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Abstract— We consider systems that can be described by
a linear part with a nonlinear perturbation, where the per-
turbation is parameterized by a vector of unknown, constant
parameters. Under a set of technical assumptions about the
perturbation and its relationship to the outputs, we present a
modular observer design technique. The observers produced by
this design technique consist of a modified high-gain observer
that estimates the states of the system together with the
full perturbation, and a parameter estimator. The parameter
estimator is constructed by the designer to identify the unknown
parameters by dynamically inverting a nonlinear equation. We
illustrate the design technique by constructing an observer for a
DC motor with friction modeled by the dynamic LuGre friction
model.

I. INTRODUCTION

A common problem in model-based estimation and control
is the handling of unknown or partially unknown perturba-
tions to system equations. Such perturbations can be the
result of external disturbances or internal plant changes,
such as a configuration change, system fault, or changes
in physical plant characteristics. In this paper, we consider
observer design for systems that can be described by a
linear part with a nonlinear, time-varying perturbation that is
parameterized by a vector of unknown, constant parameters.
Our design extends the results of [1], [2], where parameter
identification for systems with full state measurement was
considered.

In the literature, many of the results that deal with the
handling of unknown or partially unknown perturbations
are based either on high-gain designs, where the pertur-
bations are suppressed by using a sufficiently high gain,
or adaptive designs, where online estimates of unknown
parameters are used to cancel the perturbations. Many of the
results on high-gain observer design for nonlinear systems,
for example [3], [4], rely on placing the system in some
variation of the normal form, where it is represented as a
chain of integrators from the nonlinearities to the outputs,
possibly with a separate subsystem representing the zero
dynamics. An alternative to the normal form is the special
coordinate basis (SCB) introduced in [5], where the system
is divided into subsystems that reflect its zero structure and
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invertibility properties. While high-gain designs based on the
normal form are limited to systems that are square-invertible,
minimum-phase, and of uniform relative degree with respect
to the nonlinearities, [6] shows that high-gain observers can
be designed based on the SCB for more general multiple-
input multiple-output (MIMO) systems that are left-invertible
and minimum-phase with respect to the nonlinearities.

In the presence of an unknown perturbation, high-gain
observer designs can be extended by considering the pertur-
bation as an additional state to be estimated. The perturbation
estimate can be used for control, for example, to cancel the
actual perturbation. This type of approach has been adopted
recently in the context of performance recovery, in [7], where
the perturbation appears in the first derivatives, and in [8],
where it appears at the end of an integrator chain in a single-
input single-output (SISO) system, and is estimated by an
extended high-gain observer. A strength of the high-gain
designs mentioned above is that little structural informa-
tion about the perturbation is needed for implementation.
Conversely, however, these methods do not fully exploit
structural information about uncertainties in the perturbation,
even when such information is available.

Adaptive techniques are based on online estimation of
unknown parameters that can be considered constant or
slowly varying. Most of the adaptive literature deals with
systems that are linear with respect to the unknown param-
eters (see, e.g., [9]). Ways of handling nonlinear param-
eterizations include the extended Kalman filter (see [10]),
various methods for handling nonlinearities with convex or
concave parameterizations [11]–[14], and methods for first-
order systems with fractional parameterizations [15]–[17].
Adaptive techniques related to our work include [18]–[20]. In
[18], perturbations with matrix fractional parameterizations
are considered, by introducing an auxiliary estimate of the
full perturbation that is used in estimation of the unknown
parameters. In [19], adaptive update laws for a class of
nonlinearly parameterized perturbations in the first deriva-
tives of the outputs are designed, by first creating virtual
algorithms based on information from the derivatives, and
then transforming these into implementable form without
explicit differentiation. In [20], adaptive control for linear
parameterizations is designed for the case of full state
measurement, and then extended to the case of partial state
measurement by using high-gain estimates of the output
derivatives.

In this paper, we introduce a modular design consisting
of two separate but connected modules. The first module
is a modified high-gain observer that estimates the states



of the system and the unknown perturbation. The second
module is a parameter estimator that uses the state and
perturbation estimates to produce estimates of the unknown
parameters, which are in turn fed back to the modified high-
gain observer. This approach allows us to exploit structural
information about the perturbation instead of suppressing all
uncertainties using high gain. The price we pay is that the
method is restricted to a limited class of perturbations that
satisfy persistency-of-excitation requirements allowing for
exponentially stable estimation of the unknown parameters.
We base our design on the SCB and the theory from [6],
enabling us to deal comfortably with a large class of MIMO

systems.

A. Preliminaries

For a set of vectors ´1; : : : ; ´n, we denote by
col.´1; : : : ; ´n/ the column vector obtained by stacking the
elements of ´1; : : : ; ´n. The operator k ! k denotes the Eu-
clidean norm for vectors and the induced Euclidean norm for
matrices. For a symmetric positive-semidefinite matrix P , the
maximum and minimum eigenvalues are denoted !max.P /
and !min.P /. For a set E " Rn, we write .E # E/ ´
f´1 # ´2 2 Rn j ´1; ´2 2 Eg. When considering systems of
the form Ṕ D F.t; ´/, we assume that all functions involved
are sufficiently smooth to guarantee that F W R!0 $Rn ! Rn

is piecewise continuous in t and locally Lipschitz continuous
in ´, uniformly in t , on R!0 $ Rn. The solution of this
system, initialized at time t0 with initial condition ´.t0/ is
denoted ´.t/. We shall often simplify notation by omitting
function arguments.

II. PROBLEM FORMULATION

We consider systems of the following type:

Px D Ax C Bu C E"; x 2 R
n; u 2 R

m; " 2 R
k ; (1a)

y D Cx; y 2 R
r ; (1b)

where x is the state; y is the output; " is a perturbation to
the system equations; and u is a time-varying input that is
well-defined for all t 2 R!0 and may include control inputs,
reference signals, measured disturbances, or other known
influences. For ease of notation, we introduce the vector # ´
col.u; y/ of known signals. The perturbation is given by the
expression " D g.#; x; $/, where gW RmCr $Rn $Rp ! Rk

is differentiable in # and continuously differentiable in .x; $/,
and $ 2 Rp is a vector of constant, unknown parameters.
As we construct an estimator, additional smoothness require-
ments may be needed for g, as well as other functions, to
guarantee that the piecewise continuity and local Lipschitz
conditions in Section I-A hold for all systems involved. It is
left to the designer to check these requirements.

