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Abstract—We consider linear time-invariant multiple-input multiple-

output systems that are controllable and observable, where each output

component is saturated. We demonstrate by constructive design that such

systems can be globally asymptotically stabilized by output feedback

without further restrictions. This result is an extension of a previous

result by Kreisselmeier for single-input single-output systems. The control

strategy consists of driving the components of the output vector out of

saturation one by one, to identify the state of the system. Deadbeat control

is then applied to drive the state to the origin.

I. INTRODUCTION

Saturations are ubiquitous in physical control systems, and occur

both in actuators, states, and outputs. In this note we focus on

linear time-invariant multiple-input multiple-output (MIMO) systems

with saturated outputs. An output saturation typically occurs when a

measured quantity exceeds the range of the sensor used to measure it.

It can also occur as a result of a nonlinear measurement equation. An

example of the latter can be found in the automotive industry, where

the measured lateral acceleration of a car can be used to estimate its

sideslip angle [1]. The response of the lateral acceleration to changes

in the sideslip angle is approximately linear for small sideslip angles,

but a saturation occurs for large sideslip angles.

Several results in the literature deal with the issue of output

saturations. Kreisselmeier demonstrated in [2] that it is possible to

design a control law for any linear time-invariant single-input single-

output (SISO) system with a saturated output to make it globally

asymptotically stable, provided the linear system is controllable and

observable. It is not obvious that this should be possible, because

globally stabilizable and observable systems may not be globally

stabilizable by output feedback, as demonstrated in [3]. Observability

of systems with saturated outputs was studied in detail in [4].

In [5], Lin and Hu presented a design that applies to stabilizable

and detectable SISO systems with all the invariant zeros located in

the closed left-half plane. The design in [5] is semiglobal, but it is

based on a linear control law, unlike the discontinuous control law

from [2]. As pointed out by the authors, the approach in [5] cannot

easily be extended to MIMO systems. In [6], the result in [5] was

extended to handle tracking of signals produced by marginally stable

exosystems.

In [7], Kaliora and Astolfi presented an approach for global

stabilization of linear systems with output saturations, under the

conditions that the linear system is controllable and observable, and

that the open-loop system is stable. The design in [7] is formulated

for SISO systems, but it is also applicable to MIMO systems, as

remarked by the authors. Recent results on anti-windup strategies

for systems with output saturations (see, e.g., [8]), as well as an

H∞-based approach [9] for systems with output nonlinearities, also

deal with MIMO systems. However, these methods can in general

provide neither global nor semiglobal stabilization, unless the open-

loop system is already asymptotically stable.
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To the best of our knowledge, no previous results address stabiliza-

tion of general controllable and observable linear MIMO systems with

output saturations, either globally or semiglobally. The purpose of this

note is to demonstrate by constructive design that such stabilization

is possible without further restrictions, by extending the result of

Kreisselmeier for SISO systems. In Kreisselmeier’s design, the output

is first brought out of saturation using a control strategy that relies

only on the sign of the output. When the output comes out of

saturation, the state of the system is identified exactly by using a

deadbeat observer. This is possible, even if the output is out of

saturation only for a brief interval, because the system behaves like

a linear observable system during that time. Once the state of the

system has been identified, it is brought to the origin in finite time by

using a deadbeat control strategy. At first glance, the MIMO case looks

considerably more complicated. The analogous strategy would be to

drive the output of the linear system into the hyperrectangle where

every output component is unsaturated. It is exceedingly difficult

to do so, however, because one needs to coordinate several output

components to make them simultaneously unsaturated, based only

on their signs.

The central point in this note is that it is unnecessary to make the

output components simultaneously unsaturated. Instead it is sufficient

to bring each component out of saturation at least once, even if some

or all of the other components are saturated when this happens. Our

control strategy is therefore to drive the components out of saturation

one by one. The data gathered from each component when it was

unsaturated is then pieced together to identify the state of the system.

Finally, the state is brought to the origin by deadbeat control.

We emphasize that the focus of this note is not on issues of

performance; rather, the goal is to prove that global asymptotic

stabilization by output feedback is possible for the class of systems

under considerations, and to illustrate the principle that information

from multiple output components that come out of saturation at

different points in time can be combined to identify the state of the

system. Nevertheless, we present a numerical simulation example that

illustrates the workings of the control law, and we discuss various

numerical issues related to implementation of the control law.

