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Abstract

In this paper we study the response to external disturbances of a double integrator with saturating feedback. For a class of disturbances
that have bounded integrals over all intervals, we show that a linear static feedback law can always be designed to ensure boundedness
of the states. Moreover, boundedness can be preserved if the disturbance is biased by a small DC signal. In the special case that the
disturbance is made up of a finite number of sinusoids and a small bias, any linear static feedback ensures boundedness of the states.
These results are an extension of previous results by Wen, Roy, and Saberi (2008).
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1 Introduction

The double integrator system is commonly seen in control
applications including low-friction, free rigid-body motion,
such as single-axis spacecraft rotation and rotary crane mo-
tion (see Rao and Bernstein, 2001, and references therein).
Of particular interest is the control of double integrators
subject to input saturation. A classical result is that a dou-
ble integrator with a saturating linear static feedback pro-
vides global asymptotic stability of the origin. This result
has been extended to mixed-type systems by Tyan and Bern-
stein (1999) and Yang, Stoorvogel, and Saberi (2010). Many
other control methods have also been proposed. A brief sum-
mary and comparison of various methods is given by Rao
and Bernstein (2001).

Compared with the relatively mature study of internal sta-
bilization, the dynamic response of a double integrator with
saturating feedback to external disturbances is still not fully
understood. In this paper, we study the disturbance response
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of a double integrator controlled by a saturating linear static
state feedback, as given below:

ẋ1 = x2
ẋ2 = σ(−k1x1 − k2x2)+d. (1)

where σ represents the standard saturation function σ(s) =
sign(s)min{1, |s|}. The goal is to identify a class of distur-
bances for which the states of the above controlled system
remain bounded. Chitour (2001) and Stoorvogel, Shi, and
Saberi (2004) have previously studied this problem in the
context of Lp stability. They showed that for any k1 > 0 and
k2 > 0, (1) is Lp stable for p ∈ [1,2], and, moreover, the
trajectories remain bounded for any d ∈ Lp with p ∈ [1,2].
However, for any p > 2 there exists d ∈ Lp that cause the
states to grow unbounded from certain initial conditions. Shi
and Saberi (2002) studied the notion of input-to-state sta-
bility (ISS) (see Sontag and Wang, 1995) for system (1),
and proved that no choice of k1,k2 can achieve ISS. Specifi-
cally, there exist bounded disturbances with arbitrarily small
L∞ norm that cause the states to grow unbounded from cer-
tain initial conditions. Even more dramatically, unbounded
growth can be achieved by vanishing disturbances with ar-
bitrarily small L∞ norm.

Wen et al. (2008) extended the negative result from Shi and
Saberi (2002) to classes of small L∞ signals with further
restrictions. However, Wen et al. (2008) also showed that
boundedness of the states of (1) is preserved for a particular
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class of small disturbances that have bounded integrals over
all intervals. To be precise, let a family of parameterized sets
be defined by

Ω̃M =

{
d ∈ L∞(1) | ∀ t1, t2 ≥ 0,

∣∣∣∣
∫ t2

t1
d(t)dt

∣∣∣∣≤ M
}
,

where L∞(1) denotes the set of L∞ signals of magnitude
less than 1. For a given linear state feedback, it was proven
that for any M > 0 there exists a q∗ > 0 such that the states of
(1) remain bounded for any disturbance d(t) = qs(t), where
s(t) ∈ Ω̃M and q ≤ q∗. In other words, signals with bounded
integrals can be tolerated if they are scaled down by a suf-
ficient amount. It was furthermore shown that a small bias
in d(t) can be tolerated while still achieving boundedness
of the states. The class of disturbances considered by Wen
et al. (2008) covers a broad class of signals, such as peri-
odic, quasi-periodic, and L1 signals.