We shall design an observer to estimate both the state x
and the unknown parameter vector $ . The technicalities of
this observer design are most easily overcome if the time
derivative Pu is well-defined and piecewise continuous, and
x, u, Pu, and $ are known a priori to belong to compact
sets. We shall therefore make this assumption throughout
the paper. We note that this assumption also implies that #

and P# belong to compact sets. In most estimation problems,
the restriction of the variables to compact sets is reasonable,
because the states and inputs are typically derived from
physical quantities with natural bounds. When designing
update laws for parameter estimates, we also assume that
a parameter projection can be implemented as described
in [9], restricting the parameter estimates to a compact,
convex set ‚ " Rp , defined slightly larger than the set
of possible parameter values. The parameter projection is
denoted Proj. ! /. We denote by X " Rn, V " RmCr , and
V 0 " RmCr the compact sets to which x, #, and P# belong,
and by ˆ the compact image of V $ X $ ‚ under g.

For ease of notation, we define

d.#; P#; x; $; "/D
@g

@#
.#; x; $/ P#C

@g

@x
.#; x; $/.AxCBuCE"/;

representing the time derivative of the perturbation ".
Assumption 1: The triple .C; A; E/ is left-invertible and

minimum-phase.
Assumption 2: There exists a number ˇ > 0 such that for

all .#; P#; x; $; "/ 2 V $V 0 $X $‚$ˆ and for all . Ox; O$ ; O"/ 2
Rn$‚$Rk , kd.#; P#; x; $; "/#d.#; P#; Ox; O$ ; O"/k % ˇkcol.x#
Ox; $ # O$ ; " # O"/k.

Remark 1: In Assumption 2, we specify a Lipschitz-like
condition on d , which is global in the sense that there are
no bounds on Ox and O". Although this condition may appear
restrictive, we are free to redefine g.#; x; $/ outside V $X $
‚ without altering the accuracy of the system description
(1). We may, for example, introduce a smooth saturation on
x outside X , in which case the condition can be satisfied by
requiring that g.#; x; $/ is sufficiently smooth.

In the following sections, we shall first present the mod-
ified high-gain observer, and then the parameter estimator.
While the modified high-gain observer has a fixed structure,
the parameter estimator can be designed in a number of
different ways to solve the equation " D g.#; x; $/ with
respect to $ . In Section IV we discuss several ways to design
the parameter estimator.

III. MODIFIED HIGH-GAIN OBSERVER

Our goal is to estimate both the state x and the pertur-
bation ". To accomplish this goal we extend the system by
introducing " as a state. The extended system then becomes
!

Px
P"

"

D
!

A E
0 0

" !

x
"

"

C
!

B
0

"

u C
!

0
Ik

"

d.#; P#; x; $; "/; (2)

with y D Cx. We shall implement an observer for this
system of the following form:

POx D A Ox C Bu C E O" C Kx."/.y # C Ox/; (3a)

Ṕ D #
@g

@$
.#; Ox; O$/

PO$ #
@g

@x
.#; Ox; O$/Kx."/.y # C Ox/

C K!."/.y # C Ox/; (3b)

O" D g.#; Ox; O$/ C ´: (3c)

where Kx."/ 2 Rn"r and K!."/ 2 Rk"r are gain matrices
parameterized by a number 0 < " % 1 to be specified later.
In (3), we have made use of a parameter estimate O$ and its



time derivative. These values are produced by the parameter
estimation module, which we shall discuss in Section IV.
The perturbation estimate O" is seen to consist of g.#; Ox; O$/
plus an internal variable ´. The variable ´ can be viewed as
an adjustment made to g.#; Ox; O$/ to produce a more accurate
estimate of the perturbation. Taking the time derivative of O"
yields PO" D d.#; P#; Ox; O$ ; O"/ C K!."/.y # C Ox/. Defining the
errors Qx D x # Ox, Q" D " # O", and Qy D y # C Ox, we may
therefore write the error dynamics of the observer as

"

PQx
PQ"

#

D
!

A E
0 0

" !

Qx
Q"

"

C
!

0
Ik

"

Qd #
!

Kx."/
K!."/

"

Qy; (4)

where Qd ´ d.#; P#; x; $; "/ # d.#; P#; Ox; O$ ; O"/. In the error
dynamics (4), the term Qd acts as an unknown disturbance,
and Qy is an available output. Our goal is to design a family
of gains K."/ ´ ŒKT

x."/; KT

!."/%T such that, as the number
" becomes small, the modified high-gain observer produces
stable estimates with a diminishing effect from the parameter
error Q$ ´ $ # O$ .

Lemma 1: The error dynamics (4) with input Qd and output
Qy, and gain K."/ D 0, is minimum-phase and left-invertible.

Proof: See Appendix.

