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Abstract

We consider systems that can be described by a linear part with a nonlinear
perturbation, where the perturbation is parameterized by a vector of unknown,
constant parameters. Under a set of technical assumptions about the perturba-
tion and its relationship to the outputs, we present a modular design technique
for estimating the system states and the unknown parameters. The design con-
sists of a high-gain observer that estimates the states of the system together
with the full perturbation, and a parameter estimator constructed by the de-
signer to invert a nonlinear equation. We illustrate the technique on a simulated
DC motor with friction.
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1. Introduction

A common problem in model-based control and estimation is the presence
of uncertain perturbations. These perturbations may be the result of external
disturbances or internal plant changes, such as a configuration change, sys-
tem fault, or changes in plant characteristics. The uncertainty associated with
the perturbations can in many cases be characterized by a vector of unknown,
constant parameters.

Unknown parameters are often dealt with by introducing parameter esti-
mates that are updated online in a suitable manner. Adaptive techniques for
linearly parameterized systems have been treated in a large body of work (see,
e.g., [1, 2]), but only a few specialized techniques have been developed for non-
linearly parameterized systems. Some of these methods are based on convexity

*Corresponding author. Tel.: +1 (509) 715-9195.
Email address: grip@ieee.org (Havard Fjeer Grip)

Preprint submitted to Elsevier June 24, 2011



or concavity of the parameterization [3, 4, 5]; these can also be extended to pa-
rameterizations that can be convexified through reparameterization (see [6]).
Other methods apply to first-order systems with fractional parameterizations
(e.g., [7, 8]). An approach that applies to higher-order systems with matrix frac-
tional parameterizations—where an auxiliary estimate of the full perturbation
is used in the estimation of the unknown parameters—was presented by Qu [9].
Tyukin, Prokhorov, and van Leeuwen [10] used the idea of virtual algorithms,
which are designed as though the time derivative of the measurements were
available, to construct a family of adaptation laws for monotonically parame-
terized perturbations. Other available methods include a hierarchical approach
based on gridding the parameter space with a set of discrete candidate param-
eters [11] and a feedback-domination design utilizing a linearly parameterized
bound on the nonlinearly parameterized terms [12]. In a recent paper, Liu, Or-
tega, Su, and Chu [13] presented a method based on Immersion & Invariance
[14], where monotonic parameterizations are generated through the solution
of a partial differential equation (see also [15]).

Grip, Johansen, Imsland, and Kaasa [16] have recently presented a design
methodology for estimating unknown parameters in systems of the form x =
f(t,x) + B(t,x)v(t,x) + ¢, where ¢ = B(t,x)g(t,x,0) is a perturbation pa-
rameterized by the parameter vector 0. This methodology is based on the
observation that, if the perturbation ¢ were directly available, then identifying
0 would be a matter of inverting the nonlinear equation ¢ = B(t,x)g(t,x, 0)
with respect to 6. This line of thought leads to a modular design consisting
of a parameter estimator and a perturbation estimator. The parameter estima-
tor is designed as though ¢ were known, to dynamically invert the expression
¢ =B(t,x)g(t,x,0) with respect to 6. The perturbation estimator is designed
to produce an estimate of ¢ to be used by the parameter estimator in lieu
of the actual perturbation. The parameter estimate is in turn fed back to the
perturbation estimator.

1.1. Topic of This Paper

Common to the techniques cited above, as well as additional results re-
viewed by Grip et al. [16], is that they are all based on the assumption of a
full-state measurement. The goal of this paper is to extend the methodology
of Grip et al. [16] to the case of a partial-state measurement.! In particular,
we shall consider systems of the form x = Ax + Bu + E¢, v = Cx, and esti-
mate both the state x and the unknown parameter vector 0. To achieve this,
we replace the perturbation estimator by a high-gain observer for an extended

1A conference version of this paper has appeared as [17].



system. The state space of the extended system consists of the original state x
together with the perturbation ¢. The overall structure of the resulting estima-
tor is illustrated in Figure 1.

The high-gain observer for the extended system is essentially a disturbance
observer designed to estimate an unknown input, with a modification to make
use of the parameter estimate. The strategy of estimating unknown perturba-
tions for the purpose of control is not new; recently, it has been used to switch
between controllers for alternative plant parameterizations by monitoring the
decrease of a Lyapunov function [18]; and for the purpose of transient perfor-
mance recovery [19, 20]. In their work [18, 19], Freidovich and Khalil employ a
high-gain observer for an extended system that includes a perturbation appear-
ing at the end of a single-input single-output integrator chain. Our high-gain
design is closely related to their methodology; however, it encompasses a much
larger class of multiple-input multiple-output systems.

