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Abstract—A navigation system for Mars rovers in very rough
terrain has been designed, implemented, and tested on a re-
search rover in Mars analog terrain. This navigation system
consists of several technologies that are integrated to increase
the capabilities compared to current rover navigation algo-
rithms. These technologies include: goodness maps and ter-
rain triage, terrain classification, remote slip prediction, path
planning, high-fidelity traversability analysis (HFTA), and
slip-compensated path following. The focus of this paper is
not on the component technologies, but rather on the inte-
gration of these components. Results from the onboard inte-
gration of several of the key technologies described here are
shown. Additionally, the results from independent demon-
strations of several of these technologies are shown. Future
work will include the demonstration of the entire integrated
system described here. 1 2
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1. INTRODUCTION
In this paper a navigation system designed for a Mars rover
in rough terrain is described. The current navigation system
running on the Mars Exploration Rovers (MER) [6], [16], was
designed for relatively benign terrains and does not explicitly
account for terrain types or potential slip when evaluating or
executing paths.

It is well recognized that many scientifically interesting sites
on Mars are in very rough terrains with the potential for sig-
nificant slippage. The “follow the water” strategy taken by
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NASA’s Mars Exploration Program inherently requires ac-
cess to demanding terrains such as dry river channel sys-
tems, putative shorelines, and gullies emanating from canyon
walls [5]. Therefore, it is important that the next generation
of Mars rovers have the capability to autonomously navigate
through these terrains, not only to increase the science return
efficiency, but also to enable access to previously inaccessi-
ble science sites. The navigation system described here is de-
signed to deal with these scenarios using more sophisticated
(and thus more computationally expensive) terrain analysis;
however, this system is also designed to converge to compu-
tational complexity similar to that of currently deployed nav-
igation systems when the terrain is benign. This navigation
system consists of several technologies that have been devel-
oped, integrated, and tested onboard research rovers in Mars
analog terrains (see Figure 1). These technologies include:
goodness maps and terrain triage, terrain classification, re-
mote slip prediction, path planning, high-fidelity traversabil-
ity analysis (HFTA), and slip-compensated path following.

Figure 1. Rocky8 in the JPL Mars Yard

Section 2 discusses the system architecture as a whole, in-
cluding design goals and operational assumptions. It explains
how the subsystems interact to create a navigation system.
It also discusses the interfaces between the component tech-
nologies.

Section 3 describes the generation of goodness maps from
Navcam imagery [6], [16]. Also described in this section is
the terrain triage algorithm. This is a technique to sub-divide
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the terrain into three categories based on the goodness calcu-
lation. The three categories are: definitely traversable, def-
initely not traversable, and uncertain. This categorization is
then used to determine which parts of the future planned path
need to be analyzed in more detail.

Section 4 discusses the remote slip prediction algorithm,
which uses intensity and range data from stereo cameras to
predict the slip of the rover on terrain at a distance. It im-
plements learned, non-linear regression models that output
rover slip, using terrain geometry from stereo imagery as in-
put. This rover slip is then used to augment the cost map
(essentially “1 - goodness map”). This section also briefly
discusses the role of a terrain classifier in slip prediction.

Path planning uses the D* algorithm [21] to determine an op-
timal path to a goal through the cost map. This algorithm is
briefly discussed in Section 5. It is beyond the scope of this
paper to discuss this algorithm in detail, and the focus of this
section is how the path planner fits into the system.

Section 6 explains the high-fidelity traversability analysis
(HFTA) algorithm, which uses a sophisticated kinematic and
dynamic forward simulation [10] of the rover following a
path. It is designed to calculate a more accurate and realis-
tic cost to traverse that path. The simulation includes a de-
tailed geometric and mass model of the rover, terrain gener-
ated from onboard stereo imagery, a dynamic model of the
wheel terrain interaction (with parameters based on the ter-
rain classification outputs), and the same slip-compensated
path following algorithm (see Section 7) that runs onboard
the rover. The results of the HFTA are then used to refine the
planned path of the rover through the uncertain region(s).