A. SISO Systems

Suppose first that k D r D 1, and consider the error
dynamics (4) with K."/ D 0. Let na denote the number of
invariant zeros in the system, and let nq D n#na denote the
relative degree. Let ƒ1, ƒ2, and ƒ3 denote the nonsingular
state, output, and input transformations that take the system
(4) with input Qd and output Qy, and with K."/ D 0, to
the SCB. We apply these transformations to the system (4)
(without setting K."/ D 0), by writing col. Qx; Q"/ D ƒ1&,
Qy D ƒ2' , and Qd D ƒ3ı. From [6, Theorem 2.2], the
transformed state vector & is partitioned as & D col.&a; &q/,
where &a has dimension na and &q has dimension nq , and
the resulting system is written as

P&a D Aa&a C Laq' # Ka."/'; (5a)

P&q D Aq&q C Bq.ı C Da&a C Dq&q/ # Kq."/'; (5b)

' D Cq&q ; (5c)

where

Aq D

2

6

6

6

4

0 1 ! ! ! 0
:::

:::
: : :

:::
0 0 ! ! ! 1
0 0 ! ! ! 0

3

7

7

7

5

; Bq D

2

6

6

6

4

0
:::
0
1

3

7

7

7

5

; Cq D
#

1 0 ! ! ! 0
$

:

The matrices Ka."/ and Kq."/ in (5) are observer gains,
related to the gain K."/ by K."/ D ƒ1ŒKT

a."/; KT
q."/%Tƒ#1

2 .
Once we have chosen Ka."/ and Kq."/, we can therefore
implement the modified high-gain observer (3).

1) SCB Structure: In (5), the &a subsystem represents the
zero dynamics of (4). In particular, the eigenvalues of the
matrix Aa correspond to the invariant zeros of (4). Since the
system is minimum-phase, this implies that Aa is Hurwitz.
The &q subsystem represents the infinite zero structure of

(4), and consists of a single chain of integrators, from the
input ı to the output ' , with an interconnection to the zero
dynamics at the lowest level of the integrator chain.

2) Design of SISO Gains: To design the observer gains,
let NKq ´ col. NKq1

; : : : ; NKqnq
/ be chosen such that the

matrix H ´ Aq # NKqCq is Hurwitz. Because of the special
structure of Aq , this is always possible by using regular
pole-placement techniques. Then, let Ka."/ D Laq and
Kq."/ D col. NKq1

="; : : : ; NKqnq
="nq /.

B. MIMO Systems

Consider again the error dynamics (4) with K."/ D 0. Let
na and nq denote the number of invariant zeros and infinite
zeros in the system, respectively, and define nb D n#na#nq .
Let ƒ1, ƒ2, and ƒ3 denote the nonsingular state, output, and
input transformations that take the system (4) with input Qd
and output Qy, and with K."/ D 0, to the SCB. We apply these
transformations to the system (4) (without setting K."/ D 0),
by writing col. Qx; Q"/ D ƒ1&, Qy D ƒ2' , and Qd D ƒ3ı.
From [6, Th. 2.6], the transformed state & is partitioned as
& D col.&a; &b; &q/, where &a has dimension na, &b has
dimension nb , and &q has dimension nq . The subsystem
&q can be further partitioned as &q D col.&q1

; : : : ; &qk
/,

where each &qj
, j D 1; : : : ; k, has dimension nqj

. The
transformed output is partitioned as ' D col.'q; 'b/, where
'q has dimension k and is further partitioned as 'q D
col.'q1

; : : : ; 'qk
/, and 'b has dimension rb ´ r # k. The

transformed input has dimension k and is further partitioned
as ı D col.ı1; : : : ; ık/. The resulting system is written as

P&a D Aa&a C Laq'q C Lab'b

# Kaq."/'q # Kab."/'b; (6a)

P&b D Ab&b C Lbq'q # Kbq."/'q # Kbb."/'b; (6b)

P&qj
D Aqj

&qj
C Lqj q'q # Kqj q."/'q # Kqj b."/'b

C Bqj
.ıj C Daj

&a C Dbj
&b C Dqj

&q/; (6c)

'b D Cb&b; 'qj
D Cqj

&qj
; (6d)

where Aqj
, Bqj

, and Cqj
have the same special structure as

Aq , Bq , and Cq in Section III-A, and where .Cb; Ab/ is an
observable pair. The gains Kaq."/, Kab."/, Kbq."/, Kbb."/,
Kqj q."/, and Kqj b."/, j D 1; : : : ; k, are related to K."/ by

K."/ D ƒ1

2

4

Kaq."/ Kab."/
Kbq."/ Kbb."/
Kqq."/ Kqb."/

3

5 ƒ#1
2 ; (7)

where Kqq."/ D ŒKT
q1q."/; : : : ; KT

qkq."/%T and Kqb."/ D
ŒKT

q1b."/; : : : ; KT

qkb."/%T. Once we have chosen Kaq."/,
Kab."/, Kbq."/, Kbb."/, Kqq."/, and Kqb."/, we can there-
fore implement the modified high-gain observer (3) with the
gains given by (7).

1) SCB Structure: As in the SISO case, the &a subsys-
tem in (6) represents the zero dynamics of (4), with the
eigenvalues of Aa corresponding to the invariant zeros of
(4). The system (6) has a &b subsystem that is not present
in the SISO case. This subsystem represents states that are
observable from the output 'b , but that are not directly



affected by any inputs. As in the SISO case, the &q subsystem
represents the infinite zero structure of (4). It is divided into
k integrator chains, from ıj to 'qj

, with interconnections to
other subsystems at the lowest level of each integrator chain.

2) Design of MIMO Gains: Let Kbb."/ D Kbb be
chosen independently from " such that the matrix Ab #
KbbCb is Hurwitz. This is always possible and can be
carried out using standard pole-placement techniques, since
the pair .Cb; Ab/ is observable. For each j 2 1; : : : ; k,
select NKqj

´ col. NKqj 1; : : : ; NKqj nqj
/ such that the matrix

Hj ´ Aqj
# NKqj

Cqj
is Hurwitz. Then, let Kaq."/ D Laq ,

Kab."/ D Lab , Kbq."/ D Lbq , Kqb."/ D 0, and let
Kqj q."/ D K 0

qj q C Lqj q , with K 0
qj q given by

!

0nqj
".j #1/ col

%

NKqj 1

"
Nnq!nqj

C1 ; : : : ;
NKqj nqj

" Nnq

&

0nqj
".k#j /

"

;

where Nnq ´ maxj D1;:::;k nqj
.

Lemma 2: If the gains are chosen according to Section
III-A.2 (SISO) or Section III-B.2 (MIMO), then there exists
0 < "$ % 1 such that for all 0 < " % "$, the error dynamics
(4) is input-to-state stable (ISS) with respect to Q$ .

