
Global Path Planning on Board the Mars Exploration Rovers

Joseph Carsten and Arturo Rankin Dave Ferguson and Anthony Stentz
Jet Propulsion Laboratory Robotics Institute

California Institute of Technology Carnegie Mellon University
4800 Oak Grove Drive 5000 Forbes Avenue

Pasadena, CA 91109, USA Pittsburgh, PA 15213, USA
{joseph.carsten,arturo.rankin}@jpl.nasa.gov {dif, tony}@cmu.edu

Abstract—In January 2004, NASA’s twin Mars Exploration
Rovers (MERs),Spirit andOpportunity, began searching the
surface of Mars for evidence of past water activity. In order
to localize and approach scientifically interesting targets, the
rovers employ an on-board navigation system. Given the la-
tency in sending commands from Earth to the Martian rovers
(and in receiving return data), a high level of navigational
autonomy is desirable. Autonomous navigation with haz-
ard avoidance (AutoNav) is currently performed using a lo-
cal path planner called GESTALT (Grid-based Estimation of
Surface Traversability Applied to Local Terrain). GESTALT
uses stereo cameras to evaluate terrain safety and avoid obsta-
cles. GESTALT works well to guide the rovers around nar-
row and isolated hazards, however, it is susceptible to failure
when clusters of closely spaced, non-traversable rocks form
extended obstacles. In May 2005, a new technology task was
initiated at the Jet Propulsion Laboratory to address this limi-
tation. A version of the Carnegie Mellon University Field D*
global path planner has been integrated into MER flight soft-
ware, enabling simultaneous local and global planning during
AutoNav. A revised version of AutoNav was uploaded to the
rovers during the summer of 2006. This paper describes how
global planning was integrated into the MER flight software,
and presents results of testing the improved AutoNav system
using the MER Surface System TestBed rover.

Keywords—MER, robotics, Mars rover, flight software, au-
tonomous navigation, path planning, Field D*

TABLE OF CONTENTS

1 INTRODUCTION 1

2 AUTONOMOUSNAVIGATION SYSTEM 2

3 GLOBAL PATH PLANNING 3

4 INTEGRATION 3

5 RESOURCEL IMITATIONS 5

6 RESULTS 8

7 CONCLUSIONS 9

8 ACKNOWLEDGEMENTS 9

1-4244-0525-4/07/$20.00c©2007 IEEE

IEEEAC paper #1125

Figure 1. Artist’s rendition of a Mars Exploration Rover.
Courtesy NASA/JPL-Caltech.

1. INTRODUCTION

In January 2004, two robotic vehicles landed on Mars as part
of NASA’s Mars Exploration Rover (MER) mission (see Fig-
ure 1). Since that time, these two rovers,Spirit [1] and Op-
portunity, [2], have been searching the Martian surface for ev-
idence of past water activity. Directing rover activities poses
an interesting challenge for scientists and engineers. It can
take as long as 26 minutes for a signal from Earth to reach
Mars (and vice-versa). This makes teleoperation of the rovers
infeasible. In addition, line-of-sight and power constraints
further complicate the situation. In order to overcome these
factors, each rover is sent a sequence of commands at the be-
ginning of each Martian day (sol). This command sequence
lays out all activities to be performed by the rover during the
sol. The rover then executes the command sequence without
any human intervention. In general, before the rover shuts
down for the night, it will send data back to Earth. This data
is then used to plan activities for the following sol. Due to
the fact that commands are received only once per sol, rover
autonomy is critical. The more autonomous the rover is, the
more activities it can accomplish each sol. Here we will focus
our attention on the navigation system, but this observation
applies to all rover behaviors.

The purpose of the navigation system is to move the rover
around the Martian surface in order to locate and approach
scientifically interesting targets. To begin the process, engi-

1

neers on Earth identify a goal location that they would like
the rover to reach. Typically, images returned by the rover
are used to select this goal. There are two main methods that
can be used to reach this goal. The first and simplest is the
blind drive. During a blind drive, the rover does not attempt
to identify hazardous terrain and simply drives toward the
goal location. The second option is autonomous navigation
with hazard avoidance (AutoNav). In this case, the rover au-
tonomously identifies hazards, such as large rocks, and steers
around them on its way to the goal.

There are advantages and disadvantages to each approach.
During a blind drive, the rover can cover a larger distance
in a given time period since it does not have to process im-
agery of the surrounding terrain. However, this means that
the engineers on Earth must verify that the terrain between
the rover and the goal is free from hazards before command-
ing the drive. On the other hand, AutoNav is slower, but can
keep the rover safe even in regions unseen by engineers on
Earth. Often, the two methods are utilized in tandem. First a
blind drive is commanded as far out as engineers can be sure
of safety. Then AutoNav is used to make additional progress
through unknown terrain. Thus, the increased autonomy pro-
vided by AutoNav allows much more forward progress to be
made during a sol.