This paper is an extension of the work in Wen et al. (2008).
Our focus is also on disturbances with bounded integrals;
however, we strengthen the results from Wen et al. (2008) by
dispensing with the magnitude restriction on d and removing
the attenuation factor q. Specifically, we consider the family
of parameterized sets

ΩM =

{
d ∈ L∞ | ∀ t1, t2 ≥ 0,

∣∣∣∣
∫ t2

t1
d(t)dt

∣∣∣∣≤ M
}
. (2)

If a signal d belongs to ΩM for some M > 0, we refer to
it as an integral-bounded signal, and we refer to M as an
integral bound on d.

We first prove a new negative result, namely, that for a
given linear static feedback law, there always exist integral-
bounded signals that cause the trajectories of the system to
grow unbounded from some initial conditions. Our next re-
sult, however, shows that if an integral bound M is known
a priori, then k1 and k2 can always be designed to ensure
boundedness of the states, regardless of initial conditions.
Moreover, boundedness can be ensured also if the integral-
bounded disturbance is biased by a DC signal of magnitude
less than 1. Finally, we prove an even stronger result for dis-
turbances consisting of a finite number of sinusoids plus a
DC offset of magnitude less than 1. In this case, any inter-
nally stabilizing linear static feedback law ensures bound-
edness of the states.

2 Main result

The first theorem shows that not every internally stabilizing
static linear law can maintain boundedness of the trajectories
in the face of integral-bounded disturbances.

Theorem 1 Consider the system (1) with k1 > 0 and k2 > 0.
There exists an integral-bounded signal d and an initial
condition such that x1 and x2 grow unbounded.

Proof. Define y1 = k1x1 +k2x2, y2 = k2x2 and t̃ = k1
k2

t. Then
the closed-loop system in the new coordinates and with t̃ as
the time variable becomes

dy1

dt̃
(t̃) = y2(t̃)−λ [σ(y1(t̃))−d(t̃)] ,

dy2

dt̃
(t̃) =−λ [σ(y1(t̃))−d(t̃)] ,

(3)

where λ = k2
2/k1 > 0. We shall construct an integral-

bounded disturbance d that causes the states to grow
unbounded from a particular initial condition.

Step 1: Suppose the trajectory of (3) starts from
A = (1,Nλ ), for some large integer N, at time t̃A = 0.
We will construct a d to drive the states from point A to
B = (1,−(N +2)λ ) at time t̃B. Choose

d(t̃) = 2π sin(π t̃).

Let

d1(t̃) =
∫ t̃

0
d(τ)dτ = 2(1− cos(π t̃)),

d2(t̃) =
∫ t̃

0
d1(τ)dτ = 2t̃ − 2

π sin(π t̃).

Since dy1
dt̃ (0) = y2(0)−λ , we see that for large N, the tra-

jectory will initially move to the right. If y1(t̃)> 1, we have

y2(t̃) = y2(0)−λ t̃ +λd1(t̃) = Nλ −λ t̃ +2λ (1− cos(π t̃))

and

y1(t̃) = y1(0)+
∫ t̃

0
y2(τ)dτ −λ t̃ +λd1(t̃)

= y1(0)+Nλ t̃ − λ
2 t̃2 +λd2(t̃)−λ t̃ +λd1(t̃)

= y1(0)+Nλ t̃ − λ
2 t̃2 +2λ t̃ − 2λ

π sin(π t̃)−λ t̃
+2λ (1− cos(π t̃))

=−λ
2 t̃2 +(Nλ +λ )t̃ +2λ (1− cos(π t̃))

− 2λ
π sin(π t̃)+1.

Given a sufficiently large N, y1(t̃) only has one intersection
with y1 = 1 for t̃ > 0. This is shown in the Appendix. For
t̃ = 2N +2, we have

y1 =−λ (2N+2)2

2 +(Nλ +λ )× (2N +2)+1 = 1

and

y2 = Nλ −λ (2N +2)+λ
∫ 2N+2

0
d(t̃)dt̃ =−(N +2)λ .
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This shows that the trajectory will cross y1 = 1 at B =
(1,−(N +2)λ ) at time t̃B = 2N +2. We have

∫ t̃B

0
d(t̃)dt̃ = 0,

∣∣∣∣
∫ t̃2

t̃1
d(t̃)dt̃

∣∣∣∣≤ 4 with t̃A ≤ t̃1 ≤ t̃2 ≤ t̃B.