The problem of estimating x together with 0 can be viewed as a nonlinear
observation problem, by defining € as an augmented state with zero derivative.
Depending on the specifics of the system, any one of a multitude of nonlinear
observation methods—for example, extended Kalman filters, observers with
linear error dynamics [2], high-gain observers [21, 22], and observers for sys-
tems with monotonic nonlinearities [23]—may therefore be used to estimate
both states and parameters. Nevertheless, the property that the parameters
are constant constitutes an important piece of structural information that jus-
tifies treating the simultaneous estimation of states and parameters as a spe-
cial case and facilitates the modular design presented in this paper. We end
by noting that Marino and Tomei [24] and Ding [25] have previously studied
output-feedback control of nonlinearly parameterized systems; however, these
designs do not involve precise estimation of the parameters.

1.2. Preliminaries

For a set of vectors z4,..., z,, we denote by col(z4,..., z,) the column vec-
tor obtained by stacking the elements of zi,...,z,. The operator || - || denotes
the Euclidean norm for vectors and the induced Euclidean norm for matrices.
For a symmetric positive-semidefinite matrix P, the maximum and minimum
eigenvalues are denoted An.(P) and Apnin(P). For a set E C R™, we write
(E—E) :={z1— 2, € R" | z1,z, € E}. When considering systems of the
form z = F(t, z), we assume that all functions involved are sufficiently smooth
to guarantee that F: R,g X R™ — R™ is piecewise continuous in t and locally
Lipschitz continuous in z, uniformly in ¢, on R.o X R"™. The solution of this
system, initialized at time t = O with initial condition z(0) is denoted z(t). We
shall mostly simplify our notation by omitting function arguments.



2. Problem Formulation

We consider the following system:

X=Ax+Bu+Ep, xecR", uekR™ ¢ecRk, (1a)
y=Cx, yeR", (1b)

where x is the state; y is the output; ¢ is a perturbation to the system equa-
tions; and u is a time-varying input that is well-defined for all t € R, and
may include control inputs, reference signals, measured disturbances, or other
known influences. For ease of notation, we introduce the vector v := col(u, y)
of known signals. The perturbation is given by the expression ¢ = g(v, x, 0),
where g: R™*" x R" x R? — R* is continuously differentiable in its arguments,
and 0 € R? is a vector of constant, unknown parameters. As we construct an
estimator, additional smoothness requirements may be needed for g, as well as
other functions, to guarantee that the piecewise continuity and local Lipschitz
conditions in Section 1.2 hold for all systems involved.

To make the technicalities of our design easier to overcome, we make the
following assumption:

Assumption 1. The time derivative u is well-defined and piecewise continuous;
there exist compact sets X ¢ R", U ¢ R™, and U’ C R™ such that for all t = 0,
x € X,u € U, and n € U’; and there exists a known compact set ® c R? such
that 0 € 0.

Assumption 1 also implies that v and v belong to compact sets, which we
denote by V and V’. In most estimation problems, it is reasonable to assume
boundedness of the states and inputs, as they are typically derived from phys-
ical quantities with natural bounds.? When designing update laws for parame-
ter estimates, we shall also assume that a parameter projection [1, App. E] can
be implemented, restricting the parameter estimates to a compact, convex set
0 > 0.

We denote by ® ¢ R¥ the compact image of V x X x ® under g. For ease of
notation, we define

av,v,x,0,¢) = %(V’X’ 0)v + Z—Z(v,x, 0)(Ax + Bu + E¢),

representing the time derivative of the perturbation ¢.

2The assumption of boundedness does not imply any assumptions of stability regarding the
model (1). It is only assumed that the trajectory of the physical system, generated by a specific
initial condition and input, remains bounded.



Assumption 2. The triple (C, A, E) is left-invertible and minimum-phase.