II. PROBLEM FORMULATION

We consider a linear time-invariant system with saturated outputs:

ẋ(t) = Ax(t)+Bu(t), x(t) ∈ R
n
, u(t) ∈ R

m
, (1a)

y(t) = sat(Cx(t)), y(t) ∈ R
p
, (1b)

where sat( ·) represents a standard component-wise saturation. That

is,

y(t) =







sat(C1x(t))
...

sat(Cpx(t))






,

where sat(Cix(t)) = sign(Cix(t))min{1, |Cix(t)|} and Ci, i = 1, . . . , p,

are the rows of C.

Assumption 1: The pair (A,B) is controllable, and the pair (C,A)
is observable.

We assume that the system is initialized at time t = 0. We seek to

render to the origin of the system (1) globally asymptotically stable

by output feedback.

III. CONTROL

For the purpose of control, we divide the time t > 0 into intervals

(kT,kT +T ], where k = 0,1,2, . . ., and T > 0 is a constant chosen by
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the designer. On each interval, the control is given as in [2] by

u(kT + τ) =−BTe−ATτUk, τ ∈ (0,T ], (2)

where Uk is constant on the interval (kT,kT +T ]. We define Uk as

follows:

Uk = (3)
{

B̄−1αk(αh jk − eAT h jk )y jk (kT ), ∏
p
i=1 σi(kT ) = 0,

B̄−1eAT (eAkT D−1(kT )ξ (kT )+µ(kT )), ∏
p
i=1 σi(kT )> 0,

where jk is defined as the smallest i ∈ 1, . . . , p such that σi(kT ) = 0.

The vectors hi ∈R
n, i = 1, . . . , p, are chosen by the designer in such

a way that Cihi > 0. The scalar α is defined as α = ρ‖exp(AT )‖,

where ρ > 1 is a number chosen by the designer. The constant matrix

B̄ ∈ R
n×n is defined as

B̄ =
∫ T

0
eA(T−τ)BBTe−ATτ dτ. (4)

We note that B̄ is invertible, due to controllability of the pair (A,B).
The quantities σi(t) ∈ R, i = 1, . . . , p, ξ (t) ∈ R

n, µ(t) ∈ R
n, and

D(t) ∈ R
n×n are given by the following expressions:

σi(t) =
∫ t

0
(1−|yi(τ)|)dτ, i = 1, . . . , p, (5a)

ξ (t) =
p

∑
i=1

∫ t

0
(1−|yi(τ)|)e

ATτCT
i (yi(τ)−Ciµ(τ)) dτ, (5b)

µ(t) =
∫ t

0
eA(t−τ)Bu(τ)dτ, (5c)

D(t) =
p

∑
i=1

∫ t

0
(1−|yi(τ)|)e

ATτCT
i Cie

Aτ dτ. (5d)

In the following section, we provide a simple explanation of how

the control algorithm works. The details of this explanation will

become clear from the proof of Theorem 1 in Section III-B.

A. Explanation of the Control Law

The control strategy is based on dividing the time t > 0 into

intervals (kT,kT +T ]. At the beginning of each interval, the control to

be applied over the interval is determined by calculating the vector

Uk according to (3). The scalar functions σi(t), i = 1, . . . , p, play

a crucial role in this process. Each signal σi(t) is an indicator of

whether the corresponding output component yi(t) has been out of

saturation at any time since initialization at time t = 0. If yi(t) has

been saturated the whole time, then σi(t) = 0; if yi(t) has been out

of saturation at any point since initialization, then σi(t)> 0.

1) Driving the Outputs Out of Saturation: The initial task of the

controller is to ensure that each output component yi(t) comes out

of saturation at least once. This task is accomplished sequentially, by

first ensuring that y1(t) comes out of saturation, then ensuring that

y2(t) comes out of saturation, and so on. At the start of an interval

(kT,kT +T ], the value jk is set to the smallest i such that σi(kT ) = 0,

meaning that yi(t) has not yet been out of saturation. Assuming such

an i exists, Uk is set to Uk = B̄−1αk(αh jk −eAT h jk )y jk (kT ), according

to (3). This choice of Uk is the same as the one used in [2] to drive

the output of a SISO system out of saturation. The strategy behind this

choice is to drive the output in the direction of the origin, based only

on the sign of the output. For each interval that passes, the control

amplitude grows larger, due to the factor αk. The increasing control

amplitude is needed in order to catch up with any instabilities in the

system that may be driving the output away from the origin.