Although AutoNav is usually able to guide the rover to the
goal, there are known circumstances where it is susceptible
to failure, and the rover does not reach the goal. In July 2006,
a new version of the MER flight software was successfully
uploaded to the rovers. Due to the complexity and number
of changes, a software patch was infeasible and a full flight
software load was necessary [3]. In addition to bug fixes and
other improvements, four new technologies were included.
These new technologies were visual target tracking, on-board
dust devil and cloud detection, autonomous placement of the
instrument deployment device, and a global path planner de-
signed to overcome some of the shortcomings of AutoNav
[4]. This planner and its integration into the flight software
are described below.

2. AUTONOMOUSNAVIGATION SYSTEM

Overview

The purpose of AutoNav is to enable the rover to safely tra-
verse unknown terrain. AutoNav is based on the GESTALT
(Grid-based Estimation of Surface Traversability Applied to
Local Terrain) algorithm [5], [6]. AutoNav uses stereo im-
age pairs captured by the rover’s on-board camera system to
gather geometric information about the surrounding terrain.
These images are processed to create a model of the local
terrain. Part of this model is a goodness map. This goodness
map is grid based and represents an overhead view of a model
of the terrain. Each grid cell in the map contains a goodness
value. High goodness values indicate easily traversable ter-
rain, and low goodness values indicate hazardous areas. The
map is constructed in configuration space, meaning that haz-

Figure 2. On sol 108,Spirit was unable to autonomously
navigate to a goal location on the other side of this cluster of
rocks. This image was captured by one of the front hazard
avoidance cameras mounted on the body of the rover.Cour-
tesy NASA/JPL-Caltech.

ards are expanded by the rover radius in all directions before
their representations are included the goodness map. This al-
lows the rover to be treated as a point in future computations.

Once the terrain has been evaluated, a set of candidate arcs
(short paths from the current rover location) is considered.
Nominally, the arc set consists of forward and backward arcs
of varying curvature, as well as point turns to a variety of
headings. Each arc is evaluated based on three criteria. These
are avoiding hazards, minimizing steering time, and reaching
the goal. For each arc, a vote based on each of these crite-
ria is generated. The goodness map is used to generate the
hazard avoidance vote. Arcs that travel through cells that are
difficult or dangerous to traverse receive low votes. Steering
bias votes are constructed based on the amount of time that
is needed to turn the wheels from the current heading to the
heading required to execute the candidate arc. Arcs requiring
less steering time receive higher votes. Waypoint votes are
constructed based upon the final criteria: reaching the goal.
Arcs that move the rover closer to the goal location receive
higher waypoint votes. The three votes are then weighted and
merged to generate a final vote for each arc. Once votes have
been generated, the best arc is selected for execution. The
rover then drives a short, predetermined distance along the
selected arc . This process is repeated (evaluate terrain, se-
lect arc, drive) until the goal is reached, a prescribed timeout
period expires, or a fault is encountered.

Shortcomings

AutoNav is very good at keeping the rover safe and usually
gets the rover to the goal location. However, in some in-

2

1− y

y

1

(a) (b)

Figure 3. (a) The typical transitions (in blue) allowed from a
node (shown at the center) in a uniform grid. Notice that only
headings of45 degree increments are available. (b) Using
linear interpolation, the path cost of any points′ on an edge
between two grid nodess1 ands2 can be approximated. This
can be used to plan paths through grids that are not restricted
to just the45 degree heading transitions.

stances AutoNav is not able to reach the goal. Figure 2 il-
lustrates one such situation. In this case,Spirit spent approx-
imately 105 minutes trying to get around a cluster of rocks,
but was unable autonomously do so. Forty-seven drive steps
were taken during the attempt. The simple method used to
construct the waypoint votes leads to this problem. Arcs
that decrease the Euclidean distance between the rover and
the goal always receive higher votes. Therefore the rover
will attempt to take a straight-line path to the goal. When
the waypoint votes are merged with hazard avoidance votes,
some deviation to get around small hazards can occur. How-
ever, the amount of deviation that can occur is fairly mini-
mal. When the rover encounters a large hazard in its path, the
waypoint votes and hazard avoidance votes conflict severely.
The hazard avoidance votes will not allow the rover to drive
through the unsafe area, and the waypoint votes will not allow
enough deviation from the straight-line path for the rover to
get around the hazard. The rover becomes stuck and is unable
to reach the goal.

3. GLOBAL PATH PLANNING

For improved performance, a better waypoint vote metric is
needed; something that is more accurate than Euclidean dis-
tance. A better metric can be produced by planning paths to
the goal that take into account all of the obstacles in the en-
vironment. Typically, the environment will be only partially-
known to the rover, and thus complete information regarding
the obstacles will not be available. However, incorporating
obstacle information thatis available into these global plans
typically provides much better estimates than Euclidean dis-
tance, and these estimates only improve in accuracy as more
information is acquired during the rover’s traverse.

The AutoNav system has been extended to use the Field D*
algorithm to generate these global paths. Field D* is a plan-
ning algorithm that uses interpolation to provide direct, low-
cost paths through two-dimensional, grid-based representa-
tions of an environment [7]. Each grid cell is assigned a cost

Figure 4. Paths produced by classic grid-based planners
(red/top) and Field D* (blue/bottom) in a150 × 60 uniform
resolution grid. Darker cells represent higher-cost areas.

of traversal. Based upon these costs, the algorithm generates
a path between two locations, with the aim of minimizing the
cost of traversing that path.

