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High-gain observer design for multi-output systems:
Transformation to a canonical form by dynamic output shaping
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SUMMARY

In this paper we consider the observer design problem for a class of observable linear systems perturbed by
nonlinear, time-varying terms. Our design methodology is based on a canonical form, similar to canonical
forms used elsewhere in the literature, that allows the nonlinearities to be dominated using high gain. We
show that linear state and output transformations to this canonical form exist if, and only if, the data of the
system satisfies a certain admissibility property. Moreover, the appropriate transformations can easily be
constructed using available tools. We furthermore show that, if a system does not satisfy the admissibility
property, it may be possible to extend it with an invertible output filter that makes the data of the extended
system admissible. We refer to the problem of constructing such a filter as the output shaping problem and
introduce an algorithm that solves the problem whenever it is solvable. Copyright c 0000 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: High-gain observers; Estimation; Nonlinear systems

1. INTRODUCTION

In estimation problems it is common to encounter systems that are predominantly described by an
observable linear time-invariant part, but that also include nonlinear and time-varying terms. Such
systems can be described by

Px D Ax C �.t; x/; (1a)
y D Cx; (1b)

where x 2 Rn is the state, y 2 Rp is the output, and .A; C / is an observable pair. In some cases the
nonlinearities may be exploited to enhance the stability properties of an observer; in other cases, the
nonlinearities create an undesirable influence that must be dominated. In the latter case, one often
looks for a Lyapunov-type formulation that guarantees stability if the observer gains are chosen in a
particular way. A typical result is that stability is ensured if some of the gains are chosen sufficiently
high.

It is not always possible to dominate the effect of nonlinearities by increasing gains. The theory
of high-gain observers aims to classify the types of systems for which such domination is possible,
and to specify how it may be achieved. Typically, one assumes that the nonlinearities are globally
Lipschitz continuous (or at least locally Lipschitz continuous within some region of interest) with
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2 H. F. GRIP AND A. SABERI

respect to the state, uniformly in time. Beyond that, the question of whether domination is possible
depends on the structural relationship between the nonlinearities and the outputs.

A situation that does allow for domination is when the system can be written as

Px D Ax CE .t; x/; (2a)
y D Cx; (2b)

where the triple .A; C;E/ is left-invertible and of minimum phase. The high-gain observer design
problem for such a triple is dual to the high-gain feedback design problem, for which much of
the early high-gain theory was developed; for an overview, we refer to Saberi and Sannuti [1].
High-gain observers were used early on in the context of loop transfer recovery [2], and later for
nonlinear systems [3, 4]. A recent paper by Khalil [5] gives an overview of high-gain observers used
in nonlinear feedback control.

1.1. High-gain without left-invertibility or minimum phase

The conditions of left-invertibility and minimum phase are sensible when using high gain to
suppress an uncertainty about which little or nothing is known. However, these conditions are
often too stringent when the uncertainty is due to a nonlinearity whose dependency on the states
of the system is known. This was demonstrated by Gauthier, Hammouri, and Othman [6] for single-
output systems in the lower-triangular form Pxi D xiC1 C �i .x1; : : : ; xi /u, i D 1; : : : ; n � 1, Pxn D
f .x1; : : : ; xn/C �n.x1; : : : ; xn/u, y D x1, where u is a known input (and earlier by Williamson
[7] for bilinear systems). For such systems the linear part of the system is not described by a
left-invertible triple, since the number of independent nonlinearities is greater than the number of
outputs.

Generalizing single-output designs like that of Gauthier et al. [6] to multiple-output systems is a
complicated matter. Many results have appeared on this topic [8]–[18], based on various canonical
forms that generalize the chained structure of the single-output case to multiple chains. Among
these, the results by Bornard and Hammouri [8, 13], Hammouri, Bornard, and Busawon [17], and
Farza, M’Saad, Triki, and Maatoug [18] allow for the most complex interaction between the chains.
However, applying these results requires identifying a set of integers that are difficult to find in
practice, as pointed out by Liu, Farza, M’Saad, and Hammouri [16].