Step 2: From t̃B, set d(t̃) = σ(y1(t̃)). Then

dy1

dt̃
(t̃) = y2,

dy2

dt̃
(t̃) = 0.

The trajectory will move directly toward the left to C =
(−1,−(N + 2)λ ) at time t̃c = t̃B + 2

(N+2)λ . Clearly, for N
sufficiently large,

∫ t̃C

t̃B
d(t̃)dt̃ = 0,

∣∣∣∣
∫ t̃2

t̃1
d(t̃)dt̃

∣∣∣∣≤ 1 with t̃B ≤ t̃1 ≤ t̃2 ≤ t̃C.

Step 3: From t̃C, choose

d(t̃) =−2π sin(π t̃).

Following the same argument as in Step 1 with N replaced
by Ñ = N +2, we find that the trajectory will re-cross y1 =
−1 at D = (−1,(Ñ + 2)λ ) = (−1,(N + 4)λ ) at time t̃D =
t̃C +2Ñ +2 = t̃C +2N +6. Similarly

∫ t̃D

t̃C
d(t̃)dt̃ = 0,

∣∣∣∣
∫ t̃2

t̃1
d(t̃)dt̃

∣∣∣∣≤ 4 with t̃C ≤ t̃1 ≤ t̃2 ≤ t̃D.

Step 4: From t̃D, choose

d(t̃) = σ(y1(t̃)).

The trajectory will move directly to the right and cross y1 = 1
at E = (1,(N +4)λ ) at time t̃E = t̃D + 2

N+4 . We have

∫ t̃E

t̃D
d(t̃)dt̃ = 0,

∣∣∣∣
∫ t̃2

t̃1
d(t̃)dt̃

∣∣∣∣≤ 1 with t̃D ≤ t̃1 ≤ t̃2 ≤ t̃E .

The system trajectory resulting from Steps 1 through 4 is vi-
sualized in Fig. 1. By repeating these steps, the state grows
unbounded, and we can check that the constructed distur-
bance signal satisfies

∣∣∣∣
∫ t̃2

t̃1
d(t̃)dt̃

∣∣∣∣≤ 4+1+1+4 = 10 = M̃

Fig. 1. State trajectories of double integrator with λ = 1

for any 0 = t̃A ≤ t̃1 ≤ t̃2. In the original time variable t, we
calculate the integral bound as

∣∣∣∣
∫ t2

t1
d(t̃)dt

∣∣∣∣=

∣∣∣∣∣
k2

k1

∫ k1
k2

t2

k1
k2

t1
d(t̃)dt̃

∣∣∣∣∣≤
k2

k1
M̃.

Hence, we have shown that there exists an integral-bounded
signal with integral bound M = k2

k1
M̃ = 10 k2

k1
that causes the

states to grow unbounded for a particular initial condition.

Next, we show that if an integral bound M is given a priori,
then we can always design a static stabilizing linear feedback
to ensure boundedness of the trajectories.

Theorem 2 Let M be given. If k1 and k2 satisfy k2
k1

> 16M,
then for any d ∈ ΩM and any initial condition, we have
x1,x2 ∈ L∞.

Proof. The proof of Theorem 2 is a consequence of Lemmas
3 and 4 which are stated and proved below.

Lemma 3 Consider the system

ẋ1 = x2 + y,
ẋ2 = σ(−k1x1 − k2x2),

(4)

where |y(t)|< 2M for all t ≥ 0 and k2
k1

> 16M. In that case,
we have x1,x2 ∈ L∞ for any initial condition.
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Proof of Lemma 3. Define a positive definite function V as

V =
∫ k1x1

0
σ(s)ds+

∫ k1x1+k2x2

0
σ(s)ds+ k1x2

2.