Once the final planned path is created, the slip-compensated
path following algorithm (see Section 7) is invoked to en-
able the rover to actually follow this path regardless of the
slip [9], [7]. This algorithm compares visual odometry
(VO) (a technique that measures rover motion including slip-
page) [15] and vehicle kinematics (a technique that measures
rover motion minus slippage) to estimate the location and the
slippage of the rover; it then compensates for this slippage
and accurately follows the desired path to the goal.

Results from the integration and demonstration of several of
the key technologies onboard a research rover (Rocky8) in
a Mars analog terrain (see Figure 1) are shown. Addition-
ally, the results from independent demonstrations of several
of these technologies are shown. Future work will include the
demonstration of the entire integrated system on a research
rover.

2. SYSTEM ARCHITECTURE
Figure 2 is a block diagram showing the system architec-
ture described in this paper. The different colors represent
functional groups of this architecture: red represents sensing,
green represents mapping and terrain analysis, yellow repre-

sents path planning, and blue represents path following.

The top block is navigation camera (Navcam) imagery. The
Navcams on the research rovers [11], the MER rovers [13],
and the MSL [14] rover are all stereo cameras mounted
on pan/tilt masts. These cameras allow the rover to take
panoramic images from a high perspective, which decreases
obscurations, thus enabling terrain sensing at further dis-
tances. Typical Navcam configurations are shown in Table 1.
This configuration allows for stereo ranging at distances up to
50-100 meters [13]; and with the pan/tilt capability, range in-
formation spanning 360 degrees can be accurately registered
into a single map. Alternatively, Pancams could be used in
place of the Navcams (see Table 1). Using the MSL Pan-
cams at their maximum zoom (shortest focal length), errors
of less than 20 cm at 50 meters range should be possible [14].
Other techniques such as wide-baseline stereo could increase
the range and the accuracy even further [17] [18].

The assumed operational scenario of this navigation archi-
tecture is that a goal is designated within stereo range of the
rover. The maximum distance for goal designation is a func-
tion of stereo range error at that distance, vehicle pose esti-
mation error at that distance, and acceptable path error. Given
the MSL Pancam range error (see Table 1) and the fact that
pose error is 1-2% of distance traveled [7], it is feasible that
goals of up to 100 meters would be acceptable, but more con-
servative goals of 20 to 50 meters away are more likely.

This goal designation could be achieved in several ways. It
could be designated by a human operator from Navcam im-
agery. It could be designated by a human operator from or-
bital imagery. It could be one of many “global waypoints”
all designated from orbital imagery to define extremely long
traverses (kilometers). In this case the constraint would be on
the spacing of the waypoints to be within the stereo range of
the rover. It also could be autonomously designated onboard
using both orbital and local sensor data.

Once a goal is designated, a Navcam panorama is taken in the
general direction of the goal (if a Navcam panorama has not
already been taken for goal designation). Stereo is then done
on each pair of the Navcam images and registered into a map
using the pan/tilt angles. Once the stereo point cloud data are
registered, a goodness map and a triage map are generated
using planar statistics on the terrain geometry (as described
in Section 3). The goodness map is then augmented with slip
prediction costs (Section 4), re-triaged, and then passed to the
path planner. The path planner plans an optimal path from the
current rover location to the designated goal (Section 5). If
all of the planned path goes through “definitely traversable”
terrain, then the path is passed to the slip-compensated path
follower. If any part of the path goes through “uncertain” re-
gions of the triage map then the HFTA is performed on those
regions to obtain a more realistic cost of traversal and to re-
fine the path in that region. The path is then passed to the path
follower and and the rover follows the path until it reaches the
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Figure 2. System Architecture Block Diagram

Table 1. MER/MSL Navcam and Pancam Configurations (range error assumes 0.25 pixel stereo correlation accuracy)

MER/MSL Navcams MER Pancams MSL Pancams
baseline (meters) 0.20 0.30 0.20
camera resolution (pixels) 1024×1024 1024×1024 1200×1200
camera field of view (FOV) 45.0◦ × 45.0◦ 16.0◦ × 16.0◦ 6.0◦ × 6.0◦ - 50.0◦ × 50.0◦

range error at 50 meters (meters) 2.5 0.60 0.20 (at max. zoom)

goal.