Two crucial questions that often receive little attention is when and how a given system can be
transformed to a relevant canonical form. In some cases the existence of an appropriate coordinate
change can be guaranteed if the system satisfies certain nonlinear observability conditions [11, 12,
15]. However, these conditions are typically hard to confirm and provide little insight regarding
how one might construct the coordinate change as a practical matter. A natural approach is to
define new coordinates by taking repeated Lie derivatives of the output. In addition to the drawback
of often producing highly complicated transformations, this approach is generally not successful
when applied to multiple-output systems. This problem is demonstrated by Hou, Busawon, and Saif
[19], who propose a procedure that consists of taking repeated Lie derivatives of the output and
effectively discarding problematic output components. Such a procedure is likely to waste crucial
output information, and it may therefore not succeed even for simple, uniformly observable systems
[19, Example 3].

1.2. Topic of this paper

In this paper our focus is on designing an observer for the system (1). Our working assumption is
that the nonlinearity does not contribute toward stability, and that it must therefore be dominated
by the proper selection of observer gains. Our procedure will be based on transforming the system
description to a canonical form that is similar to the canonical forms used in several of the papers
cited above. In this context we are interested in linear state and output transformations, and we shall
show that the existence of such transformations depends in a necessary and sufficient manner on
a certain admissibility property of the system data. We shall also demonstrate how the appropriate
transformations may be constructed using available tools and software.
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HIGH-GAIN OBSERVER DESIGN FOR MULTI-OUTPUT SYSTEMS 3

Many systems do not satisfy the necessary admissibility property that allows for transformation
to the canonical form. However, this situation can often be remedied by first extending the system
with an invertible output filter, a process that we refer to as dynamic output shaping. The goal of
dynamic output shaping is to introduce a larger number of inherent integrations between the outputs
and certain subspaces of the state space, so as to make the data of the extended system admissible.
We shall present an algorithm that systematically shapes the output in order to achieve this goal.�

2. PROBLEM FORMULATION

We assume throughout the paper that .A; C / is observable and that C is of maximal rank p.
Furthermore, we assume that �.t; x/ is globally Lipschitz continuous, uniformly in t , piecewise
continuous in t , and continuously differentiable with respect to x.� It follows that the elements of
the partial derivative matrix Œ@�=@x�.t; x/ are uniformly bounded.

For the purpose of this paper, it is necessary to construct n � n matrices W1; : : : ; Wv , so that the
partial derivative matrix can be written as

@�

@x
.t; x/ D

vX
kD1

�k.t; x/Wk; (3)

where �k.t; x/, k 2 1; : : : ; v, are scalar basis functions composed as linear combinations of the
elements of the partial derivative matrix. The basis functions �k.t; x/ do not need to be known;
our entire analysis and design will instead be based on the set of matrices .A; C;W1; : : : ; Wv/
associated with the given system, which contains crucial information about the relationship between
nonlinearities and outputs.

2.1. Constructing W1; : : : ; Wv

The matrices W1; : : : ; Wv can easily be constructed without even computing the partial derivatives.
Specifically, for each .i; j / such that Œ@�i=@xj �.t; x/ ¤ 0, we can add to our list of matrices a
matrix with the number 1 in element .i; j / and zeros elsewhere. Then (3) clearly holds with each
basis function �k.t; x/ representing one nonzero element of Œ@�=@x�.t; x/. Although this method
of constructing W1; : : : ; Wv is straightforward, it may result in an unnecessarily large number
of matrices, due to linear dependencies between the basis functions �k.t; x/. To whatever extent
possible, it is advantageous to eliminate linear dependencies so that the number of matrices is
minimal. A detailed discussion on this topic is given in Section 5.6.