Assumption 3. There exists a number B > 0 such that for all (v,v,x,0,¢) €
VXV xXx0x® and for all (X,0,¢) € R" x 0 x R¥, |d(v,v,x,0,¢p) —
d(v!v!)’&! 9! cl))H < E”CO]-(X - )21 9 - 9! ¢ - cl))H'

Remark 1. The Lipschitz-like condition in Assumption 3 is global in the sense that
there are no bounds on X and cf) Although the condition may appear restrictive,
we are free to redefine g(v,x, 0) for sufficiently large values of the arguments
(i.e., outside the compact set V X X x ©) without altering the accuracy of the
system description (1). We may, for example, introduce a smooth saturation
on x outside X, in which case the condition can be satisfied by requiring that
g(v,x, 0) is sufficiently smooth. Similar techniques are frequently employed in
the context of high-gain observers (see, e.g., [22]).

In the following we first present the high-gain observer for the extended
system and then recall the requirements placed on the parameter estimator.

3. High-Gain Observer for Extended System

When we include the perturbation ¢ as a state, we obtain an extended sys-

[;] - [’3 g] [;] + [g] u+ [I(,)(] dv,v,x,0,P), (2)

with y = Cx. We implement an observer for this system of the following form:

X =AX +Bu+E} + K. (g)(y - CX), (3a)
. 0 oA A O . oA . N

zZ= —%(v,xﬁ)@ - £ Vv, X,0)Ky(e)(y — CX) + Ky (&) (y — CX), (3b)
$=9g0v,%,0) +z, (30)

where K, (¢) € R™" and Kg(e) € R¥" are gain matrices parameterized by a
number 0 < € < 1 to be specified later. In (3), we have made use of a parameter
estimate 0 and its time derivative. These values are produced by the param-
eter estimation module, which we shall discuss in Section 4. Taking the time
derivative of ¢ yields ¢ = d(v,v, X, 0, P) + K4 (€)(y — CX). Defining the errors
X=x-%x ¢ =¢— ¢, and y = y — Cx, we may therefore write the error
dynamics of the observer as

o116 S5 -a- [ ) ¢



where d := awv,v,x,0,¢p) — d(v,\'/,fc,é,cf)). In the error dynamics (4), the
term d acts as an unknown disturbance, and ¥ is an available output. Our
goal is to design a family of gains K(¢) := [K,Tc(.ss),KL(e)]T such that, as the
number ¢ becomes small, the high-gain observer produces stable estimates with
a diminishing effect from the parameter error 0 := 0 — 0. Before proceeding
with the design, we need the following lemma.

Lemma 1. The error dynamics (4) with input d and output 3, and gainK (&) = 0,
is left-invertible and minimum-phase.

Proof. See Appendix A. O

Consider the error dynamics (4) with K(¢) = 0. Let n, and n, denote the
number of invariant zeros and infinite zeros of the system, respectively, and
define n, = n — ng, — ng. Let Ay, Ay, and A3z denote the nonsingular state,
output, and input transformations that take the system (4) with input d and
output ¥y, and with K(¢) = 0, to the special coordinate basis (SCB) of San-
nuti and Saberi [26]. We apply these transformations to the system (4) (with-
out setting K(e) = 0), by writing col(ic,dS) = A1X, ¥ = A2y, and d = A30.
From the work of Saberi and Sannuti [21, Th. 2.6], we can partition the trans-
formed state as x = col(xa, X», Xq), Where x, has dimension n,, x, has dimen-
sion np, and x, has dimension n,. The variable x, is further partitioned as

Xa = col(Xq,,--+)Xa), where each x;, j = 1,...,k, has dimension n,,. The
transformed output is partitioned as y = col(y,, y»), where y, has dimension
k and is further partitioned as y, = col(yg,,...,¥q), and y, has dimension
1y := v — k. The transformed input has dimension k and is further partitioned
as 6 = col(dy,...,0k). The resulting system is written as
Xa = AaXa+ LagYq + LavYs — Kag(€)yq — Kap (€)Y, (5a)
Xb = AvXp + LvgYq — Kvg(8)yq — Kvp (8) yb, (5b)
Xa; = Aaq;Xa; + Laja¥a — Ka;a(€)yq — Kq;p (€)Y
+qu(5j +Dana+Dthb +quXq), (SC)
Yb = ChXb, Yqj = quXqJ-s (Sd)

where A,,, B;;, and C,, have the special structure

01 0 0
S R T H Coy=[1 0 0], (6)
0 0 1



and where (Cp, Ap) is an observable pair. The gains K,;(¢), Kap (&), Kpq(€),
Kyp(€), Kg,q(€), and Ky,p(€), j = 1,...,k, are related to K(¢) by

Kaq(f) Kab(f)
K(g) = Ay | Kpg(€) Kpp(€) | AFY, (7)
qu(f) qu(f)
where Kgq(e) = [K] ,(€),...,K} ,(e)]" and Kgp() = [K] ,(€),..., K], ()]T.
Once we have chosen Kg,(¢€), Kap (&), Kpg(€), Kpp(&), Kqq(€), and Ky (€), we
can therefore implement the high-gain observer (3) for the extended system
with the gains given by (7).