Although two-dimensional grids present an easy and compu-
tationally efficient way to represent the environment, a major
limitation of classic grid-based planning algorithms is the re-
stricted nature of the paths produced. For example, classic
grid-based planners usually restrict paths to transitioning be-
tween adjacent grid cell centers or corners, resulting in paths
that are suboptimal in length and involve unnecessary turn-
ing. Figure 3(a) shows the typical transitions allowed from a
particular grid cell.

The Field D* algorithm removes this restriction and allows
paths to transition through any point on any neighboring grid
cell edge, rather than just the neighboring grid cell corners or
centers. To do this efficiently, it uses linear interpolation to
approximate the path cost to any point along a grid cell edge,
given the path costs to the endpoints. Equation 1 and Figure
3(b) illustrate how linear interpolation is used to provide an
estimate of the path cost to an edge nodes′ given the path
costs to end nodess1 ands2. Herey is the distance between
s1 ands′, measured as a fraction of the length of a grid cell
side.

PathCost(s′) ≈ y · PathCost(s2) +
(1− y) · PathCost(s1) (1)

As a result, Field D* is able to provide much more direct,
less-costly paths than standard grid-based planners without
sacrificing real-time performance. It is also able to efficiently
repair its solutions as new information is received, for exam-
ple through onboard sensors. Figure 4 shows a path planned
by Field D* along with the classic grid-based path.

4. INTEGRATION

At the highest level, using Field D* to improve AutoNav in-
volves two main tasks. The first is providing terrain informa-
tion to Field D* in a form it can utilize. The second is using

3

Figure 5. The left image is an overhead view of the rover. The middle image is the corresponding goodness map, and the Field
D* cost map is shown in the right image. Blue cells have unknown traversability. All other cells are colored based on a gradient
between green (high goodness/low cost) and red (low goodness/high cost). Note that the entire goodness map is presented, but
only a small portion of the cost map is shown in here.

Field D* to generate steering recommendations in a form that
AutoNav can understand.

Cost Map

Field D* uses a uniform grid as the basis of its world model.
Each grid cell contains a value which represents the cost of
traversing the width of the cell. Fortuitously, this is very sim-
ilar to the goodness map representation of the world main-
tained by AutoNav. However, the goodness map is always
centered on the rover location, and stores only information
about the local terrain. Field D* plans on a global scale and
must therefore store a much larger map. In addition, the Field
D* map is fixed to the environment and does not move along
with the rover. There are several other key differences be-
tween the two representations as well. Field D* operates on
cost values, where more easily traversable terrain has a lower
cost, but AutoNav stores a goodness map, where more easily
traversable terrain has a higher goodness. In addition, grid
cells in the goodness map can have “unknown” goodness.
This indicates that there is not enough information about that
cell location to determine its traversability. The Field D* cost
map has no such value. All cells must be assigned a cost of
traversal from the start.

Using the goodness map to update the cost map is fairly
straightforward. First, because there is no notion of unknown
cost, the entire cost map must be initialized to a given cost
value. Initializing all cells to a low cost means the rover will
be much more inclined to explore unseen regions. On the
other hand, initializing to a high cost means that the rover will
prefer to stay in regions it has already seen. Here, a midrange
cost value was chosen. Next, at each step of the traverse, the
position of the goodness map inside the larger cost map is
determined. Then each goodness cell that is not unknown is
merely translated into a cost value, and placed into the cor-
responding cost grid cell. For this to operate correctly, the

goodness grid cells and cost grid cells must be the same size.
In addition, grid cell boundaries in the goodness map must
align with those in the cost map. These issues are addressed
when the maps are created. Each goodness value is translated
into a cost value as follows. Cells with very low goodness are
set to a special cost value representing obstacle. Field D* will
not plan paths through these cells. All other goodness values
are inverted and then scaled to the range of cost values to pro-
duce corresponding costs. By virtue of its much larger map,
Field D* tracks everything the rover has seen, even when it
has been long forgotten by the local goodness map. Figure 5
shows a goodness map and the corresponding portion of the
Field D* cost map.

Votes

Once the cost map has been populated, a method is needed to
use Field D* to influence arc selection. The output of Field
D* is the cost of traversing the optimal path from any query
point to the goal location. However, the easiest way to pro-
vide steering recommendations to the rest of the system is
through arc votes. Therefore, a way to convert costs of tra-
versal to arc votes is necessary.