2.2. Observer and error dynamics

We shall construct an observer for the system (1) on the standard form

POx D A Ox C �.t; Ox/CK.y � C Ox/; (4)

where K is a constant gain matrix. Defining the estimation error Qx D x � Ox, this leads to the error
dynamics

PQx D .A �KC/ Qx C �.t; x/ � �.t; Ox/: (5)

As shown in Appendix A, the nonlinear term in (5) can be rewritten as

�.t; x/ � �.t; Ox/ D
vX
kD1

�k.t; x; Ox/Wk Qx; (6)

�A preliminary version of the output shaping algorithm was presented at the 2010 IEEE Conference and Decision and
Control, but without any proof of its effectiveness [20].
�As in other places in the literature (see, e.g., [6]), the global Lipschitz assumption can be relaxed to a local one, within
some bounded region of interest, by modifying the nonlinearity.
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4 H. F. GRIP AND A. SABERI

where�k.t; x; Ox/, k 2 1; : : : ; v, are scalar functions that are uniformly bounded by constants�kmax.
Hence, the error dynamics can be written as

PQx D .A �KC/ Qx C
vX
kD1

�k.t; x; Ox/Wk Qx: (7)

Our goal is to construct the gain matrix K in such a way as to render the origin of (7) globally
exponentially stable.

3. CANONICAL FORM

In this section we introduce a canonical form for the set of matrices .A; C;W1; : : : ; Wv/.

Definition 1 (Canonical form)
The set of matrices .A; C;W1; : : : ; Wv/ is said to be in the canonical form if

1. the matrices A and C have the form

A D

264Aq1 � � � 0
:::

: : :
:::

0 � � � Aqp

375C
264L1:::
Lp

375C; C D

264Cq1 � � � 0
:::

: : :
:::

0 � � � Cqp

375 ; (8)

where for each i 2 1; : : : ; p, Aqi 2 Rqi�qi and Cqi 2 R1�qi have the special form

Aqi D
�
0 Iqi�1
0 0

�
; Cqi D

�
1 0 � � � 0

�
(9)

2. the matrices Wk , i 2 1; : : : ; v, have the form

Wk D

264Wk11 � � � Wk1p
:::

: : :
:::

Wkp1 � � � Wkpp

375 ; (10)

where for each i; j 2 1; : : : ; p, element .r; c/ ofWkij 2 Rqi�qj is zero if c > r . That is,Wkij
has the lower-triangular structure

Wkij D

264? 0 � � � 0

? ? � � � 0
:::

:::
: : :

:::

375 (11)

For a system (1) whose associated set of matrices is in the canonical form, it is instructive
to partition the state as x D ŒxT

1; : : : ; x
T
p�

T, where for each i 2 1; : : : ; p, xi is of dimension
qi . Similarly, the nonlinearity can be partitioned as �.t; x/ D Œ�1.t; x/T; : : : ; �p.t; x/T�T, where
for each i 2 1; : : : ; p, �i .t; x/ is of dimension qi , and the output can be partitioned as y D
Œy1; : : : ; yp�

T, where for each i 2 1; : : : ; p, yi is scalar. Then the xi subsystem with output yi is
described by

Pxi D Aqixi C Liy C �i .t; x/;
yi D Cqixi :

Due to the special structure of Aqi and Cqi , the linear part of this subsystem consists of a chain
of integrators terminating with the output at the top level, plus a term Liy that depends only
on the output. The nonlinearity �i .t; x/ causes additional interaction between the states of the
integrator chain, as well as influence from other integrator chains. The structure of this interaction

Copyright c 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



HIGH-GAIN OBSERVER DESIGN FOR MULTI-OUTPUT SYSTEMS 5

is governed by the matrices Wk , k 2 1; : : : ; v, which can be seen by using (6) to write �i .t; x/ D
�i .t; 0/C

Pv
kD1

Pp
jD1 �k.t; x; 0/Wkijxj . The crucial thing to note is thatWkij is lower-triangular,

which means that at each level of integrator chain i , Wkijxj injects a linear function of states that
are at the same level or further up in integrator chain j . This structure is visualized in Figure
1(a), which shows three chains of integrators with each arrow representing the influence from one
integrator state on another according to the structure dictated by Wk . The arrows point only down
or horizontally; arrows pointing up, as illustrated in Figure 1(b), break with the canonical form.

(a) Arrows pointing down or horizontally are allowed. (b) Arrows pointing up are not allowed.