This function was first introduced in Chitour (2001). Differ-
entiating V along the trajectories yields

V̇ = (k1x2 + k1y)σ(k1x1)−2k1x2σ(k1x1 + k2x2)
+ [k1x2 + k1y− k2σ(k1x1 + k2x2)]σ(k1x1 + k2x2)

= k1x2 [σ(k1x1)−σ(k1x1 + k2x2)]− k2σ2(k1x1 + k2x2)
+ k1y[σ(k1x1 + k2x2)+σ(k1x1)]

≤ k1x2 [σ(k1x1)−σ(k1x1 + k2x2)]− k2σ2(k1x1 + k2x2)
+2k1|y|.

If |k1x1 + k2x2|> 1
2 , then

−k2σ2(k1x1 + k2x2)+2k1|y|≤−16Mk1 × 1
4 +4k1M ≤ 0.

Hence

V̇ ≤ k1x2 [σ(k1x1)−σ(k1x1 + k2x2)]≤ 0.

If |k1x1+k2x2|≤ 1
2 , then by using Lemma B.2 in Shi, Saberi,

and Stoorvogel (2003), we get

k1x2 [σ(k1x1)−σ(k1x1 + k2x2)]≤− k1
2 x2σ(k2x2).

If we also have that |x2|≥ max{8M, 1
k2
}, then

k1x2 [σ(k1x1)−σ(k1x1 + k2x2)]

≤− k1
2 x2σ(k2x2)≤−4k1M,

which yields V̇ ≤ 0. We therefore conclude that V̇ ≤ 0 out-
side the region defined by |k1x1 + k2x2| ≤ 1

2 and |x2| ≤
max{8M, 1

k2
}. Hence, V remains bounded, which implies

that x1,x2 ∈ L∞.

Now consider the double integrator system (1). We construct
a fictitious state

ẏ = σ(−k1x1 − k2x2)−σ(−k1x1 − k2x2 + k2y)+d,
y(0) = 0.

By defining z = x2 − y, we obtain the augmented system

ẋ1 =z+ y,
ż =σ(−k1x1 − k2z),
ẏ =σ(−k1x1 − k2x2)−σ(−k1x1 − k2x2 + k2y)+d,

with y(0) = 0, z(0) = x2(0). From Lemma 3, we know that
given k2

k1
> 16M, x1 and z remain bounded provided |y|≤ 2M.

The latter statement is proven by the following lemma.

Lemma 4 Consider the system

ẏ = σ(v)−σ(v+ k2y)+d, y(0) = 0, (5)

where k2 > 0, d ∈ ΩM and v is continuous. We have |y(t)|≤
2M for all t ≥ 0.

Proof of Lemma 4. Define

˙̄y = d, ȳ(0) = 0.

Since d ∈ ΩM , the solution satisfies |ȳ(t)|≤ M for all t ≥ 0.
Define ỹ = y− ȳ. We have

˙̃y = σ(v)−σ(v+ k2(ỹ+ ȳ)), ỹ(0) = 0.

Define a positive definite function Ṽ = ỹ2. Taking the deriva-
tive of Ṽ with respect to t, we get

˙̃V = ỹ [σ(v)−σ(v+ k2(ỹ+ ȳ))] .

If Ṽ ≥M2, then |ỹ(t)|≥M ≥ |ȳ(t)|, which implies that k2(ỹ+
ȳ) has the same sign as ỹ. It then follows that ˙̃V ≤ 0. Since
Ṽ (0) = 0, we can conclude that Ṽ ≤ M2 and thus |ỹ(t)|≤ M
for all t ≥ 0, and it follows that |y(t)|≤ |ȳ(t)|+ |ỹ(t)|≤ 2M
for all t ≥ 0.