Proof: See Appendix.

Remark 2: By selecting the gains as described above,
we place na poles of the linear part of the observer error
dynamics at the locations of the invariant zeros of (4), and
we place nb poles freely, as the poles of Ab # KbbCb . The
last nq poles are placed far into the left-half complex plane,
asymptotically as " becomes small.

IV. PARAMETER ESTIMATOR

As previously mentioned, the goal of the parameter esti-
mation module is to produce an estimate of $ based on the
perturbation estimate O" and the state estimate Ox. For this to
work, we require an update law

PO$ D u" .#; Ox; O"; O$/; (8)

which, in the hypothetical case of perfect state and per-
turbation estimates ( O" D " and Ox D x), would provide
an unbiased asymptotic estimate of $ . This requirement is
formally stated by the following assumption on the dynamics
of the error variable Q$ .

Assumption 3: There exist a differentiable function
VuW R!0 $ .‚#‚/ ! R!0 and positive constants a1; : : : ; a4

such that for all .t; Q$/ 2 R!0 $ .‚ # ‚/,

a1k Q$k2 % Vu.t; Q$/ % a2k Q$k2; (9)

@Vu

@t
.t; Q$/ #

@Vu

@ Q$
.t; Q$/u" .#; x; "; $ # Q$/ % #a3k Q$k2; (10)
'

'

'

'

@Vu

@ Q$
.t; Q$/

'

'

'

'

% a4k Q$k: (11)

Furthermore, the update law (8) ensures that if O$.t0/ 2 ‚,
then for all t & t0, O$.t/ 2 ‚.

Satisfying Assumption 3 constitutes the greatest challenge
in applying the method presented this paper, and this issue
is therefore discussed in the next section.

A. Satisfying Assumption 3

Assumption 3 guarantees that the origin of the error
dynamics

PQ$ D #u" .#; Ox; O"; $ # Q$/; (12)

is uniformly exponentially stable with .‚ # ‚/ contained
in the region of attraction whenever O" D " and Ox D
x. Essentially, this amounts to asymptotically solving the
inversion problem of finding $ given " D g.#; x; $/. In
the following, we shall discuss some possibilities for how
to satisfy Assumption 3. As a useful reference, we point
to [21], which deals with the use of state observers for
inversion of nonlinear maps. The material in this section
is a straightforward adaptation of [2, Sec. 3.2], which also
contains examples of each of the propositions below applied
to particular perturbations.

The most obvious way to satisfy Assumption 3 is to invert
the equality " D g.#; x; $/ algebraically, and to let O$ be
attracted to the solution. This may be possible the whole
time (Proposition 1), or just part of the time (Proposition 2).

Proposition 1: Suppose that for all .#; x; "/ 2 V $ Rn $
Rk , we can find a unique solution $ D $$.#; x; "/ from the
equation " D g.#; x; $/. Then Assumption 3 is satisfied with
the update law u" .#; Ox; O"; O$/ D Proj.(.$$.#; Ox; O"/ # O$//,
where ( is a symmetric, positive-definite gain matrix.

Proof: The proof follows from using the function Vu D
1
2

Q$T(#1 Q$ when O" D " and Ox D x.
The proofs of the remaining propositions in this section

are found in the Appendix.
Proposition 2: Suppose that there exists a known, piece-

wise continuous function l W V $ Rn $ Rk ! Œ0; 1%, and
that for all .#; x; "/ 2 V $ Rn $ Rk , l.#; x; "/ > 0
implies that we can find a unique solution $ D $$.#; x; "/
from the equation " D g.#; x; $/. Suppose furthermore
that there exist T > 0 and ) > 0 such that for all
t 2 R!0,

R tCT
t l.#.*/; x.*/; ".*// d* & ) . Then Assump-

tion 3 is satisfied with the update law u" .#; Ox; O"; O$/ D
Proj.l.#; Ox; O"/(.$$.#; Ox; O"/ # O$//, where ( is a symmetric,
positive-definite gain matrix.

When it is not possible or desirable to solve the inversion
problem explicitly, it is often possible to implement the
update function as a numerical search for the solution.

Proposition 3: Suppose that there exist a positive-definite
matrix P and a function M W V $ Rn $ ‚ ! Rp"k such that
for all .#; x/ 2 V $ Rn, and for all pairs $1; $2 2 ‚,

M.#; x; $1/
@g

@$
.#; x; $2/

C
@g

@$

T

.#; x; $2/M T.#; x; $1/ & 2P: (13)

Then Assumption 3 is satisfied with the update law
u" .#; Ox; O"; O$/ D Proj.(M.#; Ox; O$/. O" # g.#; Ox; O$///, where
( is a symmetric, positive-definite gain matrix.

Proposition 3 applies to certain monotonic perturbations
for which a solution can be found arbitrarily fast by increas-
ing the gain ( . In many cases this is not possible, because
the inversion problem is singular the whole time or part of



the time. The following proposition applies to cases where a
solution is only available by using data over longer periods of
time, by incorporating a persistency-of-excitation condition.

Proposition 4: Suppose that there exist a piecewise con-
tinuous function S W V $ Rn ! SpC, where SpC is the
cone of p $ p positive-semidefinite matrices, and a function
M W V $Rn $‚ ! Rp"k , both bounded for bounded x, such
that for all .#; x/ 2 V $ Rn and for all pairs $1; $2 2 ‚,

M.#; x; $1/
@g

@$
.#; x; $2/

C
@g

@$

T

.#; x; $2/M T.#; x; $1/ & 2S.#; x/: (14)

Suppose furthermore that there exist numbers T > 0 and ) >

0 such that for all t 2 R!0,
R tCT

t S.#.*/; x.*// d* & )Ip ,

and a number Lg > 0 such that for all .#; x; O$/ 2 V $Rn$‚,

kg.#; x; $/ # g.#; x; O$/k % Lg. Q$TS.#; x/ Q$/1=2. Then As-

sumption 3 is satisfied with the update law u" .#; Ox; O"; O$/ D
Proj.(M.#; Ox; O$/. O" # g.#; Ox; O$///, where ( is a symmetric,
positive-definite gain matrix.