2) Deadbeat Control: Eventually, every output component will

have been out of saturation at least once, and thus there will be an

integer k̂ such that at time k̂T , we have σi(k̂T )> 0 for all i ∈ 1, . . . , p.

This can also be expressed as ∏
p
i=1 σi(k̂T )> 0. At this point, U

k̂
is

chosen as U
k̂
= B̄−1eAT (eAk̂T D−1(k̂T )ξ (k̂T )+µ(k̂T )), according to

(3). To justify this choice, we first note that the initial condition of

the system can be related to the quantities in (5) by the expression

ξ (k̂T ) = D(k̂T )x(0) (this relationship will become clear from the

proof of Theorem 1 below). Since every component of the output has

been out of saturation at least once, D(k̂T ) is a nonsingular matrix,

and hence x(0) can be calculated as x(0)=D−1(k̂T )ξ (k̂T ). Once x(0)
is known, x(k̂T ) can also be calculated from the standard variation-of-

constants formula [10] as x(k̂T )= eAk̂T x(0)+
∫ k̂T

0 eA(k̂T−τ)Bu(τ)dτ =

eAk̂T D−1(k̂T )ξ (k̂T )+ µ(k̂T ). We have therefore identified the state

of the system at time k̂T precisely. We can now rewrite U
k̂

as U
k̂
=

B̄−1eAT x(k̂T ), which yields the same deadbeat control as in [2] and

ensures that x(k̂T +T ) = 0. The difference between this note and [2]

lies in how the information from different output components, which

become unsaturated at different times, is pieced together to allow

deadbeat observation of the state of the system.

Remark 1: We remark that α in this note is chosen somewhat

differently from [2], where α was defined as α = exp(2‖A‖T ). The

point of redefining α is to ensure that the factor αk does not grow

much faster than what is necessary to drive the output components

out of saturation. The definition used here also ensures that α >

‖exp(AT )‖, even when A = 0. Technically, an additional condition

of this kind is also needed in [2], to handle the particular case where

the system consists of a single integrator.

B. Stability

We now state the stability results of the closed-loop system in a

formal manner.

Theorem 1: The origin of (1) with the control (2)–(5) is globally

asymptotically stable.

Proof: Given t1 and t2 such that t2 ≥ t1 ≥ 0, we know from the

standard variation-of-constants formula [10] that

x(t2) = eA(t2−t1)x(t1)+
∫ t2−t1

0
eA(t2−t1−τ)Bu(t1 + τ)dτ. (6)

Applying this formula over an interval by setting t1 = kT and t2 =
kT + T , and inserting the expression (2) for the control law, it is

easily confirmed that we obtain, as in [2],

x(kT +T ) = eAT x(kT )− B̄Uk. (7)

We shall use the expression (7) in the remainder of the proof, which

is divided into two parts, similar to [2]. First, we show that the origin

is globally attractive, and then we show that it is a Lyapunov stable

equilibrium point.

The origin is globally attractive: We start by showing that there

is an integer k̂ such that each output component has been out of

saturation on [0, k̂T ]. For the sake of establishing a contradiction,

suppose that this is not the case. Then there is a set of output

components that remain in saturation for all time. Let l denote the

smallest integer such that yl(t) remains in saturation for all time.

Then there is an integer k̄ such that for all k ≥ k̄, σi(kT ) > 0 for

all i = 1, . . . , l − 1. It follows that jk = l for all k ≥ k̄. We now

establish the contradiction by showing that yl(t) will eventually

become unsaturated. This is established in the same way as in the

proof from [2].