To begin this process, Field D* is used to compute the cost
of traversal from the end of each candidate arc to the goal.
Taken individually, these traversal costs mean very little. If
the rover is 50 meters from the goal, the traversal cost for a
given arc will be much higher than if the rover is 10 meters
from the goal. This is merely due to the fact that there is much
more ground to cover in the first case. Fundamentally, arc
votes are just a way of ranking the candidate arcs from best to
worst. When taken relative to each other, the traversal costs
provide a similar ranking mechanism. The arc with the lowest
cost of traversal to the goal is the best and the one with the
highest cost is the worst. Numerical vote values are assigned
using a weighted sum ofvscale andvclose, which are given in

4

Equations 2 and 3.vmax is the maximum possible vote,cmax

andcmin are the maximum and minimum traversal costs for
the current arc set evaluation, andci is the traversal cost for a
given arc. The minimum vote value is zero.

vscalei
= vmax ∗ (cmax − ci)/(cmax − cmin) (2)

vclosei = vmax ∗ cmin/ci (3)

vscale is a standard linear scaling of the cost values into vote
values.vclose bases vote values upon how close the rover is
to the goal. The closer the rover is to the goal, the greater the
range of vote values that is generated. When the rover is far
from the goal,cmin/cmax will be close to one and all votes
will be close tovmax. On the other hand, when the rover is
close to the goal,cmin/cmax will be close to zero, and the
votes will be spread from zero tovmax. Alone,vclose is not
particularly useful (especially when the rover is far from the
goal), but when combined withvscale it can be helpful. When
combined withvscale, vclose serves to reduce the range of
vote values when the rover is far from the goal. This means
the preference for one arc over another is less pronounced.
When the rover is far from the goal, it is not critical exactly
which arc is taken (as long as the rover is moving in generally
the right direction). In this case it may be advantageous to let
the other voting modules (steering bias and hazard avoidance)
have more influence over the final arc selection. However,
as the rover gets closer to the goal, the exact arc selected is
more important and thus the entire range of vote values is uti-
lized. Generally when combining the two vote values,vscale

receives a significantly higher weight thanvclose.

Once these votes have been constructed, they replace the way-
point votes constructed by GESTALT. They are then com-
bined with steering bias and hazard avoidance votes in order
to select the arc that will be followed. When constructing
Field D* votes, it is possible that several arcs may have iden-
tical costs of traversal. Nothing special need occur to handle
this situation. These arcs are merely assigned equal Field D*
vote values. The GESTALT arc selection algorithm handles
combining these votes with steering bias and hazard avoid-
ance votes, as well as breaking any ties that might occur in
the final combined vote values. Once the naive waypoint
votes are replaced with those generated using Field D*, the
autonomous navigation system becomes much more robust.

Limitations

It should be noted that AutoNav (both with and without Field
D*) assumes that the rover position is known, and that can-
didate arcs can be executed nominally. There are cases in
which these assumptions are violated. For instance, on sandy
slopes the wheels may slip significantly, causing the esti-
mated rover position to be erroneous. In addition, mechan-
ical failure of wheel actuators can cause arcs to be executed
abnormally. In these cases, AutoNav performance may be
degraded. Although AutoNav makes no attempt to directly

address these issues, other technologies can often be used to
overcome them. For instance, visual odometery can be used
in conjunction with AutoNav in order to maintain an accurate
estimate of rover position, regardless of wheel slip [8].

5. RESOURCEL IMITATIONS

The Mars rovers are constrained by very limited computa-
tional resources. The onboard computer uses a radiation hard-
ened RAD6K processor running at 20 MHz, and has 128
Mbytes of DRAM [6]. To make matters worse, these already
limited resources must be shared among the 97 tasks (includ-
ing AutoNav) that make up the on-board flight software [9].
In light of these constraints, optimizations were made to the
Field D* algorithm to improve efficiency. Specifically, the
path cost minimization step of the algorithm is pre-computed,
and the results are stored in a lookup table that is then ac-
cessed at runtime. This significantly decreases the computa-
tion time required for planning. See [7] for more details on
how this is performed.

Another constraint is the limited bandwidth available to send
data back to Earth. This data can be grouped into two broad
categories: engineering data and science data. Science data
contains information about Mars that is of interest to scien-
tists. Engineering data is used to monitor the status of the
rover, and contains information that is useful should an anom-
aly occur. Telemetry generated by Field D* falls into this
category. Since the main purpose of the mission is to better
understand Mars, it is desirable to limit the engineering data
to a minimum in order to maximize the amount of science
data that can be downlinked.

In the case of Field D*, CPU utilization, memory usage, and
telemetry volume are all tied to the size of the Field D* cost
map. Larger maps mean more resource usage. Therefore, it is
advantageous to find ways to reduce the map size while still
obtaining good path planning results.

Automatic Recentering

In order for Field D* to plan a path between some start lo-
cation and a goal, both the start location and goal location
must be located within the cost map. Therefore, the further
the rover is from the selected goal, the larger the map must
be. In order to allow long traverses that would be infeasible
due to memory constraints, a scheme was developed to over-
come this limitation. The constraint that the user selected
goal must be within the bounds of the cost map is lifted, and
any arbitrary goal location is allowed. If the goal happens to
be outside of the cost map, an intermediate goal is selected
that resides on the boundary of the cost map. The intermedi-
ate goal is placed at the point where the straight line between
the current rover location and user selected goal intersects the
boundary of the cost map. However, this does not completely
solve the problem. Now the rover is being guided to a point
on the edge of the map and not the real goal. In order for the
rover to reach the real goal, map recentering is needed. Dur-

5

(a) (b) (c)

Figure 6. Field D* cost map and the recentering process. The rover is represented by a purple diamond and the goal is shown
as a blue diamond. Recentering is needed for the map shown in (a). Cells common to the old and new map are copied to their
new location in the lower right of (b). Shown in (c) is the final map after cells not common to both the old and new maps have
been cleared, the cost map has been updated from the most recent goodness map, and the goal location has been recalculated.

ing the map update phase, if any portion of the local goodness
map falls outside the cost map, the cost map is recentered on
the current rover position.