V. STABILITY OF INTERCONNECTED SYSTEM

When connecting the two modules, we need one additional
assumption about the parameter update law.

Assumption 4: The parameter update law u" .#; Ox; O"; O$/ is
Lipschitz continuous in . Ox; O"/, uniformly in .#; O$/, on V $
Rn $ Rk $ ‚.

Remark 3: The Lipschitz condition in Assumption 4 is
a global one, in the sense that Ox and O" are not presumed
to be bounded. Such a condition may fail to hold in many
cases. However, if a local Lipschitz condition holds, then
the update law is easily modified to satisfy Assumption 4 by
introducing a saturation on Ox and O" outside X and ˆ. We
also remark that when checking Assumption 4, the projection
in the update law may be disregarded, since the Lipschitz
property is retained under projection [2, App. A].

Theorem 1: If the gains are chosen according to Section
III-A.2 (for SISO systems) or Section III-B.2 (for MIMO

systems), then there exists 0 < "$ % 1 such that for all
0 < " % "$, the origin of the error dynamics (4), (12) is
exponentially stable with RnCk $ .‚ # ‚/ contained in the
region of attraction.

Proof: See Appendix.

VI. REDESIGN FOR IMPROVED STATE ESTIMATES

The modified high-gain observer is designed to estimate
not only the states x, but also the perturbation ". This
configuration may not result in optimal estimates of x.
In many cases, less noisy estimates may be obtained by
implementing a second observer that does not include a
perturbation estimate. Instead, this observer has the form
POx D A Ox C Bu C Eg.#; Ox; O$/ C Kx."/.y # C Ox/, with
O$ obtained from the first observer. The second observer
can be designed using the same high-gain methodology as
the modified high-gain observer, by transforming the error
dynamics PQx D A Qx C E Qg # Kx."/ Qy to the form (6) and
designing gains. In this case, Qg WD g.#; x; $/ # g.#; Ox; O$/,

rather than Qd , is the input that is transformed to ı, and we
need to impose the same Lipschitz-like assumptions on g as
we previously did on d . The resulting ISS property of the
second observer with respect to the parameter error Q$ , and
the boundedness of Q$ , justifies this type of cascaded design.

VII. DISCUSSION

The purpose of the modified high-gain observer described
in Section III is to estimate the states and the perturbation
with sufficient accuracy to guarantee stability in closed loop
with the parameter estimator. As implied by the name, a
high gain may sometimes be required to achieve stability.
Such cases are of little practical interest, because a high gain
usually results in unacceptable noise amplification. Often,
however, only a moderate gain is required. Since the required
gain depends on quantities that are difficult to determine
analytically, such as Lipschitz constants, the observer is
typically tuned by starting with " D 1 and decreasing " in
small decrements until satisfactory performance is achieved.

The zero structure of the system is of vital importance in
the high-gain design methodology presented in Section III. It
is well-known that small perturbations to the system matrices
can lead to dramatic changes in a system’s zero structure. In a
SISO system, for example, an arbitrarily small perturbation of
the system matrices can reduce the system’s relative degree,
resulting in singularly perturbed zero dynamics [22]. The
result may be a poorly conditioned system description, with
very large elements occurring in the SCB system matrices. In
these situations, it is often better to design the observer gains
with respect to the unperturbed system matrices. In Section
VIII, we discuss a problem for which this precise situation
is encountered.

VIII. SIMULATION EXAMPLE

We consider the example of a DC motor with friction
modeled by the LuGre friction model, borrowed from [23].
The model is described by J P! D u # F , where ! is the
measured angular velocity, u is the motor torque, F is the
friction torque, and the parameter J D 0:0023 kg m2 is the
motor and load inertia. The friction torque is given by the
dynamic LuGre friction model: F D )0+C)1 P+C˛2!, where
the internal friction state + is given by P+ D !#)0+j!j=,.!/,
with ,.!/ D ˛0 C ˛1exp.#.!=!0/2/. The model is pa-
rameterized by )0 D 260:0 Nm=rad, )1 D 0:6 Nm s=rad,
˛0 D 0:28 Nm, ˛1 D 0:05 Nm, ˛2 D 0:176 Nm s=rad, and
!0 D 0:01 rad=s. We shall assume that these parameters
are known, except for the uncertain parameter $ ´ ˛0,
which represents static Coloumb friction. To indicate that
, depends on the unknown parameter, we shall henceforth
write ,.!; $/. We assume that $ is known a priori to
belong to the range ‚ ´ Œ0:05 Nm; 1 Nm%. Following the
notation from previous sections, we write x D col.!; +/,
y D !, and # D col.u; y/. Let us define the perturbation
" D g.#; x; $/ ´ )0+jyj=,.!; $/. It is straightforward to
confirm that the system with input " and output y is left-
invertible and minimum-phase, as required by Assumption
1. By extending the state space as described in Section III,



!
an

d
y

(r
ad

/s
)

!
an

d
O!

(r
ad

/s
)

+
an

d
O+

(r
ad

)
$

an
d

O $
(N

m
)

Time (s)

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0

0:2

0:4

#2

0

2

#2

0

2

4

#2

0

2

"10!3

Fig. 1. From top: angular velocity ! (solid) and noisy measurement
y (dashed); angular velocity ! (solid) and estimate O! (dashed); internal
friction state # (solid) and estimate O# (dashed); unknown parameter " (solid)

and parameter estimate O" (dashed)

we obtain the system J P! D u # .˛2 C )1/! # )0+ C )1",
P+ D ! # ", P" D d.#; x; $; "/.