As mentioned in the introduction, one of the goals in the de-
sign of this architecture was to create a rover navigation sys-
tem that would be capable of navigating through rough, high-
slip terrains, but which would converge to the computational
complexity of simpler algorithms in benign terrain. This is
enabled using the terrain triage algorithm described in Sec-
tion 3.

3. GOODNESS MAP/TERRAIN TRIAGE
A goodness map is a regularly spaced grid representing the
local region around the rover. The map is populated using
stereo data generated from Navcam imagery. In each cell
of the map, a goodness value is calculated using the stereo

data that falls in and around that cell. A plane is then fit to a
rover sized patch of cells. The goodness calculation involves
metrics such as pitch and roll of the plane, roughness of the
terrain (standard deviation of the plane fit), and step heights
within the patch [6].

Terrain triage is a simple concept that is fundamental to re-
ducing the computational complexity of this navigation ar-
chitecture in benign terrains. The idea is to categorize the
terrain into three categories: “definitely traversable”, “defi-
nitely not traversable”, and “uncertain”. This categorization
is done by simply thresholding each of the goodness values
of the goodness map and thus binning each of the cells into
one of the three categories. This step is performed twice:
once before the slip prediction and once after. The first time
is to determine whether or not slip prediction needs to be
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performed for a particular cell in the map. If a cell is cate-
gorized as “definitely not traversable” then there is no need
to do slip prediction for that cell, because the slip prediction
algorithm can only increase the cost of the cell. The sec-
ond time terrain triage is performed is to incorporate the new
costs from the slip prediction into the cost map. Now, when
a path is planned through the cost map (as described in Sec-
tion 5), if the planned path travels entirely through “definitely
traversable” terrain, then this path is deemed acceptable and it
is passed to the slip-compensated path follower without any
further analysis. This will only happen in relatively benign
terrain. If, however, the path passes through “uncertain” ter-
rain, then the HFTA (see Section 6) is invoked on those sec-
tions of the path.

4. TERRAIN CLASSIFICATION/SLIP
PREDICTION

An independent assessment of the terrain traversability is
done in terms of rover slippage. Slip is a measure of the lack
of progress or the lack of mobility of the rover on a certain ter-
rain. It is defined as the difference between the commanded
velocity and the actual achieved velocity in each DOF of the
rover [7]. It is normalized by the commanded velocity [24]
and for convenience will be expressed in percent.

Rover slippage has been recognized to be a significant lim-
iting factor for the MER rovers while driving on steep
slopes [4], [12]. Knowing the amount of slip beforehand and
being able to detect areas of large slip will prevent the rover
from getting stuck in dangerous terrain and will enable more
intelligent path planning. Slip prediction is needed in addi-
tion to an obstacle detection mechanism because an area of
large slip is a non-geometric type of obstacle and cannot be
detected with a standard obstacle avoidance algorithm such
as GESTALT [6].

Main Method and Architecture

While detecting rover slippage is relatively straightfor-
ward [7], [19], the main challenge here is that the rover slip
needs to be known remotely, before the rover actually tra-
verses a particular location, in order to enable safe avoidance
of areas of large slip. We have proposed an algorithm which
infers the amount of slip on the upcoming terrain using vi-
sual information and onboard sensors (e.g. a tilt sensor or
the IMU) and have shown successful slip prediction results
from only these remote sensors [1], [2]. The problem is ap-
proached by learning from previous examples. To tackle the
problem of slip prediction from a distance, we subdivide it
into first recognizing the soil type the rover is going to tra-
verse and then predicting the amount of slip as a function of
terrain geometry, i.e. slopes [1], [2].