Remark 2. In (5), the x, subsystem represents the zero dynamics, with the eigen-
values of A, corresponding to the invariant zeros of the system. The x, subsys-
tem represents states that are observable from the output y,, but that are not
directly affected by any inputs. The x, subsystem represents the infinite zero
structure, and it consists of k integrator chains from scalar inputs ; to scalar
outputs y,,, with interconnections to other subsystems at the lowest level of each
integrator chain.

3.1. Design of Gains

Let Kpp(€) = Ky, be chosen independently from € such that the matrix A, —
Ky, Cp is Hurwitz. This is always possible, since the pair (Cp, Ap) is observable.
For each j € 1,...,k, select K, := col(qul,...,qunqj) such that the matrix
Hj:= A;,—K4,Cy; is Hurwitz. Then, let Kq4(€) = Lag, Kap(€) = Lap, Kpq(€) = Lpg,
Kgv(g) = 0, and let

Kg,q(8) = [anjx(jm col(Kg;1/€, ..., Kgym,, /€") anjx<kfj>] +Lg,q.

As an preliminary step toward our main result in Section 5, we present a
lemma regarding the error dynamics of the high-gain observer for the extended
system.

Lemma 2. Assuming 0 € 0, there exists 0 < €* < 1 such that for all 0 < € < €*,
the error dynamics (4) is input-to-state stable (1sS) with respect to 6.

Proof. See Appendix A. O

4. Parameter Estimator [16]

In this section we recall from our previous work [16] the form of the pa-
rameter estimator and the stability requirements placed upon it. These re-
quirements cannot be met for all parameterizations; indeed, they represent a



significant restriction on the class of systems that be handled by our method.
To demonstrate that the requirements can nevertheless be met for a large class
of physically relevant systems, a series of propositions applying to different
nonlinearities are presented by Grip et al. [16]. These propositions are accom-
panied by several examples, including a detailed physical example regarding
downhole pressure estimation during oil well drilling. Due to space constraints,
the propositions and examples are not repeated here; however, a simulation ex-
ample is given in Section 7.

The parameter estimator is designed as though x and ¢ were known, with
the goal of dynamically inverting the nonlinear equation ¢ = g(v,x, 0) with
respect to 6. In reality, x and ¢ are not known, and the parameter estimator is
therefore implemented using the estimates X and c/3 instead. In particular, the
parameter estimator takes the form of an update law

0 =uo(v, %, $,0). ®)
The corresponding error dynamics is given by
é:—ug(v,)’(\,’,(i),e—é) (9)

In the hypothetical case that X = x and qB = ¢, the parameter estimator
should provide an unbiased asymptotic estimate of 6. This requirement is
formally stated by the following assumption.

Assumption 4. There exist a differentiable function V,: Ryo X (0 — @) — Ryg

and positive constants a, . .., as such that for all (t,0) € R. X (0 — ©),
arl101% < Vu(t, 0) < allflI?, (10)
oVu,. = oVu, =« ~ .
3t (t,0) - Té(t’ Ouo(v(t),x(t),p(t),0 —0) < —asllo]?, (11)
oVy .. = ~
550 < audn. 12)

Furthermore, the update law (8) ensures that if 0(0) € ©, then for all t > 0,
o(t) € 6.
5. Stability of Interconnected System

When analyzing the parameter estimator together with the high-gain ob-
server for the extended system, we need one additional assumption.

Assumption 5. The parameter update law uy (v, X, (lB é) is Lipschitz continuous
in (x,¢), uniformly in (v,0), on V x R" x Rk x 0.