Recentering does not alter any memory allocations, but in-
stead merely adjusts the world coordinates of the map center.
In order to make the map consistent with the new coordinates,
grid cells that are common to both the old map and new map
are copied across the map to their new location. All other ar-
eas are cleared to the nominal cost value. Once this is done,
a new goal is placed within the cost map. If the user selected
goal is within the new map bounds, the goal is placed there.
If not, another intermediate goal is placed using the proce-
dure outlined earlier. This recentering and intermediate goal
placement is repeated until the user selected goal is reached.
Figure 6 illustrates the recentering process.

This approach has some limitations. There is a performance
penalty whenever the map is recentered. Field D* is efficient
because it does not have to replan from scratch when new
costs are discovered. Instead, it is able to reuse the results
of previous planning and repair the needed paths. However,
because Field D* begins its search at the goal, whenever the
goal is moved, all planning information is reset and the next
path must be planned from scratch. In order to minimize this
effect, the intermediate goal is not updated every time the
rover moves. Instead, a new goal is placed only when the
map is recentered. Map recentering is an infrequent event
and therefore the overall performance impact is minor.

There is another limitation to this approach. It is possible
that the intermediate goal could be placed inside an obstacle.
When the goal is inside an obstacle, Field D* is unable to plan
any paths and will fail. However, this problem is unlikely to
be encountered in practice. Usually, the intermediate goal is
ahead of the rover, in an area not yet visited. Because the

rover has not seen the terrain around the intermediate goal,
that location cannot be obstacle in the cost map until the rover
is close enough to evaluate that terrain. The map is recen-
tered slightly before the rover can see the edge of the map.
Therefore, in general, the rover has never evaluated the ter-
rain under any current intermediate goal. The exception is if
the rover in the process of backtracking a significant distance
in order to navigate around a very large hazard. In this case,
the goal is behind the rover and the rover is driving away
from it. Therefore, when the map is recentered, the rover
may have already seen the region where the new intermedi-
ate goal is placed, and it is possible that there is an obstacle
in this region. However, for this problem to occur, the rover
must be attempting to navigate around a very large hazard,
and must drive large distances. Due to power and time con-
straints, the distance that the rover can traverse in a single sol
using AutoNav is limited. This limitation drastically reduces
the chances of encountering the problem.

Coarse Resolution Cost Maps

Another way to manage limited memory resources is to
change the resolution of the cost map grid cells. Instead of
constraining the cost map grid cells be the same size as the
goodness map grid cells, the cost map cells are allowed to be
larger. This allows fewer grid cells to cover the same area,
and thus for smaller cost maps in terms of grid cells, which is
what dictates resource usage. Further, because the Field D*
planner is able to compute paths that are not restricted to tran-
sitioning between grid cell centers or corners, it can be used
to plan direct, low-cost paths even in very coarse resolution
grids.

Allowing for larger cost map grid cells does present some
complications. Updating the cost map from the goodness map
is now more difficult. Before, there was a one-to-one cor-
respondence between cost and goodness grid cells, meaning

6

Figure 7. Goodness map overlain on a cost map. Goodness
grid cells are outlined in grey. Cost cells are shown in white
and blue. In addition to a complete goodness cell, each cost
cell contains pieces of 3, 5, or even 8 other goodness cells.

that the goodness map could essentially be copied directly
into the cost map. With larger cost cells, there are multiple
goodness cells in each cost cell. In fact, there could even
be fractional goodness cells in a given cost cell as shown in
Figure 7. In order to simplify matters somewhat, the size of
the cost cells are constrained to be an integer multiple of the
goodness cells. This avoids splitting single goodness cells
across multiple cost cells. Instead, each cost cell contains
a fixed number of whole goodness cells. In this way, the
complication of dealing with fractional cells can be avoided.
However, a method is still needed to convert multiple good-
ness values into a single cost value.

One simple and safe method would be to use the minimum
goodness value in a given cost cell to set the cost. In some
cases this is not necessarily the best approach. Figure 8 il-
lustrates what can happen when a narrow corridor is encoun-
tered. By using the minimum goodness value to update the
cost value, narrow corridors in the goodness map can become
completely blocked in the cost map. One way to mitigate this
problem is to employ a more lenient standard when updating
cost cells containing obstacles. Cost cells that are less than
half obstacle are set to the maximum traversable cost. Cost
cells that are half obstacle or more are set to obstacle. This
greatly reduces the chances of closing off narrow corridors.