The main architecture of the slip prediction algorithm is given
in Figure 3. For clarity, we first describe the prediction part
of the algorithm, assuming the terrain classifier and the slip
models have already been learned. The slip prediction mod-

Figure 3. Slip Prediction Algorithm Framework

ule receives as input from the main module stereo pair im-
agery and rover attitude with respect to gravity. A map of
the environment is built using the stereo range data registered
with the color and texture information from the input images.
In particular, each cell of the map contains information about
terrain elevation and points to an image patch which has ob-
served this cell. To predict slip in a map cell, the terrain clas-
sifier is applied to all the map cells in its neighborhood. A ma-
jority voting among their responses is used as the final terrain
classification response at the desired rover location. Then, a
locally linear fit in the cell’s neighborhood is performed to re-
trieve the local slope under the potential rover footprint. The
slopes are decomposed into a longitudinal and a lateral slope
with respect to the potential orientation of the rover. The two
slope angles are used as inputs to a pre-learned nonlinear slip
model for the particular terrain type determined by the ter-
rain classification algorithm. The output of the module is the
predicted slip for a given orientation of the rover and a slip
related cost at a given location3. In our implementation, we
provide the main module a mechanism to query slip at a de-
sired map location.

During training, the rover collects appearance and geometry
information about a particular location while it is observed by
the rover from a distance. The corresponding slip of the rover
is also measured when this location is being traversed. We
use visual odometry (VO) between two consecutive steps to
estimate the actual rover velocity. The commanded velocity
of the rover is computed by using the full vehicle kinemat-
ics. The collected data pairs of visual information and slip
measurements are given to the learning module which learns
a terrain type classifier and independent slip models for each
terrain type [1], [2]. More details of the two training compo-
nents are given in the next two subsections. A rover position
estimation is computed within the slip prediction module by
accumulating the VO estimates. This is necessary to be able
to map the current rover location to a location previously ob-
served by the rover from a distance. The slip prediction mod-

3The slip related cost is a crude estimate of rover mobility without re-
gards to particular robot orientation and is intended to be used in a D* path
planning algorithm. It selects the maximum slip within a range of rover ori-
entations.
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ule can also use a Kalman filter position estimate based on
merging multiple sensors, including VO, which can be pro-
vided by the main module [8].

Terrain Classification

Our current approach to terrain classification is based on pro-
cessing visual appearance information, namely texture and
color. We apply the texton based algorithm proposed in [22]
which uses both color and texture simultaneously to learn to
discriminate different terrain appearance patches. The algo-
rithm proceeds as follows: initially the color R,G,B values
in small pixel neighborhoods are collected and the most fre-
quent features in the whole data are selected. Consequently,
a histogram of the occurrence of any of the selected features
within a patch corresponding to a map cell is built and com-
pared by using a Nearest Neighbor classifier to a database
of training patches [22]. Intuitively, a patch from a bedrock
class will have a high frequency of pixels typical of previ-
ously observed bedrock patches, but it might also contain a
small number of pixels which are typical of an unfamiliar
to the system “rock” class which happens to be also shared
with the soil and sand classes too (either of the terrain types
patches might have small rocks dispersed in them). That is,
this representation allows for building more complex appear-
ance models and taking correct decisions given the observed
statistics from the data.

Evaluation of the terrain classifier for this particular data do-
main has been provided in [2]. The terrain classification re-
sults are satisfactory and give initial successful slip predic-
tion results [2]. The appearance-based terrain classifier can
be improved by adding more sensors, both visual, e.g. multi-
spectral imagery, or mechanical, e.g. vehicle vibrations. This
is the topic of our current work.