Figure 1. Visualization of canonical form

3.1. Observer design based on canonical form

When .A; C;W1; : : : ; Wv/ is in the canonical form, the observer design procedure is
straightforward and familiar from the high-gain literature. For each i D 1; : : : ; p, let K�i D
Œk�i1; : : : ; k

�
iqi
�T be chosen such that the matrix Hi WD Aqi �K�i Cqi is Hurwitz. Then, define

QKi D Œk�i1="; : : : ; k�iqi ="qi �T, where " 2 .0; 1� is a high-gain parameter. Finally, define

K D

264 QK1 � � � 0
:::

: : :
:::

0 � � � QKp

375C
264L1:::
Lp

375 : (12)

Theorem 1
Suppose the gains are chosen as described above. Then there exists an "� 2 .0; 1� such that, for all
" 2 .0; "��, the error dynamics (7) is globally exponentially stable.

Proof
If we partition the error state Qx of (7) as Qx D Œ QxT

1; � � � ; QxT
p�

T, where each Qxi , i D 1; : : : ; p, is of
dimension qi , then the dynamics of Qxi is

PQxi D .Aqi � QKiCqi / Qxi C
vX
kD1

pX
jD1

�k.t; x; Ox/Wkij Qxj :

Define �i D ‚i Qxi , where ‚i D diag.1; "; : : : ; "qi�1/. It is easily verified that ‚i .Aqi �QKiCqi /‚�1i D 1
"
Hi . Hence, the error dynamics in the new coordinates can be written as

" P�i D Hi�i C "
vX
kD1

pX
jD1

�k.t; x; Ox/‚iWkij‚�1j �j :

The lower-triangular structure of Wkij means that ‚iWkij‚�1j has the structure

‚iWkij‚
�1
j D

26664
? 0 0 � � � 0

"? ? 0 � � � 0

"2? "? ? � � � 0
:::

:::
:::

: : :
:::

37775 ;
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6 H. F. GRIP AND A. SABERI

and thus there exists a bound Mkij such that, for all " 2 .0; 1�, k‚iWkij‚�1j k �Mkij . For each
i D 1; : : : ; p, let Pi be the unique symmetric positive-definite solution of the Lyapunov equation
PiHi CH T

i Pi D �Iqi , and consider the Lyapunov function candidate V D "Pp
iD1 �

T
i Pi�i . The

time derivative of V is

PV D �
pX
iD1

0@k�ik2 � 2"�T
i Pi

vX
kD1

pX
jD1

�k.t; x; Ox/‚iWkij‚�1j �j

1A
� �

0@1 � 2" pX
iD1

kPik
vX
kD1

pX
jD1

�kmaxMkij

1A k�k2:
By choosing " sufficiently small, the second term inside the parenthesis can be made smaller than
1. Hence PV becomes negative definite, and global exponential stability follows.

3.2. Transformation to the canonical form

In general, one cannot expect the set of matrices .A; C;W1; : : : ; Wv/ to be in the canonical form.
Suppose, however, that there exist nonsingular transformations �x and �y such that the set of
matrices . NA; NC ; NW1; : : : ; NWv/ is in the canonical form, where NA WD ��1x A�x , NC WD ��1y C�x , and
NWk WD ��1x Wk�x , k 2 1; : : : ; v. Then we can perform a state transformation x D �x Nx and an

output transformation y D �y Ny, which yields the system

PNx D NA Nx C ��1x �.t; �x Nx/;
Ny D NC Nx:

Performing the same transformation Ox D �x ONx on the observer state yields

PONx D NA ONx C ��1x �.t; �x ONx/C NK. Ny � NC ONx/; (13)

where NK WD ��1x K�y . The corresponding error dynamics becomes

PQNx D . NA � NK NC/ QNx C ��1x .�.t; �x Nx/ � �.t; �x ONx//

D . NA � NK NC/ QNx C ��1x
vX
kD1

�k.t; �x Nx; �x ONx/Wk�x QNx

D . NA � NK NC/ QNx C
vX
kD1

N�k.t; Nx; ONx/ NWk QNx;

(14)

where N�k.t; Nx; ONx/ WD �k.t; �x Nx; �x ONx/. This is the same error dynamics as in (7), but with respect
to the set of matrices . NA; NC ; NW1; : : : ; NWv/ in the canonical form; thus, selecting NK as described in
Section 3.1 and implementing the observer (13) with K D �x NK��1y ensures exponential stability
of the error dynamics in accordance with Theorem 1.