Since jk = l for all k ≥ k̄, we have from (3) that for all k ≥ k̄,

Uk = B̄−1αk(αhl −eAT hl)yl(kT ). Inserting this expression for Uk into
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(7), we see that for all k ≥ k̄, x(kT + T ) = eAT x(kT )−αk(αhl −
eAT hl)yl(kT ), which can be reformulated as

x(kT +T ) = eAT (x(kT )+αkhlyl(kT ))−αk+1hlyl(kT ). (8)

Since yl(t) is assumed to be saturated for all time, we can replace

yl(kT ) in (8) by yl(k̄T ). We can furthermore calculate the solution

recursively as

x(kT +T ) = eAk̃T (x(k̄T )+α k̄hlyl(k̄T ))−αk+1hlyl(k̄T ),

where k̃ = k− k̄+1. Premultiplying this expression by yl(k̄T )Cl and

making the substitution k+1 = k̃+ k̄ gives

yl(k̄T )yl(kT +T ) =

Cle
Ak̃T (x(k̄T )yl(k̄T )+α k̄hl)−α k̃+k̄Clhl .

We now upper-bound the first term on the right-hand side, using the

expression α k̃ = ρ k̃‖exp(AT )‖k̃, which yields

yl(k̄T )yl(kT +T )≤

‖eAT ‖k̃
(

‖Cl‖(‖x(k̄T )‖+α k̄‖hl‖)−ρ k̃α k̄Clhl

)

.

Considering the expression inside the parenthesis, we see that the first

term remains constant as k, and therefore k̃, grows larger, whereas the

second term becomes more and more negative (recall that Clhl > 0).

Thus, we eventually have yl(k̄T )yl(kT +T ) < 0, which implies that

the sign of yl(kT + T ) is different from the sign of yl(k̄T ). This

contradicts the assumption that yl(t) remains saturated for all time,

and we have therefore proven that there exists an integer k̂ such that

all the output components have been out of saturation at least once

on [0, k̂T ].
It follows from the above discussion that ∏

p
i=1 σi(k̂T ) > 0. Thus,

we have from (3) that

U
k̂
= B̄−1eAT (eAk̂T D−1(k̂T )ξ (k̂T )+µ(k̂T )).

As discussed in Section III-A2, the idea behind this choice is to

make U
k̂

satisfy the expression U
k̂
= B̄−1eAT x(k̂T ). This would

result in deadbeat control as in [2], which is easily seen by

inserting the expression U
k̂
= B̄−1eAT x(k̂T ) into (7), to obtain

x(k̂T +T ) = eAT x(k̂T )− eAT x(k̂T ) = 0. We now need to show that

eAk̂T D−1(k̂T )ξ (k̂T )+µ(k̂T ) = x(k̂T ).
Using (6) with t1 = 0 and t2 = t, it is easily confirmed that we

have x(t) = eAtx(0)+ µ(t). Premultiplying this expression by (1−

|yi(t)|)e
ATtCT

i Ci for any i ∈ 1, . . . , p and rearranging yields

(1−|yi(t)|)e
ATtCT

i (yi(t)−Ciµ(t)) =

(1−|yi(t)|)e
ATtCT

i Cie
Atx(0),

where we have used the fact that Cixi(t) = yi(t) whenever (1 −
|yi(t)|) 6= 0. If we now integrate this expression from 0 to k̂T and

take the sum over i from 1 to p, we obtain the expression ξ (k̂T ) =
D(k̂T )x(0). Assuming for the moment that D(k̂T ) is nonsingular, we

can calculate the initial condition as x(0) = D−1(k̂T )ξ (k̂T ). Again

using (6) with t1 = 0 and t2 = k̂T , we obtain the desired expression

eAk̂T D−1(k̂T )ξ (k̂T )+µ(k̂T ) = x(k̂T ).
We still have to show that D(k̂T ) is nonsingular. We can write

D(k̂T ) = ∑
p
i=1 Di(k̂T ), where

Di(k̂T ) =
∫ k̂T

0
(1−|yi(τ)|)e

ATτCT
i Cie

Aτ dτ. (9)

Each matrix Di(k̂T ) is positive semidefinite, because the integrand

in (9) is positive semidefinite. It follows that D(k̂T ) is also positive

semidefinite. We shall prove that D(k̂T ) is in fact positive definite,

by showing that zTD(k̂T )z > 0 for each z 6= 0.