Remark 3. The Lipschitz condition in Assumption 5 is global with respect to X
and ¢. Such a condition may fail to hold in many cases. However, ifuo(v, X, ¢, 0)
is locally Lipschitz continuous in (X, <;§), uniformly in (v, é), onV xR" xRk x 0,
then the update law can be modified to satisfy Assumption 5 by introducing a
saturation on X and ¢ outside the compact sets X and ®. We also remark that
when checking Assumption 5, the projection in the update law may be disre-
garded [16, App. A].

Theorem 1. There exists 0 < €* < 1 such that for all 0 < € < €*, the origin of
the error dynamics (4), (9) is exponentially stable, with all initial conditions such
that 6(0) € © contained in the region of attraction.

Proof. See Appendix A. O

Remark 4. The high-gain observer for the extended system estimates both the
state x and the perturbation ¢. In many cases, less noisy state estimates can be
obtained by implementing a second observer that does not include a perturbation
estimate, as X = AX + Bu + Eg(v,x, 0) + K. (e)(y — Cx), with O obtained from
the first observer. The second observer can be designed by applying the same
high-gain methodology to the error dynamics X = AX + E§ — K.(€)y, where
g=9gv,x,0) —gv,x, é). In this case, we need to impose the same Lipschitz-
like assumptions on g as we previously did on d.

6. Design Considerations

The design methodology in Section 3 ensures stability of the overall esti-
mator by making ¢ sufficiently small. A bound on € can be explicitly computed
from the data of the system; however, such a computation is rarely useful, as it
is complicated and is likely to yield a conservative result. Instead, the observer
is typically tuned by starting with € = 1 and decreasing ¢ in small decrements
until satisfactory performance is achieved.

Part of the design involves a structural decomposition of the linear part of
the system into the scB, which explicitly displays the system’s zero structure
and invertibility properties. The zero structure of a system can be dramatically
altered by infinitesimally small changes to the system matrices, for example, if
such a change alters the system’s relative degree [27]. If a small change in the
system matrices results in a change in the zero structure, it can lead to a poorly
conditioned gain-selection problem that results in unnecessarily high gains. In
such cases, it can be beneficial to design the gains by omitting the change to
the system matrices that is the cause of the structural bifurcation. An example
of such a situation is given in Section 7.



7. Simulation Example

We consider the example of a DC motor with friction modeled by the LuGre
friction model. This example, as well as the parameter values in Table 1, is
borrowed from Canudas de Wit and Lischinsky [28]. The model is described by
Q = w, J = u—F, where Q is the measured angular position, w is the angular
velocity, u is the motor torque, F is the friction torque, and J is the motor and
load inertia. The friction torque—which may be due to friction in the motor
itself, as well as the characteristics of the load and transmissions such as gears,
links and joints—is given by the dynamic LuGre friction model: F = oyn+o1n+
o>, where the internal friction state n is given by n = w — ognlw!/C(w),
with C(w) = &y + ciexp(—(w/wp)?). We assume that the parameters in Table
1 are known, except for the uncertain parameter 0 := «y, which represents
Coloumb friction. To indicate that T depends on the unknown parameter, we
shall henceforth write C(w, 8). We assume that 6 is known to belong to the
range © := [0.03Nm, 1Nm]. Following the notation from previous sections,
we write x = col(Q,w,n) and y = Q. Let us define the perturbation ¢ =
gv,x,0) = oonlw|/T(w, O). It is straightforward to confirm that the system
with input ¢ and output Q is left-invertible and minimum-phase.

A technical problem arises due to the presence of |w]| in the perturbation,
which causes the Lipschitz-like condition on d in Assumption 3 to fail. In
the observer we therefore approximate the absolute value function by |w]| =
a(w) := w?/(2k) + k/2 on the interval [ -k, k], where k is a small number that
we choose as 0.1. This approximation is continuously differentiable.

7.1. Estimator Design

We start the design procedure by extending the system to include the per-
turbation as a state, which yields the extended system

Q 0 1 0 0 Q 0 0
w 0 —1(0(24-0'1) —10'0 l0'1 w 1 0
- J 7 7 7
n|~ o 1 o —1||n|To[*"|o[* @
ol 0 0 0 0 P 0 1

Constructing an observer of the form (3) and transforming the corresponding
error dynamics to the SCB, we obtain

2
09 o4 (=010 + Joy)
a:_a a=— o Yy —Ka.(8)y,
qu = XQZ —qu(s)y, qu = XQZ _KQZ(E)Y’
o = T0CO0 4 Joo) - 00(010e ~ JO0)
q3 JO_13 q1 10_12 qz