From Lemmas 3 and 4, we know that x1 and z are bounded.
Since y is bounded as shown in Lemma 4, we conclude that
x1,x2 ∈ L∞.

An immediate consequence of Theorems 1 and 2 is that if k1
and k2 are arbitrary positive real numbers, then boundedness
is guaranteed if the integral bound M is sufficiently small.
This is formally stated in the following corollary.

Corollary 5 For any given k1 > 0 and k2 > 0, we have
x1,x2 ∈ L∞ if d ∈ ΩM with M ≤ k2

16k1
.

In the next theorem we consider integral-bounded distur-
bances that are biased by a DC signal. We show that, if the
magnitude of the bias is less than 1 by a known margin, and
an integral bound M is known a priori, then k1,k2 can be
chosen to ensure boundedness of x1,x2.

Theorem 6 Let M > 0 and δ ∈ (0,1] be given, and suppose
that d = d1 + d2 where d1 is a constant with |d1| ≤ 1− δ
and d2 ∈ ΩM. If k1,k2 satisfy k2 ≥ max{ 1−δ

M , 48k1M
δ 2 }, then

x1,x2 ∈ L∞.

Proof. The closed-loop system is given by

ẋ1 = x2,
ẋ2 = σ(−k1x1 − k2x2)+d1 +d2.
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We construct a fictitious state

ẏ = σ(−k1x1 − k2x2)−σ(−k1x1 − k2x2 + k2y)+d2,
y(0) = 0.

Lemma 3 shows that |y(t)|≤ 2M for all t ≥ 0. Similar to the
proof of Theorem 2, we define z = x2 − y and convert the
closed-loop system to the form

ẋ1 = z+ y,
ż = σ(−k1x1 − k2z)+d1,

with z(0) = x2(0) and y ∈ L∞(2M).

We also introduce another fictitious state

ẇ = σ(−k1x1 − k2z)−σ(−k1x1 − k2z+ k2w−d1)

with w(0) = 0. Following the same argument as in the proof
of Lemma 4, we can show that |w(t)| ≤ 1−δ

k2
≤ M for all

t ≥ 0. Define ξ1 = x1, ξ2 = z−w = x2 −y−w. Then (1) can
be transformed into

ξ̇1 = ξ2 +w+ y,
ξ̇2 = σ(−k1ξ1 − k2ξ2 −d1)+d1,

where ξ1(0) = x1(0), ξ2(0) = x2(0) and |w(t)+y(t)|≤ M+
2M = 3M for all t ≥ 0. Since w(t) and y(t) are bounded, we
know that x1 and x2 are bounded if ξ1 and ξ2 are bounded.

Define σ̃d1(s) = σ(s−d1)+d1 with |d1|≤ 1−δ . Then

σ̃d1(s) =






1+d1, s ≥ 1+d1,
s, −1+d1 ≤ s < 1+d1,
−1+d1, s ≤−1+d1.

(6)

This function can be viewed as a generalized saturation func-
tion, which is visualized in Fig. 2. It is easy to verify that

σ̃d1
(s)

s

1 + d1

−1 + d1

Fig. 2. Generalized saturation function σ̃d1(s)

σ̃d1 satisfies the following properties:

(1) |σ̃d1(s)|≤ 2
(2) sσ̃d1(s)≥ 0 and sσ̃d1(s) = 0 iff s = 0

(3) s
[
σ̃d1(v+ s)− σ̃d1(v)

]
≥ 0

Moreover, it is shown in Lemma 9 in the Appendix that if
|v|≤ δ

2 , then

s
[
σ̃d1(v+ s)− σ̃d1(v)

]
≥ sσδ/2(s),

where σδ/2(s) is the standard saturation function with
saturation level δ/2, which is defined by σδ/2(s) =
sign(s)min{δ/2, |s|}.

With this generalized saturation function, the closed-loop
system can be rewritten as

ξ̇1 = ξ2 +w+ y,
ξ̇2 = σ̃d1(−k1ξ1 − k2ξ2).