Larger cost map grid cells also require a new strategy for han-
dling unknown goodness cells. There is no traversability in-
formation in these cells, and previously they could just be
ignored. The situation is more complicated when there are
multiple goodness cells in each cost cell. One option for han-
dling unknown goodness cells is to not update cost cells con-
taininganyunknown goodness cells. This is a less than ideal
solution. A cost cell could contain many goodness cells with
known values, but if there is one unknown value, all this in-
formation will be ignored. This situation happens frequently
at the edge of the field of view. In order to fully utilize the ter-
rain assessment, the unknown goodness cells could merely be

(a) (b) (c)

Figure 8. Here, each cost cell contains nine goodness cells
(cost cells are outlined in blue). Red represents obstacle, yel-
low is traversable, and orange is the maximum traversable
cost. Coloring is by goodness value in (a) and cost value in
(b) and (c). The cost map in (b) is produced by using the min-
imum goodness value in each cost cell. The cost map in (c)
is produced using a more lenient update rule. If the cost cell
is less than half obstacle it is set to the maximum traversable
cost instead of obstacle. Note that the corridor is blocked in
(b), but not in (c).

ignored, and the minimum goodness of the populated good-
ness cells used to update the cost cell. This approach presents
a more subtle problem which is illustrated in Figure 9. Dur-
ing each step the rover takes, an area around the edge of the
goodness map is set to unknown. This erases old data be-
hind the rover in order to make room for new data in front
of it. The problem arises when obstacle goodness cells be-
hind the rover are set to unknown, but there are still some
goodness cells in a given cost cell that have not been cleared
and are not obstacle. The minimum goodness is therefore no
longer obstacle, and if the minimum goodness is used to up-
date the cost cell, the cost will be changed from obstacle to
traversable. This causes Field D* to forget about obstacles,
which is highly undesirable.

The solution to these problems is to make use of another value
that is stored as part of the local terrain map. In addition to a
goodness value, each goodness cell contains a certainty value
as well. If the certainty is not zero, then the grid cell is in
the current field of view and was just updated. It acts as a
sort of new data flag. Therefore, if there is no certainty in
a given cost cell, it is probably an old cell that is behind the
rover. In this case, the first approach is utilized, which is
to not update the cell if it has any unknown goodness. This
avoids forgetting data in the cost map. On the other hand, if
there is certainty in a given cost cell, it contains new data and
is probably in an area that hasn’t been seen before. For these
cells the second approach is used, and the cost is updated
using the minimum goodness value. In this way, new terrain
assessments are added to the cost map as early as possible.

Map Filtering

In certain situations, the planning process for a given drive
step can take more than an order of magnitude longer than
usual. Recall that Field D* is used to plan a path from each
arc endpoint to the goal. Also recall that Field D* will not
plan paths through obstacle cells. If an arc endpoint happens

7

(a) (b)

(c) (d)

Figure 9. Here, each cost cell contains nine goodness cells
(cost cells are outlined in blue). Red represents obstacle, yel-
low and orange are traversable, and blue is unknown. The
goodness and cost maps for one step are shown in (a) and
(b) respectively. Similarly, (c) and (d) are for the next step.
Between steps, the rover has moved up to the left. The cost
maps are produced using the minimum goodness value that is
not unknown. Note that as the rover moves, obstacles are for-
gotten from the goodness map, and using this update strategy
these obstacle cells are set to traversable in the cost map.

to fall in an obstacle cell, the algorithm immediately returns,
indicating that there is no path to the goal. However, planning
time can swell if an arc endpoint falls in a non-obstacle region
completely surrounded by obstacle cells, as shown in Figure
10(a). This is an artifact of how the planning process is car-
ried out. The search begins at the goal location and expands
outward. When the start state (the arc endpoint in our case) is
reached, the search terminates and the path cost is returned.
Unfortunately, when an arc endpoint falls into a small region
completely surrounded by obstacles, it is in fact unreachable.
In order for Field D* to make this determination, every reach-
able state in the cost map must be expanded. Usually rela-
tively few states need to be expanded, and thus expanding the
entire map leads to a significant increase in planning time.
This explosion in usage of already limited CPU resources is
very undesirable.

In order to solve this problem, the goodness map is filtered
before it is used to update the Field D* cost map. A flood
fill algorithm is used to identify all cells in the goodness
map reachable from the current rover location. The rover
location is first marked as reachable. Then each adjacent
(eight-connected), non-obstacle cell is added to a list for later
processing. Next, a cell is removed from the list, marked as
reachable, and its new non-obstacle neighbors are added to

(a) (b)

Figure 10. Goodness map filtering. Obstacle cells are shown
in red. The goodness map in (a) contains regions completely
surrounded by obstacle cells. Planning time is greatly in-
creased when arc endpoints fall in these regions. All cells
reachable from the rover location are shaded pink in (b). Note
that the regions surrounded by obstacle are not marked as
reachable.

the list. This repeats until the list is empty, indicating that all
cells reachable from the rover location have been identified,
as shown in Figure 10(b). Finally, all non-reachable, non-
obstacle cells are set to obstacle. By doing this, arc endpoints
that would have been problematic now end in obstacle cells.
In this case, no planning is necessary to determine that no
path to the goal exists.