4. ADMISSIBILITY

We now investigate the existence of nonsingular transformations �x and �y that take a set of
matrices .A; C;W1; : : : ; Wv/ to the canonical form, and how to construct them if they exist.

We start by noting that it is always possible to construct transformations to ensure that NA D
��1x A�x and NC D ��1y C�x have the form given by (8), (9). For example, if we construct �x and
�y to transform the observable triple .A; 0; C / into the special coordinate basis (SCB) of Sannuti
and Saberi [21], then NA and NC will have the desired form. The question is therefore whether we can
simultaneously make the matrices NWk D ��1x Wk�x , k 2 1; : : : ; v, satisfy (10), (11). To answer this
question, we define a formal property of admissibility.

Copyright c 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



HIGH-GAIN OBSERVER DESIGN FOR MULTI-OUTPUT SYSTEMS 7

Definition 2 (Admissibility)
A set of matrices .A; C;W1; : : : ; Wv/ is said to be admissible if for each i 2 1; : : : ; n the subspace

Si .A; C / WD ker

264 C
:::

CAi�1

375 (15)

is Wk-invariant for all k 2 1; : : : ; v. That is, WkSi .A; C / � Si .A; C /.

Remark 1
The property of admissibility remains unchanged under application of nonsingular transformations
�x and �y . To see this, suppose that .A; C;W1; : : : ; Wv/ is admissible and note that

Si . NA; NC/ D ker

264 NC
:::
NC NAi�1

375 D ker

264 ��1y C�x
:::

��1y C.��1x A�x/
i�1

375 D ker

264 C
:::

CAi�1

375�x :
Hence, Nx 2 Si . NA; NC/, �x Nx 2 ker Si .A; C /. For any Nx 2 Si . NA; NC/, we therefore have that
Wk�x Nx D �x��1x Wk�x Nx D �x NWk Nx 2 Si .A; C / H) NWk Nx 2 Si . NA; NC/.

The next theorem shows that admissibility is necessary and sufficient for the existence of
nonsingular transformations to the canonical form. Moreover, it shows that if the set of matrices
.A; C;W1; : : : ; Wv/ is admissible, then it can be transformed to the canonical form by using any
transformations �x and �y that put NA and NC in the required form defined by (8), (9).

Theorem 2
Let �x and �y be nonsingular transformations such that NA and NC have the form given by (8), (9).
Then . NA; NC ; NW1; : : : ; NWv/ is in the canonical form if, and only if, (A;C;W1; : : : ; Wv/ is admissible.

Proof
As explained above, there always exist transformations �x and �y that give NA and NC the required
form defined by (8), (9). Thus, we must show that (i) if, for such a pair of transformations, NWk
also has the required form defined by (10), (11) for all k 2 1; : : : ; v, then .A; C;W1; : : : ; Wv/ is
admissible; and (ii) if .A; C;W1; : : : ; Wv/ is admissible then such a transformation always gives NWk
the required form defined by (10), (11).

We can write NA D Aq C L NC , where Aq D diag.Aq1 ; : : : ; Aqp /, L D ŒLT
1; : : : ; L

T
p�

T, and NC D
diag.Cq1 ; : : : ; Cqp /. It follows from Lemma 5 in Appendix B that

Si . NA; NC/ D Si .Aq; NC/ D ker

264 diag.Cq1 ; : : : ; Cqp /
:::

diag.Cq1A
i�1
q1
; : : : ; CqpA

i�1
qp
/

375 :
Let Nx 2 Rn be partitioned as Nx D Œ NxT

1; : : : ; NxT
p�

T, where for each � 2 1; : : : ; p, Nx� 2 Rq� . Suppose
that Nx 2 Si . NA; NC/ for some i . From the expression for Si . NA; NC/ above and the special structure of
Aq� and Cq� , it is easy to see that this is equivalent to the first i components of Nx� being zero (or all
components if q� � i ) for all � 2 1; : : : ; p. Defining the vector Nx�

k
D NWk Nx and partitioning it in the

same way, we have that for each � 2 1; : : : ; p, Nx�
k�
DPp

jD1
NWk�j Nxj .