Define a positive definite function

V =
∫ k1ξ1

0
σ̃d1(s)ds+

∫ k1ξ1+k2ξ2

0
σ̃d1(s)ds+ k1ξ 2

2 .

Differentiating V along the trajectory yields

V̇ = (k1ξ2 + k1w+ k1y)σ̃d1(k1ξ1)−2k1ξ2σ̃d1(k1ξ1 + k2ξ2)+[
k1ξ2 + k1w+ k1y− k2σ̃d1(k1ξ1 + k2ξ2)

]
σ̃d1(k1ξ1 + k2ξ2)

= k1ξ2
[
σ̃d1(k1ξ1)− σ̃d1(k1ξ1 + k2ξ2)

]
− k2σ̃2

d1
(k1ξ1 + k2ξ2)

+ k1(w+ y)
[
σ̃d1(k1ξ1)+ σ̃d1(k1ξ1 + k2ξ2)

]

≤ k1ξ2
[
σ̃d1(k1ξ1)− σ̃d1(k1ξ1 + k2ξ2)

]
− k2σ̃2

d1
(k1ξ1 + k2ξ2)

+12k1M.

If |k1ξ1 + k2ξ2|≥ δ
2 , then

−k2σ̃2
d1
(k1ξ1 + k2ξ2)+12k1M ≤− 48k1M

δ 2
δ 2

4 +12k1M = 0,

and hence V̇ ≤ 0. If |k1ξ1 + k2ξ2| ≤ δ
2 and |ξ2| ≥

max{ δ
2k2

, 24M
δ }, then by using Lemma 9 we have

k1ξ2
[
σ̃d1(k1ξ1)− σ̃d1(k1ξ1 + k2ξ2)

]
≤

− k1ξ2σδ/2(k2ξ2)≤−k1
24M

δ
δ
2 ≤−12k1M,

and hence V̇ ≤ 0. We therefore find that V̇ ≤ 0 outside the re-
gion defined by |k1ξ1+k2ξ2|≤ 1

2 and |ξ2|≤max{ δ
2k2

, 24M
δ }.

It follows that V remains bounded, which implies that ξ1
and ξ2 remain bounded.

Our final result concerns a special case where the disturbance
consists of a finite number of sinusoids together with a DC
bias of magnitude less than 1. In this case, any internally
stabilizing linear static feedback controller guarantees that
the states of the system (1) remain bounded.
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Theorem 7 Consider the system (1) with k1 > 0 and k2 > 0.
Suppose that d = d1 +d2, where d1 is a constant satisfying
|d1|< 1 and d2 is generated by an exogenous system

ẇ = Aw, w(0) = w0,
d =Cw,

where A is non-singular and satisfies A+A′ = 0. We have
x1,x2 ∈ L∞ for any initial condition.

Proof. We can rewrite the closed-loop system in a compact
form:




ẇ

ẋ1

ẋ2



=





A 0 0

0 0 1

C 0 0









w

x1

x2



+





0

0

1



 [σ(−k1x1 − k2x2)+d1] .

Consider the state transformation




w

x̄1

x̄2



=





I 0 0

−CA−2 1 0

−CA−1 0 1









w

x1

x2



 .

This transformation results in the system





ẇ
˙̄x1

˙̄x2



=





A 0 0

0 0 1

0 0 0









w

x̄1

x̄2



+





0

0

1





×
[
σ
(
−(k1CA−2 + k2CA−1)w− k1x̄1 − k2x̄2

)
+d1

]
.

Define v =−(k1CA−2 + k2CA−1)w+d1. Then

σ(−(k1CA−2 + k2CA−1)w− k1x̄1 − k2x̄2)+d1
= σ(v− k1x̄1 − k2x̄2 −d1)+d1
= σ̃d1(−k1x̄1 − k2x̄2 + v),

where σ̃d1 is the generalized saturation function defined in
the proof of Theorem 6. The dynamics of x̄1 and x̄2 can now
be written as

˙̄x1 = x̄2,
˙̄x2 = σ̃d1(−k1x̄1 − k2x̄2 + v).