Apart from being an instrumental part to the slip prediction
module, the terrain classification provides important informa-
tion to the HFTA algorithm (see Section 6). After the terrain
type has been recognized, a canonical set of soil parameters
associated with it are passed to the kinematic and dynamic
simulation of the rover on the part of the terrain which has
been deemed “uncertain”.

Learning the Slip Models

As each terrain type has a potentially different slip behav-
ior [3], [24], we learn a slip model for each terrain indepen-
dently. The slip models are built by learning a nonlinear ap-
proximation function which maps terrain slopes to the mea-
sured slip. The goal is to learn slip as a function of the terrain
slopes: S = S(xlongit., xlateral). In our case we consider
slip in the longitudinal direction only (parallel to the typical
direction of travel), but the method can be trivially extended
to learning of lateral slip or slip in yaw [1]. We have applied
a Receptive Field Regression technique [23], but a standard
nonlinear regression technique, such as a Neural Network,
can also be used.

Implementation Details

The software architecture of the algorithm is designed to pro-
vide efficient slip prediction. Because terrain classification
from visual information is generally time consuming, the fo-
cus has been on decreasing the amount of computation de-
voted to image processing related to terrain classification. In
particular, our main idea is of evaluating the terrain type per
map cell, rather than evaluating the terrain type in the whole
image. This design concept can give significant advantages.
Some speed-up can be achieved, as parts of the image do not
belong to the map, e.g. the pixels above the horizon. Addi-
tionally, the terrain classifier will not be invoked if slip pre-
diction is not needed in a certain area, e.g. an area which the
main module has already marked as populated with obstacles
or which is otherwise deemed uninteresting. Thirdly, a map
cell at a close range covers a large part of the image compared
to the ones at far ranges and can be processed selectively to
speed up the processing without hurting the overall perfor-
mance. More specifically, the map cell structure we use saves
only its 3D location and pointers to images which have ob-
served it (see Figure 4). When the terrain type needs to be
predicted in a particular map cell, a projection of the map cell
to the image is done and an image patch corresponding to this
cell is retrieved.

Additionally, this paradigm allows for stereo imagery data to
be received asynchronously or intermittently. In other words,
one rover step can use multiple images, for example: when
taking a panorama of the environment, if the rover is stalled
and receives multiple identical images, if it does not receive
imagery at all, etc. In any of these cases, the map is up-
dated with new information, if such is available, and when-
ever a terrain classification is invoked, only the most recent
terrain patch is used. The result of the terrain classification is
saved with its corresponding confidence and might be com-
bined with a potentially new evaluation if the confidence is
insufficient. This is in contrast to processing fully all of the
incoming images, extracting visual features and saving them
to the map cells.

5. PATH PLANNING
Once the cost map is populated with information derived from
terrain geometry and the slip prediction algorithm, as de-
scribed above, an optimal path can be planned through this
map from any start to any goal. We use a standard implemen-
tation of the D* algorithm [21] to plan this path. It is beyond
the scope of this paper to go into the algorithmic details of
this planner. In summary, it is a derivative of the well known
A* search algorithm, with the capability to do efficient, in-
cremental replanning.

6. HIGH-FIDELITY TRAVERSABILITY
ANALYSIS

If any section of the path goes through “uncertain” regions of
the triage map, then the HFTA algorithm is invoked onboard
the rover. HFTA is a full kinematic and dynamic forward
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Figure 4. Schematic of the software design paradigm: each
map cell keeps a pointer to an image which has observed
it and the terrain classification is done only if needed. For
example, the elevation map shown has been built from nine
panoramic stereo image pairs, but effectively the visual infor-
mation from only three images will need to be processed to
fully classify the terrain.

simulation of the rover following a path. It is designed to find
the lowest cost path through these “uncertain” regions.