Even though map filtering is done during every map update,
in the long run it still saves time. As an added benefit, it
also allows for much more consistent and predictable plan-
ning times. There are a couple of reasons why map filtering
at every step is much faster than letting Field D* occasionally
expand the entire cost map. First, map filtering is done on
the goodness map, which is much smaller than the Field D*
cost map. In addition, the simple flood fill check for reach-
ability takes much less time than the full Field D* planning
process. In fact, the time necessary to filter the goodness map
is negligible when compared even to the nominal planning
time necessary for each drive step.

6. RESULTS

The MER Surface System TestBed (SSTB) was used to exten-
sively test flight software modifications. The SSTB is a high-
fidelity engineering model of the Mars Exploration Rovers.
It is essentially identical in form and electromechanical func-
tion to Spirit andOpportunity, with a few minor exceptions.
The SSTB has no solar panels, and some of its electronics are
housed in an adjacent clean room. A physical tether provides
a link between the rover and these electronics. The tether
also provides power to the rover. The SSTB is housed in an
indoor sandbox approximately 9 meters wide and 22 meters
long [10]. A ramp tilted at 25 degrees occupies one end. The
SSTB is shown in Figure 11.

GESTALT alone performs well in simple situations, includ-
ing navigation in areas free from hazards and navigating
around small discrete obstacles. However, the real strength

8

Figure 11. MER Surface System TestBed rover.

of Field D* is navigation in much more complex situations.
Unfortunately, the relatively small size of the sandbox makes
constructing complex obstacle arrangements difficult. Test-
ing was limited to this environment for several reasons. The
SSTB was the only available system with enough fidelity to
perform flight software testing requiring imaging and driving,
with the driving decisions based upon imaging results. It was
infeasible to move the rover to a larger outdoor environment
due to the tremendous effort that would be necessary to move
all the support equipment needed to run the rover (remem-
ber that most of the rover electronics are actually housed in
a clean room adjacent to the sandbox). However, even in
the limited sandbox environment, constructing situations for
which GESTALT alone fails to reach the goal is not difficult.
For instance, navigating around a cul-de-sac obstacle arrange-
ment is nearly impossible for GESTALT alone. Figure 12 il-
lustrates a situation with not one, but two cul-de-sacs. Due
to the limited size of the sandbox, the goal is placed outside
the sandbox and is not actually reachable. Figure 12(a) shows
the initial position of the rover. The rover begins by driving
straight into the first cul-de-sac. The rover reaches the bottom
of the cul-de-sac in Figure 12(b). Up to this point, behavior
with and without Field D* was roughly equivalent. However,
with GESTALT alone the rover became stuck here. Field D*
on the other hand, plans a path around the first cul-de-sac and
into the second. The rover is then guided into the second cul-
de-sac as shown in Figure 12(c). Once the determination is
made that there is no route through the second cul-de-sac, the
rover drives back toward the only unexplored region of the
sandbox as shown in Figure 12(d). Eventually Field D* fails,
indicating that no paths to the goal exist.

Over the course of testing, Field D* was used to guide the
SSTB toward roughly 100 different goal locations. Initially,
a variety of simple tests were completed. In an obstacle free
setting, the rover was placed at a variety of different initial
headings relative to the straight line to the goal. Navigation
through a field of traversable rocks was tested. Navigation
around a single rock in various positions relative to the path
between the rover and the goal, and navigation between two
rocks separated by a variety of distances were also tested.
More complex obstacle arrangements in which GESTALT
alone would almost certainly fail to guide the rover to the goal

were tested as well. Situations were constructed necessitating
navigation into and out of single or multiple cul-de-sacs. In
addition, lines of rocks were used to produce an arrangement
similar to the one shown in Figure 2. Overall, the perfor-
mance was extremely good. In the vast majority of cases the
rover was able to reach the goal when Field D* was used, and
performance in the simple test cases was at least as good as
with GESTALT alone. Surprisingly, one of the biggest prob-
lems faced during testing was goal placement. If the goal
is placed in an obstacle cell, Field D* is unable to plan any
paths. When the rover gets close enough to the goal to deter-
mine it is in an obstacle cell, Field D* will fail. Although the
rover does not reach the goal, this should not necessarily be
considered an AutoNav failure. In these situations the goal
location is not safe, and the rover should not drive onto it.
Due to the very limited space in the sandbox, squeezing the
goal location into a safe area (after all obstacles have been
expanded by the rover radius) was sometimes a challenging
proposition.

With Field D*, the rover is able to explore the environment
much more fully when attempting to locate a path to the goal.
This allows the rover to almost always arrive at reachable
goals. The downside, of course, is the increased resource uti-
lization required. For Field D*, the additional CPU time and
memory usage are fairly minimal. Much of the testing was
done using 50 m x 50 m cost maps. The cost cells were 40
cm x 40 cm, which is twice as big as the goodness cells. Al-
most no difference was noticed in rover behavior when mov-
ing from 20 cm to 40 cm cost cells. With these settings, Field
D* utilizes less than 1 Mbyte of memory. In addition, each
drive step takes only about 3 percent longer when Field D* is
enabled. Even with these very modest requirements, Field D*
is able to significantly improve on-board autonomous naviga-
tion capability.