10
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We may now proceed to design the gains according to Section 3.1. However,
we quickly discover that unacceptably large gains are required to stabilize the
system. This problem is due to poor conditioning caused by the small parame-
ter o, appearing in the denominator in the SCB system equations, even though
it does not appear in any denominators in the original system equations. The
constant o0; can be viewed as a small perturbation to the system matrices in
(13), which fundamentally alters the zero structure of the system by reducing
the relative degree (see [27]). As suggested in Section 6, it is in this case better
to design the gains using the approximation o; = 0, which yields a simplified
design system. After transformation to the SCB, the resulting error dynamics is
given by

Xas + 5 Xa+0—Kg ()Y, ¥Y=Xa-

Xai = Xao — Ka, ()Y, Xa» = Xas — Kg, (6) Y,
(0N &

T Xas = 7 Xas F 0 —Kgy(O)y, ¥ =Xa-

X% = Xaa _Kq3(5))’a Xq4 = -
We now design the gains according to Section 3.1, placing the poles of H =
A, —K,Cqat—1+0.2j and -2 + 0.2j.

To design the parameter estimator, we note that in the hypothetical case
that x and ¢ are known, the equation ¢ = g(v, x, 0) can be solved explicitly
with respect to 0 as 0 = ogn|w|/¢P — xexp(—(w/wy)?), assuming that ¢ = 0.
We may therefore design our parameter estimator based on the proposition by
Grip et al. [16, Prop. 2] that applies to cases where an explicit solution is avail-
able part of the time, but not the whole time. According to this proposition
the parameter estimate is designed to be exponentially attracted to the explicit
solution when the solution is available, and it is otherwise kept constant. This
yields the parameter estimator 0 = Proj(l(v,fc,<13)1"(9*(v,fc, é) - é)), where
Proj( - ) denotes the parameter projection and 0* represents the algebraic so-
lution 0* (v, %, ¢) := goAa() /P — crexp(—(d/wy)?) based on the estimates
from the high-gain observer. The function L(v, X, ¢) is used to turn estima-
tion off when a solution is unavailable or poorly conditioned, and is defined
as l(v,fc,cl;) = 0 when Icl;I < 0.9, and l(v,fc,cfb) = 1 when qul > 1, with a
linear transition between 0 and 1 for 0.9 < |q§| < 1. We select the gain as
I' = 1. It is easily seen that for X = x and cf) = ¢, we obtain the error dynamics
0 = —Proj(l(v, x, $)0). We may conclude that this approach works if |¢| > 1
is guaranteed to occur some portion of the time (see [16, Prop. 2]).

For this example, the Lipschitz-type conditions in Assumptions 3 and 5 are
not satisfied globally with respect to X and cf) This issue can be rectified by
saturating X and ¢ outside a domain of interest, as discussed in Remarks 1

11



and 3.

7.2. Simulation Results

We simulate the system with the output y corrupted by noise, as shown
in Figure 2. Using ¢ = 0.5 gives stable estimates and results in the gains
K(g) =~ [12,52,0,52]". To improve the state estimates, we create a second
observer according to Remark 4. In this case, we do not need the Lipschitz con-
dition on d, and we can implement g (v, X, é) without using the continuously
differentiable approximation of the absolute value. For the second observer we
place the poles of the matrix H at —1 = 0.2j and —2 and select € = 1, which
gives the gains K (&) = [4,5,0]". The resulting state and parameter estimation
errors are plotted in Figure 3.
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A. Proofs

Lemma 1. The error dynamics (4) with K (&) = 0 consists of a system described
by the left-invertible, minimum-phase triple (C, A, E), augmented by adding an
integrator at each input point. Because integrators are left-invertible, it follows
from the definition of left-invertibility that the augmented system is also left-
invertible. The invariant zeros of a left-invertible triple (C, A, E) are the values
of z for which the Rosenbrock system matrix [ #/# “£ ] loses rank. It is easy to
confirm that when the triple (C, A, E) is augmented with an integrator at each
input point, the resulting Rosenbrock system matrix loses rank for the same
values of z as before, and hence the invariant zeros (and the minimum-phase

property) remain the same. O
Lemma 2. This proof is based on the theory of Saberi and Sannuti [21]. Define