To prove statement (i) above, suppose that NWk has the required form for all k 2 1; : : : ; v,
so that . NA; NC ; NW1; : : : ; NWv/ is in the canonical form. Then NWk�j is lower-triangular for all k 2
1; : : : ; v and �; j 2 1; : : : ; p, so the first i components of Nx�

k�
are zero (or all components if

q� � i/ for all � 2 1; : : : ; p. Hence Nx�
k
2 Si . NA; NC/, and it follows that for each i 2 1; : : : ; n,

NWkSi . NA; NC/ � Si . NA; NC/ for all k 2 1; : : : ; v. By Remark 1, this implies that WkSi .A; C / �
Si .A; C /, so .A; C;W1; : : : ; Wv/ is admissible.
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8 H. F. GRIP AND A. SABERI

To prove statement (ii) above, suppose that .A; C;W1; : : : ; Wv/ is admissible, which implies by
Remark 1 that . NA; NC ; NW1; : : : ; NWv/ is admissible. Hence NWkSi . NA; NC/ � Si . NA; NC/, which means
that for each k 2 1; : : : ; v and each � 2 1; : : : ; p, the first i components of Nx�

k�
must be zero

(or all components of q� � i ). Hence, for all k 2 1; : : : ; v and all � 2 1; : : : ; p, we must havePp
jD1

QWk�j Qxj D 0, where QWk�j consists of the upper right-hand i � .qj � i/ block of NWk�j and Qxj
consists of the last qj � i elements of Nxj (i.e., the elements that may be nonzero). Since the vectors
Qxj , j 2 1; : : : ; p, are arbitrary, this implies that for each k 2 1; : : : ; v and each �; j 2 1; : : : ; p,
QWk�j Qxj D 0, which in turn implies that QWk�j D 0. It follows that for each k 2 1; : : : ; v and each
�; j 2 1; : : : ; p, the upper right-hand i � .qj � i/ block of the matrix NWk�j 2 Rq��qj must be zero,
and this must be true for i 2 1; : : : ; q�. Hence, NWk�j must have the lower-triangular structure shown
in (11), which means that . NA; NC ; NW1; : : : ; NWv/ is in the canonical form.

A significant implication of Theorem 2 is that we can simultaneously test for admissibility
and find appropriate transformations to the canonical form by simply constructing �x and �y
so that NA D ��1x A�x and NC D ��1y C�x have the required form defined by (8), (9). If the
resulting matrices NWk D ��1x Wk�x , k 2 1; : : : ; v, satisfy (10), (11), then . NA; NC ; NW1; : : : ; NWv/ is
in the canonical form. If, on the other hand, NWk , k 2 1; : : : ; v, do not satisfy (10), (11), then
.A; C;W1; : : : ; Wv/ is inadmissible and cannot be transformed to the canonical form by any
transformations. As mentioned above, finding transformations so that NA and NC have the required
form defined by (8), (9) can be done by transforming the triple .A; 0; C / to the SCB. Software is
available for accomplishing this task both numerically [22] and symbolically [23].

Example 1
Consider a linear time-varying system with state vector x D Œx11; x12; x21; x22; x23�T, given by

Px11 D x12 C �.t/.�x12 C x22/; Px21 D x22 C �.t/.�x12 C x22/;
Px12 D �.t/x23; Px22 D x23 C �.t/.x11 C x23/;
y1 D x11; Px23 D �.t/x12;

y2 D x21:
We have

�.t; x/ D

26664
�.t/.�x12 C x22/

�.t/x23
�.t/.�x12 C x22/
�.t/.x11 C x23/

�.t/x12

37775 H) @�

@x
.t; x/ D �.t/

26664
0 �1 0 1 0

0 0 0 0 1

0 �1 0 1 0

1 0 0 0 1

0 1 0 0 0

37775 :
Hence an associated set of matrices is .A; C;W1/, where

A D

26664
0 1 0 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

37775 ; C D
�
1 0 0 0 0

0 0 1 0 0

�
; W1 D

26664
0 �1 0 1 0
0 0 0 0 1

0 �1 0 1 0
1 0 0 0 1
0 1 0 0 0

37775 :
The matrices A and C are already on the required form defined by (8), (9). However, W1 is not on
the required form (10), (11). Theorem 2 therefore implies that .A; C;W1/ is inadmissible and that
no nonsingular transformations can transform it to the canonical form. Indeed, it is easily verified
that the condition W1S1.A; C / � S1.A; C / fails to hold.