Since each component of the output has been out of saturation on

the interval [0, k̂T ] and the solutions are continuous, there exists a

number m > 0 and a set of intervals (ti, ti +ε)⊂ (0, k̂T ), i = 1, . . . , p,

of length ε > 0 such that for all t ∈ (ti, ti + ε), 1− |yi(t)| > m. It

therefore follows that

zTD(k̂T )z =
p

∑
i=1

zTDi(k̂T )z

> m

p

∑
i=1

∫ ti+ε

ti

zTeATτCT
i Cie

Aτ zdτ.

(10)

Suppose for the sake of establishing a contradiction that there exists a

z 6= 0 such that the right-hand side of (10) is zero. This implies that for

each i ∈ 1, . . . , p and for all t ∈ (ti, ti + ε), zTeATtCT
i Cie

Atz = 0. This

furthermore implies that for each i= 1, . . . , p and for all t ∈ (ti, ti+ε),
Cie

Atz= 0, which means that for all t ∈ (ti, ti+ε), eAtz must belong to

the unobservable subspace of the pair (Ci,A). Since the unobservable

subspace is A-invariant (see [10, Ch. 21]), the vector z must also

belong to the unobservable subspace with respect to the pair (Ci,A).
However, if the vector z belongs to unobservable subspace of (Ci,A)
for each i ∈ 1, . . . , p, then it belongs to the unobservable subspace of

(C,A), which consists only of the origin. This shows that the right-

hand side of (10) cannot be zero unless z = 0, and it follows that

D(k̂T ) is positive definite (and therefore nonsingular).

The above argument proves that U
k̂

satisfies U
k̂
= B̄−1eAT x(k̂T ),

so that deadbeat control is applied over the interval (k̂T, k̂T +T ]. This

yields x(k̂T +T ) = 0. The same argument can be used to show that

U
k̂+1 = B̄−1eAT x(k̂T +T ) = 0, and thus the control u(t) = 0 is applied

over the interval (k̂T +T, k̂T +2T ]. It follows that x(t) remains at the

origin on this interval, and by induction, on every subsequent interval.

The origin is a Lyapunov stable equilibrium point: Lyapunov

stability is established by the same approach as in [2]. Suppose

that ‖x(0)‖ is sufficiently small such that all the output components

are unsaturated at t = 0 (i.e., |yi(0)| < 1, i = 1, . . . , p). Clearly

σi(0) = 0 for all i ∈ 1, . . . , p. Hence, j0 = 1, and U0 is given by

U0 = B̄−1(αh1 − eAT h1)y1(0), according to (3). It follows that ‖U0‖
is bounded by an expression proportional to ‖y1(0)‖, and therefore

also by an expression proportional to ‖x(0)‖. Using (6), it is now

straightforward to show that there is a γ1 > 1 such that for all

t ∈ (0,T ], ‖x(t)‖ ≤ γ1‖x(0)‖. Since every output component is out

of saturation for at least part of the first interval, we have σi(T )> 0

for all i ∈ 1, . . . , p. By the above discussion of global attractivity,

we therefore have U1 = B̄−1eAT x(T ), and it follows that ‖U1‖ is

bounded by an expression proportional to ‖x(T )‖. Using (6), it

is now straightforward to show that there is a γ2 > 1 such that

for all t ∈ (T,2T ], ‖x(t)‖ ≤ γ2‖x(T )‖. For all t > 2T , we have

x(t) = 0. Combining the above inequalities, we therefore find that

for sufficiently small ‖x(0)‖, ‖x(t)‖ ≤ γ1γ2‖x(0)‖ for all t ≥ 0. This

shows that the origin is a Lyapunov stable equilibrium point.

IV. NUMERICAL ISSUES AND TUNING

As mentioned above, the input applied to the system to drive the

outputs out of saturation grows larger with each time interval, in order

to catch up with any instabilities in the system. As a consequence of

this, the state of the system may grow large, and an output component

may come out of saturation only briefly before again becoming

saturated. The calculation of the state of the system may therefore be

poorly conditioned and sensitive to measurement noise, disturbances,

and model inaccuracies.

Applying a growing input is only necessary in order to handle

instabilities; for systems that are open-loop stable (for example, as

in [7]), there is no danger of the state escaping, and so a small input

may be applied over a long period of time to bring all the outputs out
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of saturation. An alternative to applying a growing input is to adjust

the controller parameters according to the size of an admissible set

of initial conditions, leading to semiglobal results, as in [5].