&a = Xa» &» = Xp, and &; = col(&y,,..., &y, ), where for each j € 1,...,k, §;, :=

the following equations:

Ea = Aakar &b = (Ap — KppCi) &b, (14a)
€€q, = H;Eq, + By,€"1(Dy,Ea + D&y + 8, + D5 ), (14b)

where Df = D, diag(Si',...,S;"). Let Py, Py, and Py, j = 1,...,k, be the
symmetric, positive-definite solutions of the Lyapunov equations P, A, +A}P, =

12



—In,, Po(Ay = KppCy) + (A — KppCy) Py = —Iy,, and Py Hj + H{P,;, = ~In,,,
respectively. Define W = E]P, &, + E)Pp&, + € 21;:1 &4, Pa;Eq;- We then have

k k
W < —I1€all® = II€p 117 = D lIEq, II° + €™ X 211Py |
j=1 Jj=1
X (1D HIEall + 1Dy, N Epl + 10511 + [1Dg, [[11E4 1) 1€, 1I-

From the Lipschitz-like condition on d from Assumption 3, we know that for
each j € 1,...,k, there exist constants B,;, By;, Bo;, and B,, such that [|5;|| <
Ba,IXall + Bu, Xl + Bo, 101l + Ba,lXqll, which means that [|5,]| < Ba,lIEall +
B, I1€n 1| + Bo, 1101l + £~ M4~ By 1|, |l We furthermore have [|Dg || < &= "a= || Dg|I.

Let pa = X5y 2P, I (IDa,ll + Ba,)s pp = 251 21P4, 11Dy, Il + By,), g =
SE L 20Pg, 11Dy, Il + Bay), and po = 35 211P,, 1 Be,- Then we may write

W < =l18all* = 1€ I = (1 — ep) 1E4I?
+ €M palIEallllEqll + €™ pp 1L 114 Il + €™ po I OIINIEq]I.

Note that p, is multiplied by ¢. Furthermore, note that the cross terms be-
tween || &, |l and ||, and between [|&, || and ||, ||, are multiplied by €™ relative
to the stabilizing quadratic terms in ||, %, [1€,11?, and ||€,]|°. It is therefore
straightforward to show that, by decreasing ¢, the cross terms are dominated,
and there exist positive constants c,, ¢p, and ¢, such that W < —call&al? -
cpllEpll® — cqllEqll? + eapy O 1€,1l. This expression shows that W is negative
outside a ball around the origin (&4, &p, &;) = 0O, the size of which is propor-
tional to 8. We therefore conclude that (14) is 1SS with respect to 0 [29, Th.
4.19]. Since (14) is obtained through a nonsingular transformation of (4), the
same holds for (4). O

Theorem 1. Assumption 4 ensures that since é(O) € 0, we have é(t) € O forall
t > 0. From Lemma 2, the error dynamics (4) is 1SS with respect to 0. Hence, the
trajectory of (4), (9) remains in a compact subset of R*** x (® — ©) for all future
time. Based on Assumption 5, we know, by following the same argument as
for ||§;| in the proof of Lemma 2, that there exist positive constants B, By, B4
such that [[ue(v,x,$,0) —ue(v, %, $, 0|l < BallEall + BullEpll + £ Ta=D B, IIEy .
Define V := W + &2~V where W is from the proof of Lemma 2. We then
obtain

V < —call&all® = cpllEplI® = cqll€qll* — aze M| O]1?

+ &M [(pg + asf)IEqll + asBallEall + asBullELIINION.
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To show that we may dominate all the cross terms in the expression above
by decreasing &, note that for arbitrary positive constants «;, &, and «3, the
expression —o L% — xpe2™a-1C2 + 3™, ¢, can be made negative definite by
selecting & < 4, x>/ &3. Since we may split out expressions like these for each
of the cross terms, by letting «; and «, be small fractions of the negative
quadratic terms and letting 3 be the constant in the cross term, it is clear that
there exists €* and a constant ¢ > O such thatforall 0 < & < €*,V < —c(||E.|12+
1€, 112 + IE,112 + 116112). By invoking the comparison lemma [29, Lemma 3.4], we
may therefore conclude that the origin of (14), (9) is exponentially stable with
all initial conditions such that 6(0) € © contained in the region of attraction.
Since (14) is obtained through a nonsingular transformation of (4), the same
holds for (4), (9). O
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