynamic
low-gain state feedback (9) and the scheduling (10). Define ȳ = xn − y. We have

˙̄y = σ(−B′Pεa(x̄)x)− σ(−B′Pεa(x̄)x̄) + αd2.

Note that x̄ = x−Bxn +By = x−Bȳ. Hence

˙̄y = σ(−B′Pεa(x̄)x)− σ(−B′Pεa(x̄)x+B′Pεa(x̄)Bȳ) + αd2.

Lemma 5 shows that |ȳ| ∈ L∞ given d ∈ Ω∞ for any ȳ(0). We have

˙̄x = ẋ−B ˙̄y = Ax̄+Bσ(−B′Pεa(x̄)x̄) +
[
E1 Ẽ2 en−1

]



d1
d2
ȳ



 ,

where

Ẽ2 =

[
Ē2

0

]
.

Note that

B′ [E1 Ẽ2 en−1

]
= 0.

The rest of the proof now proceeds in the same way as the proof of Theorem 1.

5. EXAMPLE

We conclude the paper with an example. Consider the following system




ẋ1

ẋ2

ẋ3



 =




0 1 0
0 0 1
0 0 0








x1

x2

x3



+




0
0
1



σ(u) +




0
0
1



 d1 +




0
1
0



 d2

where d1 = sin t and d2 = 2. The controller u is given by (9) and (10). The simulation data is
shown in the following figure:

0 50 100 150 200
−200

0

200

400

600

800

1000

1200

1400

time

st
at
es

x1
x2
x3

Figure 1. Triple integrator with actuator saturation and disturbances
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APPENDIX

The following lemma regarding the properties of Pε is adapted from [21].

Lemma 4
The parametric Riccati equation (5) associated with data A,B given by (2) has a unique
positive-definite solution Pε with the following properties:

1. Pε is a polynomial matrix in ε.
2. Pε → 0 as ε → 0.
3. dPε

dε > 0 for all ε ∈ [1, 0).
4. There exists an M > 0 such that for any ε ∈ [0, 1],

e′iPεei ≤ Mε2,

where i < n and ei is a unit vector whose ith entry is 1.

Proof
The first three properties were proven in [21]. Regarding Property 4, it was shown in [21] (see
Lemma 1) that the unique positive-definite solution Pε = [pi,j ]n×n to the parametric Riccati
equation associated with A,B given by (2) can be computed using the following recursion: for
i = n− 1, . . . , 0

pi+1,n = pn,i+1 = (−1)i+1

[
n∑

i+1

(−1)kpn,k+1C
k−i
k εk−i + (−1)nCn−i

n εn−i

]

with Ck−i
k = k!

i!(k−i)! and pn,n+1 = 0. For k = j, j − 1, . . . , 1 and j = n− 1, . . . , 1

pk,j = pk,npn,j+1 − pj+1,k−1 − εpk,j+1

with pi,0 = p0,i = 0.
This shows that Pε is a polynomial matrix in ε and for i < n and j < n, pi,j is at least of

order ε2. Therefore, for i < n, e′iPεei is at least of order ε2.

Lemma 5
Consider the system

ẏ(t) = σ(v(t))− σ(v(t) + k(t)y) + d, (13)

where d ∈ Ω∞ and k(t) > 0 and v(t) are continuous. We have then y ∈ L∞ for all y(0).

Proof
Define

˙̄y = d, ȳ(0) = y(0).

Since d ∈ Ω∞, there exists aM > 0 such that |ȳ(t)| ≤ |y(0)|+M for all t > 0. Define ỹ = y − ȳ.
We have

˙̃y = σ(v)− σ(v + k(ỹ + ȳ)), ỹ = 0.

Let Ṽ = ỹ2. Taking the derivative of Ṽ with respect to t, we get

˙̃V = ỹ [σ(v)− σ(v + k(ỹ + ȳ))] .

If Ṽ ≥ (|y(0)|+M)2, then |ỹ| ≥ M + |y(0)| ≥ |ȳ|. But this implies that k(ỹ + ȳ) has the same
sign as ỹ. Thus

˙̃V = ỹ [σ(v)− σ(v + k(ỹ + ȳ))] ≤ 0.

Since Ṽ (0) = 0, we have Ṽ ≤ (|y(0)|+M)2 and |ỹ| ≤ |y(0)|+M for all t > 0. Therefore,
|y| ≤ |ȳ|+ |ỹ| ≤ 2M + 2y(0).
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The following lemma was shown in [12]:

Lemma 6
For any w ∈ Rm satisfying ‖w‖ ≤ 1

2 we have

2u′[σ(w)− σ(w − u)] ≥ u′σ(u)
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