The simulation infrastructure is provided by ROAMS [10].
ROAMS is a kinematic/dynamic simulation for rovers inter-
acting with terrain. A detailed geometric and mass model
is used to represent the rover in the simulation. This model
includes all 15 degrees-of-freedom (DOFs) of the mobility
system of the actual rover used in the experiments, Rocky8
(which is described in greater detail in Section 8). This in-
cludes the 12 active DOFs (six steering and six drive) and
the 3 passive DOFs (rocker and two bogies). Each of the
links connecting these DOFs has a mass and center of gravity
(CG). Each of the active DOFs has a dynamic model repre-
senting a motor, which can be commanded in the same way
as the actual motors on the rover.

The terrain is modeled geometrically using a mesh. For
HFTA, this mesh is generated from stereo data, so it repre-
sents a realistic geometric model of the terrain around the
rover each time this algorithm is used. As with any stereo
data from a single point of view, obscurations will occur that
cause “range shadowing.” This is a well-known effect and
the terrain model will simply linearly interpolate over these
shadows, essentially creating a ramp between the top of ob-
ject creating the shadow and the terrain visible on the far side
of the object. This ramp is actually the worst case scenario of
the obscured terrain so it is a conservative assumption.

Mechanical soil properties can also be associated with the ter-
rain. The terrain is again gridded, with the capability of as-
signing to each cell independent values for the cohesion, fric-
tion angle, and density of the soil in that cell. This enables
the ability to represent non-homogeneous terrain at arbitrary
resolution. For the HFTA algorithm, the terrain classifier (de-
scribed in Section 4) predicts the terrain type of each of the

cells. Then, a canonical set of soil properties (derived experi-
mentally or analytically) is associated with each of the terrain
classes.

These mechanical soil properties are used in a dynamic
wheel/soil interaction model used to determine the rover sink-
age and slippage [20]. This model calculates and resolves the
18 forces (3 at each of the 6 wheels) of the vehicle interaction
with the environment. This results in an accurate calculation
of the net motion of the rover, including sinkage and slippage.

The combination of the stereo data generated terrain geome-
try and the terrain classifier generated soil properties creates
a realistic model of the rover traversing a realistic model of
the terrain.

For the forward simulation, the same slip-compensated path
following algorithm that is used to control the actual rover [7],
is used to control the simulated rover. So a path is passed to
the simulation, the path-following algorithm follows the path
over the sensor generated terrain that models the slippage of
the simulated rover over this terrain. While this is being sim-
ulated, several metrics are being recorded that will enable the
assessment of the traversability of that particular path.

The most important of these metrics is the energy required
for the rover to traverse the given path. The first half of
Equation 1 shows the energy calculation as the integration
of the product of wheel torque and wheel velocity. Because
the wheel terrain interaction (and thus vehicle slip) is being
modeled, and because the slip is being compensated for, this
metric penalizes for both high slip terrain (because the wheels
must turn for a longer period of time to reach the goal) and
for rough terrain (because the wheel torques are higher on
locally steeper terrain, i.e. rocks, gullies, etc.). This metric
also accounts for both forward and backward slip, where for-
ward slip actually decreases the cost of traversal because the
wheels turn for a shorter period of time to reach the goal. The
path cost is calculated using:

C = We(

6∑
n=1

∫
Tn ·ωndt)+Wp(

∫
(‖ pdes−pact ‖)dt) (1)

where Tn and ωn are the torque and speed of wheel n, respec-
tively; pdes and pact are the desired and actual rover positions,
respectively; and We and Wp are weighting terms.

Another metric that is used is path error (the second half of
Equation 1). Because the slip-compensated path follower is
being run in the simulation, path error is an indication of ter-
rain that is more difficult to traverse, even when compensating
for slip.