Remark 4: In the definition of g, we have used the ab-
solute value of the output y, rather than !, which implies
that g.#; Ox; O$/ will be implemented as )0+jyj=,. O!; O$/, rather
than )0+j O!j=,. O!; O$/. The reason for defining g in this way
is that the presence of j O!j in g.#; Ox; O$/ would make it
impossible to satisfy the Lipschitz-like condition on d in
Assumption 2.

A. Observer Design

We start the observer design by creating a modified
high-gain observer according to (3). We then obtain error
dynamics of the form (4):

2

6

4

PQ!
PQ+
PQ"

3

7

5
D

2

4

# 1
J .˛2 C )1/ # 1

J )0
1
J )1

1 0 #1
0 0 0

3

5

2

4

Q!
Q+
Q"

3

5

C

2

4

0
0
1

3

5
Qd #

!

Kx."/
K!."/

"

Qy;

where Kx."/ and K!."/ are to be designed. Using the
software from [24] to transform the error dynamics to the
SCB, we obtain

P&a D #
)0

)1
&a C

)0.#)1˛2 C J)0/

)3
1

' # Ka."/';

P&q1
D &q2

# Kq1
."/';

P&q2
D #

)0.#)1˛2 C J)0/

J)2
1

&q1
C

J)0 # )1˛2 # )2
1

)1J
&q2

C
)0

J
&a C ı # Kq2

."/'; ' D &q1
:

We may now proceed to design the gains according to Sec-
tion III-A.2. However, we quickly discover that the problem
is poorly conditioned, and that we consequently require an
unacceptably large gain. The reason for the poor conditioning
is that the parameter )1 acts as a small perturbation in
the system matrices that reduces the relative degree of the
system and results in singularly perturbed zero dynamics.
This is precisely the situation discussed in Section VII. To
eliminate this problem, we design the gains with respect to
the simplified design system obtained by setting )1 D 0:

2

6

4

PQ!
PQ+
PQ"

3

7

5
D

2

4

# 1
J ˛2 # 1

J )0 0
1 0 #1
0 0 0
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K!."/
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Qy:

This system is transformed to the SCB representation P&q1
D

&q2
# Kq1

."/' , P&q2
D &q3

# Kq2
."/' , P&q3

D # $0

J &q2
#

˛2

J &q3
C ı # Kq3

."/' , ' D &q1
. We now design the gains

according to Section III-A.2, placing the poles of H D Aq #
NKqCq at #1, #2, and #3.

To design the parameter estimator, we note that whenever
" ¤ 0, we have $ D )0+jyj=" # ˛1exp.#.!=!0/2/.
We may therefore apply Proposition 2, by defining
PO$ D Proj.l.#; Ox; O"/(.$$.#; Ox; O"/ # O$//, where $$ repre-
sents the algebraic solution $$.#; Ox; O"/ ´ )0 O+jyj= O" #
˛1exp.#. O!=!0/2/, found whenever l.#; Ox; O"/ > 0. We
define l.#; Ox; O"/ as l.#; Ox; O"/ D 1 when j O"j & 1, and
l.#; Ox; O"/ D 0 otherwise, and choose the gain ( D 1.
According to Proposition 2, this approach is valid, assuming
that j"j > 1 is guaranteed to occur some portion of the time.

Remark 5: For simplicity and due to space constraints, we
have ignored a couple of technicalities in this example: we
have not used any projections or saturations; and we have
defined l.#; Ox; O"/ to be discontinuous in O", thereby breaking
the Lipschitz condition in Assumption 4. It is easy to redefine
l.#; Ox; O"/ to fix this problem.

B. Simulation Results

We simulate the system with the output y corrupted by
noise. The noisy output can be seen together with the actual
angular rate ! in the top plot in Fig. 1. We find that " D
1, which translates to K."/ ' Œ6; 0; 6%T, ensures stability.
The resulting estimates of ! and + are somewhat noisy, not
primarily due to the injection term, but due to the use of
the noisy output y in constructing g.#; Ox; O$/. To improve
the state estimates, we create a second observer that uses the
parameter estimate O$ from the first observer, as described in
Section VI. In the second observer, Lipschitz-like conditions
must only be placed on g, and not on the derivative d , and
we can therefore implement g.#; Ox; O$/ in the second observer
using only the state estimates, and not the noisy output y.
We follow the same high-gain methodology to construct the
second observer, placing the poles of the matrix H at #1 and
#2 and selecting " D 1, which translates to K."/ ' Œ3; 0%T.
The resulting state estimates can be seen in Fig. 1, together
with the parameter estimate.



APPENDIX

Proof of Lemma 1: The error dynamics (4) with K."/ D
0 consists of a system described by the left-invertible,
minimum-phase triple .C; A; E/, augmented by adding an
integrator at each input point. Because integrators are left-
invertible, it follows from the definition of left-invertibility
that the augmented system is also left-invertible. The invari-
ant zeros of a left-invertible triple .C; A; E/ are the values of
´ for which the Rosenbrock system matrix

#

´I#A #E
#C 0

$

loses
rank. It is easy to confirm that when the triple .C; A; E/
is augmented with an integrator at each input point, the
resulting Rosenbrock system matrix loses rank for precisely
the same values of ´ as before, and hence the invariant zeros
(and the minimum-phase property) remain the same.