5. DYNAMIC OUTPUT SHAPING

The above analysis shows that, given a system on the form (1) with an associated set of
matrices .A; C;W1; : : : ; Wv/, we can construct an observer using high gain if .A; C;W1; : : : ; Wv/
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can be transformed to the canonical form. Such a transformation is possible if, and only if,
.A; C;W1; : : : ; Wv/ is admissible. Even if the admissibility property fails to hold, however, it may
be possible to extend the system (1) by adding filters to the outputs, so that the set of matrices
associated with the extended system becomes admissible. This is demonstrated in the following
example by adding integrators to part of the output.

Example 2
Consider the system with state vector Œx11; x12; x21; x22; x23�T, given by

Px11 D x12 C �11.x23/; Px21 D x22;
Px12 D 0; Px22 D x23;
y1 D x11; Px23 D 0;

y2 D x21:
This system is used by Hou and Busawon [19, Example 3] as an example of a system that cannot be
handled by their proposed method, because no injective map exists to take the system to the relevant
canonical form. We have

�.t; x/ D

26664
�11.x23/

0

0

0

0

37775 H) @�

@x
.t; x/ D @�11

@x23
.x23/

26664
0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

37775 :
Hence, a set of matrices associated with the system is given by .A; C;W1/, where

A D

26664
0 1 0 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

37775 ; C D
�
1 0 0 0 0

0 0 1 0 0

�
; W1 D

26664
0 0 0 0 1
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775 :
The matrices A and C are already in the required form defined by (8), (9), but W1 is not in
the required form (10), (11). Theorem 2 therefore implies that the set of matrices .A; C;W1/ is
inadmissible and that no nonsingular transformation can put it in the canonical form. Suppose,
however, that the system is extended by replacing y1 and y2 with yf1 and yf 2, where yf1 is a
twice-integrated version of y1 and yf 2 D y2. Then the extended system equations can be written as

Ṕ1 D ´2; Px21 D x22;
Ṕ2 D x11; Px22 D x23;
Px11 D x12 C �.x23/; Px23 D 0;
Px12 D 0; yf 2 D x21;
yf1 D x11;

where ´1 and ´2 are the states of the two integrators. It is then easy to see that a set of matrices
associated with the extended system is .Ae; Ce; We1/, given by

Ae D

26666664
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

37777775 ; Ce D
�
1 0 0 0 0 0 0

0 0 0 0 1 0 0

�
; We1 D

26666664
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

37777775 ; (16)

which does satisfy the canonical form. Hence, an observer can be designed for the extended system.
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10 H. F. GRIP AND A. SABERI

Motivated by Example 2, we introduce the general idea of dynamically shaping the output y of
(1) by adding an invertible output filter. Such a filter is defined by the system equations

Ṕ D A´´C B´y;
yf D C´´CD´y;

where ´ 2 Rnf , u 2 Rp , and yf 2 Rp . After application of the filter, we can describe the overall
system in terms of an extended system vector xe D Œ´T; xT�T and write the extended system
equations as

Pxe D Aexe C �e.t; xe/; (17a)
yf D Cexe: (17b)

It is easily verified that

Ae D
�
A´ B´C

0 A

�
; Ce D

�
C´ D´C

�
(18)

and that

�e.t; xe/ D
�

0

�.t; x/

�
:

Moreover
@�e

@xe
.t; xe/ D

�
0 0

0 @�
@x
.t; x/

�
D

vX
kD1

�k.t; x/

�
0 0

0 Wk

�
:

Hence the set of extended matrices associated with the extended system (17) is
.Ae; Ce; We1; : : : ; Wev/, where Ae and Ce are given in (18) and

Wek D
�
0 0

0 Wk

�
; k 2 1; : : : ; v: (19)

We would like to find a filter that makes .Ae; Ce; We1; : : : ; Wev/ admissible, and we define the
following formal problem.