7. CONCLUSIONS

Autonomous hazard avoidance using GESTALT keeps the
rovers safe and works well in the presence of simple discrete
obstacles. However, it is susceptible to failure when more
complex hazard arrangements are encountered. In order to
address this shortcoming, the hazard avoidance system was
augmented with a global path planner. Field D* was inte-
grated into the MER flight software and uploaded in the sum-
mer of 2006 as part of a significant software upgrade. Field
D* assisted hazard avoidance was extensively tested using the
SSTB before the upload. Obstacle avoidance was at least as
good as with GESTALT alone, and in many cases much bet-
ter. Field D* allows the rover to much more robustly navigate
around hazards. With Field D*, the rover is less prone to get-
ting stuck and reaches the goal even when faced with complex
hazards.

8. ACKNOWLEDGEMENTS

The research described in this paper was performed, in part,
at the Jet Propulsion Laboratory, California Institute of Tech-

9

(a)

(b)

(c)

(d)

Figure 12. Field D* assisted hazard avoidance using the SSTB. The left image is an overhead view of the sandbox. The middle
image is the local goodness map, and the image on the right is the Field D* cost map. Note that the entire goodness map is
shown, but only a portion of the cost map is included. Blue cells have unknown traversability. All other cells are colored based
on a gradient between green (high goodness/low cost) and red (low goodness/high cost). The blue line on the cost map is the
path planned between the rover and the goal. The size of each goodness cell is 20 cm x 20 cm. Each cost cell is 40 cm x 40 cm.

10

nology, under contract with the National Aeronautics and
Space Administration. The authors would like to acknowl-
edge Carnegie Mellon University for providing a research li-
cense to use the Field D* software. The authors would also
like to thank the Mars Technology Program for supporting
this research. Finally, many thanks to Mark Maimone for
his sage advice during the integration and testing process.
Without his assistance this process would have been infinitely
more difficult.

REFERENCES

[1] C. Leger, et al, “Mars Exploration Rover Surface Op-
erations: Driving Spirit at Gusev Crater”. 2005 IEEE
International Conference on Systems, Man, and Cyber-
netics, Waikoloa, HI, Oct. 2005, pp. 1815-1822.

[2] J. Biesiadecki, et al, “Mars Exploration Rover Surface
Operations: Driving Opportunity at Meridiani Planum”.
2005 IEEE International Conference on Systems, Man,
and Cybernetics, Waikoloa, HI, Oct. 2005, pp. 1823-
1830.

[3] M. Greco, J. Snyder, “Operational Modification of the
Mars Exploration Rovers’ Flight Software”. 2005 IEEE
International Conference on Systems, Man, and Cyber-
netics, Waikoloa, HI, Oct. 2005, pp. 8-13.

[4] P. Schenker, “Advances in Rover Technology for Space
Exploration”. 2006 IEEE Aerospace Conference Pro-
ceedings, Big Sky, MT, Mar. 2006.

[5] S. Goldberg, M. Maimone, L. Matthies, “Stereo Vision
and Rover Navigation Software for Planetary Explo-
ration”. 2002 IEEE Aerospace Conference Proceedings,
Big Sky, MT, Mar. 2002.

[6] J. Biesiadecki, M. Maimone, “The Mars Exploration
Rover Surface Mobility Flight Software: Driving Am-
bition”. 2006 IEEE Aerospace Conference Proceedings,
Big Sky, MT, Mar. 2006.

[7] D. Ferguson, A. Stentz, “Using Interpolation to Improve
Path Planning: The Field D* Algorithm”. Journal of
Field Robotics, Vol. 23, No. 2, Feb. 2006, pp. 79-101.

[8] Y. Cheng, M. Maimone, L. Matthies, “Visual Odometry
on the Mars Exploration Rovers”. 2005 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics,
Waikoloa, HI, Oct. 2005, pp. 903-910.

[9] G. Reeves, J. Snyder, “An Overview of the Mars Ex-
ploration Rovers’ Flight Software”. 2005 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics,
Waikoloa, HI, Oct. 2005, pp. 1-7.

[10] T. Litwin, “General 3D Acquisition and Tracking of Dot
Targets on a Mars Rover Prototype”. 2005 IEEE Inter-
national Conference on Systems, Man, and Cybernetics,
Waikoloa, HI, Oct. 2005, pp. 443-449.

Joseph Carstenis a member of the
technical staff at the Jet Propulsion Lab-
oratory. He earned his M.S. degree in
robotics from Carnegie Mellon Univer-
sity in 2005.

Arturo Rankin is a senior member of
the technical staff at the Jet Propulsion
Laboratory. He earned a Ph.D. in me-
chanical engineering from the Univer-
sity of Florida in 1997.

Dave Fergusonis a research scientist
at Intel Research Pittsburgh. He earned
a Ph.D. in robotics from Carnegie Mel-
lon University in 2006.

Anthony Stentz is a research pro-
fessor in the Robotics Institute at
Carnegie Mellon University. He re-
ceived his Ph.D. in computer science
from Carnegie Mellon University in
1989.

11