Other metrics that can be used are minimum ground clear-
ance, minimum distance to extreme hazards, and maximum
ground interaction forces. Ground clearance is the distance
from the ground to the underbelly of the rover. This is a po-
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tential hazard because it can “high center” the rover which
can be a very serious threat to mobility. This type of for-
ward simulation is the only way to accurately estimate the
minimum ground clearance of a path. Distance to extreme
hazards (such as large drop-offs, high-slip areas, wheel traps,
etc.) is another metric to determine the risk of traversing a
path and can be used to evaluate the relative cost of a path.
Large ground interaction forces that can be caused by travers-
ing over rough, stiff terrain (such as very rocky terrain) could
also be used as a metric to increase the lifetime of the vehicle
by selecting paths that place lower demands on the actuators
and structure of the vehicle.

When the HFTA algorithm is invoked, the input is a single
path through an “uncertain” region. The algorithm then ran-
domly perturbs this single path to create multiple paths with
the same start and finish points. It then runs the forward sim-
ulation of the rover through each of the paths, calculating a
single scalar value of cost for each of the paths. It then out-
puts the path of the lowest cost.

7. SLIP-COMPENSATED PATH FOLLOWING
When the final path is created, the slip-compensated path fol-
lowing algorithm is invoked to enable the rover to actually
follow this path regardless of the slip. This algorithm com-
pares visual odometry (a technique that measures rover mo-
tion including slippage) and vehicle kinematics (a technique
that measures rover motion minus slippage) to estimate the
location and the slippage of the rover; it then compensates
for this slippage and accurately follows the desired path to
the goal.

This system is described in detail in [7], [9].

8. RESULTS
Slip Prediction Results

We have tested the slip prediction module independently on a
LAGR4 vehicle. The dataset is collected outdoors in a natu-
ral park on five different terrains, including sand, soil, gravel,
asphalt and woodchips. The slip models and the terrain clas-
sifier have been trained on 3000 frames. The summary re-
sults are presented in [2], and are the results of slip predic-
tion over 2000 test frames, non-intersecting with the training
data, while the rover traverses any of the above mentioned
terrains. The average slip prediction error achieved is about
21%, which is a satisfactory result, given the amount of noise
in the measured slip. Moreover, misclassification in the ter-
rain type contributes to a large part of the error. In particu-
lar, if the terrain type were correctly classified, the prediction
error decreases to about 11% on average. Terrain misclassi-
fication errors mainly occur between visually similar terrains
such as sand and soil, especially for the parts of the soil areas
which were covered with dust. See [2] for detailed results.

4LAGR stands for Learning Applied to Ground Robots and is an experi-
mental all-terrain vehicle program funded by DARPA.

The final slip prediction is performed on the whole forthcom-
ing map and a slip related cost is calculated. The cost based
on the predicted slip is handed down to the terrain triage al-
gorithm which further determines areas of the terrain which
need more refined terrain traversability assessment and is fi-
nally given to a path planner. Figure 5 shows the map gen-
erated by the rover driving in deep sand and on upslope soil
terrain. The corresponding terrain classification and slip pre-
diction results are also shown for each map cell. As seen, it
has been predicted that driving on flat sand incurs a large cost
and the rover should prefer the neighboring woodchip terrain.
Driving upslope on soil terrain causes about 40% slip which
is mapped to a slip cost in the mid-ranges and which will
further invoke the HFTA algorithm to determine the safest
path. Also note that most terrain classification errors occur
at ranges larger than 6m, where the image patch correspond-
ing to a map cell is of very small size (for the LAGR rover
configuration).

Integrated System Results

An integrated system including Navcam panorama capture,
goal designation, goodness/triage map generation, path plan-
ning, and slip-compensated path following was performed
onboard a research rover (Rocky8) in the Mars yard (see Fig-
ure 1). Rocky8 is a research platform that is used by many
Mars Technology Program (MTP) tasks to demonstrate the
software and algorithms on relevant hardware in a relevant
environment (see [7] for a more detailed description of the
rover). It is similar in design to the MER rovers and the fu-
ture MSL rover.