Proof of Lemma 2: This proof is based on the theory of
[6]. The proof is stated for the MIMO case, but is valid for
SISO systems as a special case. Define -a D &a, -b D &b ,
and -q D col.-q1

; : : : ; -qk
/, where for each j 2 1; : : : ; k,

-qj
´ Sj &qj

, where Sj D " Nnq#nqj diag.1; : : : ; "nqj
#1/. We

then obtain the following equations:

P-a D Aa-a; P-b D .Ab # KbbCb/-b; (15a)

" P-qj
D Hj -qj

C Bqj
" Nnq .Daj

-a C Dbj
-b C ıj C D"

qj
-q/; (15b)

where D"
qj

D Dqj
diag.S#1

1 ; : : : ; S#1
k /. Let Pa, Pb , and

Pqj
, j D 1; : : : ; k, be the symmetric, positive-definite

solutions of the Lyapunov equations PaAa C AT
aPa D

#Ina , Pb.Ab # KbbCb/ C .Ab # KbbCb/TPb D #Inb
,

and Pqj
Hj C H T

j Pqj
D #Inqj

, respectively. Define W D
-T

aPa-a C -T

bPb-b C "
Pk

j D1 -T
qj

Pqj
-qj

. We then have

PW % #k-ak2 # k-bk2 #
k

X

j D1

k-qj
k2 C " Nnq

k
X

j D1

2kPqj
k

$ .kDaj
kk-ak C kDbj

kk-bk C kıj k C kD"
qj

kk-qk/k-qj
k:

From the Lipschitz-like condition on d from Assumption 2,
we know that for each j 2 1; : : : ; k, there exist constants
ˇaj

, ˇbj
, ˇ"j

, and ˇqj
such that kıj k % ˇaj

k&ak C
ˇbj

k&bk C ˇ"j
k Q$k C ˇqj

k&qk, which means that kıj k %
ˇaj

k-ak C ˇbj
k-bk C ˇ"j

k Q$k C "#. Nnq#1/ˇqj
k-qk. We fur-

thermore have kD"
qj

k % "#. Nnq#1/kDqj
k.

Let .a D
Pk

j D1 2kPqj
k.kDaj

k C ˇaj
/, .b D

Pk
j D1 2kPqj

k.kDbj
k C ˇbj

/, .q D
Pk

j D1 2kPqj
k.kDqj

k C
ˇqj

/, and ." D
Pk

j D1 2kPqj
kˇ"j

. Then we may write

PW % #k-ak2 # k-bk2 # .1 # ".q/k-qk2

C " Nnq .ak-akk-qk C " Nnq .bk-bkk-qk C " Nnq ." k Q$kk-qk:

Note that .q is multiplied by ". Furthermore, note that
the cross terms between k-ak and k-qk, and between k-bk
and k-qk, are multiplied by " Nnq relative to the stabilizing
quadratic terms in k-ak2, k-bk2, and k-qk2. It is therefore
straightforward to show that, by decreasing ", the cross terms
are dominated, and there exist positive constants ca, cb ,

and cq such that PW % #cak-ak2 # cbk-bk2 # cqk-qk2 C
" Nnq ." k Q$kk-qk. This expression shows that PW is negative
outside a ball around the origin, the size of which is
proportional to Q$ . From [25, Th. 4.19], we conclude that
(15) is ISS with respect to Q$ . Since (15) is obtained through
a nonsingular transformation of (4), the same holds for (4).

Proof of Theorem 1: We first note that Assumption 3
ensures that if O$.t0/ 2 ‚, then for all t 2 R!0, O$.t/ 2 ‚.
From Lemma 2, the error dynamics (4) is ISS with respect to
Q$ . Hence, any trajectory of (4), (12) originating in RnCk $
.‚#‚/ remains in a compact subset of RnCk$.‚#‚/ for all
future time. In the remainder of this proof, we shall deal with
the transformed system (15) from the proof of Lemma 2, and
prove that this system, together with (12), is exponentially
stable with RnCk $ .‚ # ‚/ contained in the region of
attraction. This will imply that the theorem holds with respect
to the error dynamics (4), (12). Based on Assumption 4, we
know, by following the same argument as for kıj k in the
proof of Lemma 2, that there exist positive constants Ň

a, Ň
b ,

Ň
q such that ku" .#; x; "; O$/ # u" .#; Ox; O"; O$/k % Ň

ak-ak C
Ň
bk-bk C "#. Nnq#1/ Ň

qk-qk. Define V ´ W C "2 Nnq#1Vu,
where W is from the proof of Lemma 2. We then obtain

PV % #cak-ak2 # cbk-bk2 # cqk-qk2 # a3"2 Nnq#1k Q$k2

C " Nnq Œ.." C a4
Ň
q/k-qk C a4

Ň
ak-ak C a4

Ň
bk-bk%k Q$k:

To show that we may dominate all the cross terms in the
expression above by decreasing ", note that for arbitrary
positive constants ˛1, ˛2, and ˛3, the expression #˛1,2

1 #
˛2"2 Nnq#1,2

2 C ˛3" Nnq ,1,2 can be made negative definite by
selecting " < 4˛1˛2=˛2

3 . Since we may split out expressions
like the one above for each of the cross terms (by letting ˛1

and ˛2 be small fractions of the negative quadratic terms, and
˛3 the constant in the cross term) and make them negative
definite by decreasing ", it is clear that there exists "$ and
a constant c > 0 such that for all 0 < " < "$, PV %
#c.k-ak2 Ck-bk2 Ck-qk2 Ck Q$k2/. This expression holds on
the set RnCk $ .‚#‚/. By invoking the comparison lemma
[25, Lemma 3.4], we may therefore conclude that the origin
of (15), (12) is exponentially stable with RnCk $ .‚ # ‚/
contained in the region of attraction, and the same holds for
(4), (12).

Proof of Proposition 2: For ease of notation, we write
l.t/ D l.#.t/; x.t/; ".t//. Inspired by [26] we use the
function Vu D 1

2
Q$T

(

(#1 # /
R 1

t et#% Ipl.*/ d*
) Q$ , where

/ > 0 is a constant yet to be specified. We first note that
1
2

Q$T
(

(#1 # /Ip

) Q$ % Vu % 1
2

Q$T(#1 Q$ . Hence, Vu is positive

definite provided / < !min.(#1/. With O" D " and Ox D x,

we get PQ$ D #Proj.l.t/( Q$/. Using the property [9, Lemma



E.1] that # Q$T(#1Proj.*/ % # Q$T(#1* , we have

PVu D
1

2
/ Q$TIpl.t/ Q$ #

1

2
/ Q$T

Z 1

t

et#% Ipl.*/ d* Q$

# Q$T

%

(#1 # /

Z 1

t

et#% Ipl.*/ d*

&

Proj.l.t/( Q$/

% #.1 #
1

2
//l.t/ Q$T Q$ #

1

2
/)e#T Q$T Q$

C /k Q$k
'