Clearly v ∈ L∞. It was shown by Chitour (2001) that the
(x̄1, x̄2) dynamics is L∞ stable from v to x̄1 and x̄2 for any
k1 > 0 and k2 > 0.

Remark 8 For ease of presentation, we use a standard sat-
uration function with saturation level 1, but all the results
obtained in this paper can easily be extended to the case
where a saturation function with arbitrary saturation level
∆ is used.

Appendix

Intersection problem in the proof of Theorem 1

We shall show that

y1(t̃)=−λ
2 t̃2+(Nλ +λ )t̃+2λ (1−cos(π t̃))− 2λ

π sin(π t̃)+1

has only one intersection with y1 = 1 for t̃ > 0 and suffi-
ciently large N. Let

t̃1 =min{t̃ > 0 : y1(t̃)= 1}, t̃0 =min
{

t̃ > 0 :
dy1

dt̃
(t̃) = 0

}
.

Given y1(0) = 1 and dy1
dt̃ > 0, we must have t̃1 > t̃0. Note that

dy1

dt̃
(t̃) =−λ t̃ +Nλ +λ +2λπ sin(π t̃)−2λ cos(π t̃).

Hence t̃0 ≥ N + 1 − 2π − 2 > N
2 for sufficiently large N.

However,

y1(t̃)≥−λ
2 t̃2 +(Nλ +λ )t̃ −4λ −2λ +1

Hence we have

−λ
2 t̃2

1 +(Nλ +λ )t̃1 −4λ −2λ ≤ 0

or equivalently

1
2 t̃2

1 − (N +1)t̃1 +6 ≥ 0

This implies
t̃1 < r1, or t̃1 > r2

where r1 and r2 are two roots of 1
2 t̃2 − (N +1)t̃ +6.

r1,2 = N +1∓
√
(N +1)2 −12

Note that

r1 = N +1−
√
(N +1)2 −12

=
12

N +1+
√

(N +1)2 −12
≤ N

2

for sufficiently large N. Since we already know t̃1 > t̃0 > N
2 ,

we must have t̃1 > r2. But then

r2 = N +1+
√
(N +1)2 −12 ≥ N +1+

√
(N +1)2/4

= 3
2 (N +1)
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for large N. We find that t̃1 > 3
2 (N+1). But for t̃ > 3

2 (N+1),
we have

dy1

dt̃
(t̃)<− 3

2 λ (N +1)+Nλ +λ +2λπ sin(π t̃)−2λ cos(π t̃)

<− 1
2 λ (N +1)+2λπ sin(π t̃)−2λ cos(π t̃)< 0

for sufficiently large N. This shows that y1(t̃) < 1 for all
t̃ > t̃1, and hence, the only intersection with y1 = 1 is at t̃ = t̃1.

Property of σ̃d1(s)

Lemma 9 The generalized saturation function σ̃d1 defined
in (6) with |d1|≤ 1−δ satisfies

s
[
σ̃d1(s+ v)− σ̃d1(v)

]
≥ sσδ/2(s)

for |v| ≤ δ
2 where σδ/2(s) denotes the standard saturation

function with saturation level δ/2 defined as σδ/2(s) =
sign(s)min{δ/2, |s|}.

Proof. If |s|< δ
2 , we have |v+s|≤ δ ≤ 1− |d1|. By definition

(6), we have σ̃d1(s+ v) = s+ v. Hence

σ̃d1(s+ v)− σ̃d1(v) = s+ v− v = s.

If |s|≥ δ
2 , it can be seen from Fig. 2 that

|σ̃d1(s+ v)− σ̃d1(v)|≥ |sign(s) δ
2 + v− v|= δ

2 .

Hence s
[
σ̃d1(s+ v)− σ̃d1(v)

]
≥ sσδ/2(s).
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