For this demonstration the rover started at one side of a
rock field on a sandy slope (see Figure 10). It first took
a panoramic image consisting of ten stereo Navcam pairs
spaced 10◦ apart, resulting in a 90◦ panorama. Then a user
designated a goal from this panoramic imagery (see Figure 6).
In this test the goal was designated at (12.0, -4.0) meters in
the initial rover frame.

The point clouds are registered using the mast pan/tilt angles,
and the rover roll and pitch (from the IMU) are used to grav-
ity level the data. A goodness map and a triage map were
generated from the stereo data (see Figures 7 and 8). These
maps used 10 cm cell sizes. Then a path was planned through
the goodness map using the D* algorithm.

Once the path was planned, it was passed to the slip-
compensated path follower. The path follower compensated
for slippage and successfully reached the goal. It was running
Visual Odometry at 1 Hz and vehicle kinematics at 4 Hz, and
resulted in a continuous motion from the start point to the
goal. The results of the traverse can be seen in Figure 9. As
can be seen, the rover traverses the path and arrives at the goal
(see Figure 10). The actual path in this plot is the output of
Visual Odometry. For a validation of the accuracy of Visual
Odometry see [7],[16]. The maximum rover roll during this
traverse was 16.3◦ and the maximum rover pitch was 7.2◦.
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Figure 5. Example results of continuous slip prediction on the map as the rover drives (the path and the final rover position
are marked in green). An input image and the corresponding map containing average color per cell (left), the automatic terrain
classification (middle), the final slip cost based on the predicted slip (right) (brighter means larger cost). Top: the rover is
traversing flat sandy terrain. Bottom: the rover is driving upslope on soil terrain.

Figure 6. Panorama Taken by the Rover with the Designated Goal

HFTA Results

The HFTA algorithm was run on an analytical (i.e. not de-
rived from stereo data) terrain consisting of a large hemi-
sphere. It was run offboard, so it was not integrated with
the rest of the system. The forward simulation of the rover
was run four times over four different paths (see Figure 11).
Table 2 shows the energy and path error metrics for each of
the paths. It is important to note that the absolute accuracy of
these metrics is not important because they are only used to
compare relative path costs to determine the lowest cost path
of the set. As can be seen, going directly over the hemisphere
(path 1) is the most costly path in terms of energy and travel-
ing on the side of the hemisphere (paths 2 and 3) is the most
costly in terms of path error. Traveling on the flat ground
around the hemisphere has low cost for both energy and path

error, and is clearly the most desirable path of the four. For
this terrain, these results are supported by intuition. When
the terrain complexity increases this algorithm will be able to
distinguish subtle differences between paths that would not be
possible using simpler methods. On average, this algorithm,
takes approximately 4 seconds per meter of path analyzed.
Decreasing this runtime will be a focus of future work.

Table 2. Path and Energy Costs for HFTA Simulation

Path Energy (J) Path Error (m-s)
1 5101.46 1.91
2 3324.51 12.32
3 1587.44 12.79
4 938.52 2.21
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Figure 7. Goodness Map with Planned Path
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Figure 8. Triage Map with Planned Path

9. CONCLUSIONS
We show results from individual tests of various subsystems
including: slip prediction and HFTA. Results from the slip
prediction subsystem show that we are able to successfully
predict slip at a distance using data gathered in the field from
a rover. Results from the HFTA algorithm show that we can
compare traversability of different paths by measuring met-
rics from a dynamic forward simulation of the rover.

We also show results from experiments of a subset of the de-
scribed technologies integrated onboard a research rover in
the Mars yard. These results demonstrate the feasibility of
this approach as an end-to-end navigation system in a realis-
tic Mars analog terrain.

10. FUTURE WORK
Future work will include the integration of the terrain clas-
sification, the slip prediction, and the HFTA algorithms into
the onboard research rover software, and to demonstrate the
entire integrated system in the Mars yard or in the field.
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Figure 10. Rocky8 in the JPL Mars Yard at the Goal
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