'

'

'

Z 1

t

et#% Ipl.*/ d*

'

'

'

'

'

'

'
Proj.l.t/( Q$/

'

'

'

% #.1 #
1

2
/ # /

p
0k(k/l.t/k Q$k2 #

1

2
/)e#T k Q$k2; (16)

where 0 is the ratio of the largest to the smallest eigen-
value of (#1. Above, we have used the property [9,
Lemma E.1] that Proj.*/T(#1Proj.*/ % *T(#1* , which
implies that kProj.*/k %

p
0k*k. We have also used that

R 1
t et#% l.*/ d* &

R tCT
t et#% l.*/ d* & e#T

R tCT
t l.*/ d* &

e#T ) . From the calculation above, we see that the time
derivative is negative definite provided / < 1=. 1

2 Cp
0k(k/.
Proof of Proposition 3: For the sake of brevity, we

write M D M.#; x; O$/. With O" D " and Ox D x,

we get PQ$ D #Proj.(M.g.#; x; $/ # g.#; x; O$///. We use
the function Vu D 1

2
Q$T(#1 Q$ . Using the property [9,

Lemma E.1] that # Q$T(#1Proj.*/ % # Q$T(#1* , we have
PVu % # 1

2
Q$TM.g.#; x; $/ # g.#; x; O$// # 1

2 .g.#; x; $/ #
g.#; x; O$//TM T Q$ . Since g.#; x; $/ is continuously differ-
entiable with respect to $ , we may write, according to
Taylor’s theorem (see, e.g., [27, Theorem 11.1]), g.#; x; $/#
g.#; x; O$/ D

R 1
0 Œ@g=@$%.#; x; O$ C p Q$/ Q$ dp. Hence, we have

PVu % # 1
2

R 1
0

Q$T.M Œ@g=@$%.#; x; O$ Cp Q$/C Œ@g=@$%.#; x; O$ C
p Q$/TM T/ Q$ dp % #

R 1
0

Q$TP Q$ dp D # Q$TP Q$ , which proves
that Assumption 3 holds.

Proof of Proposition 4: We use the function Vu D
1
2

Q$T
(

(#1 # /
R 1

t et#% S.#.*/; x.*// d*
) Q$ , where / > 0 is

a constant yet to be specified. First, we confirm that Vu is
positive definite. We have 1

2 .!min.(#1/#/!0
S /k Q$k2 % Vu %

1
2 !min.(#1/k Q$k2, where !0

S D sup.&;x/2V "X !max.S.#; x//.
It follows that Vu is positive definite provided !min.(#1/ #
/!0

S > 0, which is guaranteed if / < !min.(#1/=!0
S .

When we insert O" D " and Ox D x, we get the same
error dynamics as in the proof of Proposition 3. Follow-
ing a calculation similar to the proof of Proposition 2,
we get PVu % #.1 # 1

2 // Q$TS.#; x/ Q$ # 1
2 /)e#T k Q$k2 C

/
p

0MS k(kMM Lgk Q$k. Q$TS.#; x/ Q$/1=2, where MS and

MM are bounds on kS.#; x/k and kM.#; x; O$/k, respectively,
and 0 is ratio of the largest to the smallest eigenvalue
of (#1. We may write this as a quadratic expression
with respect to col.. Q$TS.#; x/ Q$/1=2; k Q$k/. It is then easily
confirmed that PVu is negative definite if / < 2=.1 C
0M 2

S k(k2M 2
M L2

g)#1eT /.

REFERENCES

[1] H. F. Grip, T. A. Johansen, and L. Imsland, “Estimation and control
for systems with nonlinearly parameterized perturbations,” in Proc.
17th IFAC World Congress, Seoul, South Korea, 2008.

[2] H. F. Grip, T. A. Johansen, L. Imsland, and G.-O. Kaasa, “Parameter
estimation and compensation in systems with nonlinearly parameter-
ized perturbations,” Automatica, 2010, to appear.

[3] H. Khalil and F. Esfandiari, “Semiglobal stabilization of a class
of nonlinear systems using output feedback,” IEEE Trans. Automat.
Contr., vol. 38, pp. 1412–1415, 1993.

[4] A. Teel and L. Praly, “Global stabilizability and observability imply
semi-global stabilizability by output feedback,” Syst. Contr. Lett.,
vol. 22, pp. 313–325, 1994.

[5] P. Sannuti and A. Saberi, “Special coordinate basis for multivariable
linear systems—finite and infinite zero structure, squaring down and
decoupling,” Int. J. Contr., vol. 45, no. 5, pp. 1655–1704, 1987.

[6] A. Saberi and P. Sannuti, “Observer design for loop transfer recovery
and for uncertain dynamical systems,” IEEE Trans. Automat. Contr.,
vol. 35, no. 8, pp. 878–897, 1990.

[7] A. Chakrabortty and M. Arcak, “Time-scale separation redesigns
for stabilization and performance recovery of uncertain nonlinear
systems,” Automatica, vol. 45, no. 1, pp. 34–44, 2009.

[8] L. B. Freidovich and H. K. Khalil, “Performance recovery of feedback-
linearization-based designs,” IEEE Trans. Automat. Contr, vol. 53,
no. 10, pp. 2324–2334, 2008.
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Corrigendum to “State and Parameter Estimation

for Linear Systems with Nonlinearly

Parameterized Perturbations”

Håvard Fjær Grip, Ali Saberi, and Tor A. Johansen

In Section III-B.2, there is a scaling error in the expression for K0qjq. The correct

expression is

K0qjq =


0nqj⇥(j�1) col
✓
K̄qj1

" , . . . ,
K̄qjnqj
"nqj

◆
0nqj⇥(k�j)

�
.

Left uncorrected, the error affects mimo systems of non-uniform rank, but not siso

systems or mimo systems of uniform rank.