We follow the approach of [2] in applying deadbeat control to bring

the state to the origin. However, deadbeat control is rarely used in

practical implementations, in particular, due to robustness problems.

There is no theoretical requirement that deadbeat control be used in

the present case; once the state of the system has been identified, it

is in principle known for all future time, and thus any state-feedback

controller may be applied instead of the deadbeat controller.

Several of the quantities used in the controller can be adjusted by

the designer, in particular, T , ρ , and hi, i = 1, . . . , p. These quan-

tities can be viewed as tuning parameters with associated tradeoffs.

Choosing T small ensures that, once an output has been driven out of

saturation, the controller quickly jumps to the next task, which may be

to drive another output out of saturation or to apply deadbeat control.

On the other hand, using a small T may cause the identification of

the system state to be based on a smaller amount of data, thereby

increasing sensitivity to uncertainties such as measurement noise.

Choosing ρ low limits the growth rate of the input, but may increase

the time spent on bringing the outputs out of saturation. The direction

of the vector hi affects the direction of the input applied to bring the

output yi(t) out of saturation. Without further knowledge about the

state, however, it is difficult to interpret how different choices affect

the outcome. One option is therefore to use hi = CT
i , possibly with

a scaling to adjust the magnitude of the applied input.

We end this section by remarking that, although the integrals in

(5) are always well-defined, some of them may grow unbounded as

t →∞. The reason for this is that the controller needs to piece together

data from different output components that become unsaturated at

different times. The integrals in (5) are used to gather the necessary

data from the time of initialization, without any form of forgetting.

In a practical implementation it is obviously undesirable to have

unbounded internal signals. However, the integrals in (5) are only

needed up until the point when deadbeat control is applied. After

deadbeat control has been applied, the state is at the origin and the

outputs are all out of saturation. Thus, the issue of unbounded internal

signals can easily be resolved by switching to a different controller

(e.g., a linear control law) after deadbeat control has been applied.

Alternatively, the controller algorithm in (2)–(5) may be reset with

regular intervals from this point on.

V. SIMULATION EXAMPLE

Consider the system

ẋ1(t) = x2(t)+ x3(t), ẋ2(t) = u1(t), ẋ3(t) = u2(t),

y1(t) = x1(t), y2(t) = x1(t)+ x2(t).

This system has an eigenvalue with multiplicity one and an eigenvalue

with multiplicity two, both at the origin; thus the system is open-

loop unstable. We implement the controller algorithm using T = 0.5,

ρ = 1.1, h1 =CT

1 , and h2 =CT

2 and simulate with initial conditions

x1(0) = 2, x2(0) = −4, and x3(0) = 1. The results can be seen in

Figure 1, where the intervals are marked by vertical dashed lines.

The controller begins by driving y1(t) out of saturation, and

achieves this in the first time interval. The controller then proceeds

with driving y2(t) out of saturation, which is achieved in the fifth

time interval. At this point y1(t) is again saturated. In the sixth time

interval deadbeat control is applied, so that for t ≥ 6T , the state is at

rest at the origin.

VI. CONCLUDING REMARKS

We have demonstrated that the origin of a linear time-invariant

MIMO system with saturated outputs can be globally asymptotically
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(b) Outputs (solid: y1, dashed: y2). Unsaturated versions of the outputs are
shown with dotted lines.

Fig. 1. Simulation results

stabilized, provided the linear system is controllable and observable.

We have done so by extending the design presented in [2] for SISO

systems. We note, however, that if the controller presented in this

note is applied to a SISO system, it does not coincide precisely with

the controller in [2]. This is because deadbeat identification of the

state in [2] is done using data only from the previous interval.

The focus of this note is not on performance; indeed, it is

unlikely that an unmodified version of the controller presented here

would be suitable for practical implementation. Nevertheless, the

results illustrate a general principle, namely, that one may drive each

component of the output out of saturation separately to identify the

state of the system, and thereafter control the state to the origin.

Within this framework, both the approach used to drive the outputs

out of saturation and the controller used to drive the state to the origin

can be modified to improve performance.
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