Problem 1 (Output shaping)
Given the set of matrices .A; C;W1; : : : ; Wv/, the output shaping problem is to find an invertible
filter quadruple .A´; B´; C´;D´/ such that the set of extended matrices .Ae; Ce; We1; : : : ; Wev/

defined by (18), (19) is admissible and .Ae; Ce/ is observable.

Remark 2
Because C is presumed to be of maximal rank p and the filter is invertible, the matrix Ce is also of
maximal rank p. Thus, if a solution to the output shaping problem is found, all the conditions for
carrying out the observer design in Section 3.1 are satisfied.

Remark 3
The solvability of the output shaping problem remains unchanged under application of nonsingular
transformations �x and �y . To see this, suppose that the output shaping problem is solvable
for the set of matrices .A; C;W1; : : : ; Wv/ by applying the filter quadruple .A´; B´; C´;D´/ to
yield the admissible set of extended matrices .Ae; Ce; We1; : : : ; Wev/. Then the filter quadruple
.A´; B´�y ; C´;D´�y/ applied to the transformed set of matrices . NA; NC ; NW1; : : : ; NWv/ yields the
extended matrices

NAe D
�
A´ B´�y NC
0 NA

�
D
�
I 0

0 ��1x

� �
A´ B´C

0 A

� �
I 0

0 �x

�
D
�
I 0

0 �x

��1
Ae

�
I 0

0 �x

�
;

NCe D
�
C´ D´�y NC

� D �C´ D´C
� �I 0

0 �x

�
D Ce

�
I 0

0 �x

�
;
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NWek D
�
I 0

0 ��1x

� �
0 0

0 Wk

� �
I 0

0 �x

�
D
�
I 0

0 �x

��1
Wek

�
I 0

0 �x

�
:

Hence, the extended set of matrices . NAe; NCe; NWe1; : : : ; NWev/ is obtained by a state transformation
diag.I; �x/ applied to .Ae; Ce; We1; : : : ; Wev/. By Remark 1 it is therefore admissible.

5.1. Output shaping algorithm

In this section we present an algorithm that solves the output shaping problem whenever it is
solvable. We begin by defining a sub-algorithm called extend, which takes matrices QA 2 RQn�Qn,
QC 2 Rp�Qn, and QWk 2 RQn�Qn, k 2 1; : : : ; v, and an integer m � 1 as parameters. The algorithm

returns system matrices QA´ 2 R`�`, QB´ 2 R`�p , QC´ 2 Rp�`, and QD´ 2 Rp�p describing an
invertible filter.

Œ QAz; QBz; QCz; QDz� D extend . QA; QC ; QW1; : : : ; QWv;m/

Define the matrices

R D

264 QC
:::

QC QAm�2

375 ; QR D
�

R
QC QAm�1

�
;

and let r and Qr denote their ranks (if m D 1, R is an empty matrix and r D 0). Let S 2 Rpm�pm

be a nonsingular matrix such that

S QR D
24 RQR�
0

35 ; S D
24I.m�1/p 0

0 S22
S31 S32

35 ;
where QR� 2 R.Qr�r/�Qn is of maximal rank Qr � r , S22 2 R.Qr�r/�p , S31 2 R.pCr�Qr/�.m�1/p , and
S32 2 R.pCr�Qr/�p . Then S22 QC QAm�1 D QR� and S32 QC QAm�1 D �S31R. Note that the choice of S
is in general not unique.

Next, let the columns of E0 be a linearly independent basis for the . Qn � Qr/-dimensional
kernel of QR. For i D 1; : : : ; � , let the columns of Ei be a linearly independent basis for
im ŒEi�1; QW1Ei�1; : : : ; QWvEi�1�, where � is the smallest integer such that � WD rankE� D
rankE��1. Let ` D rank QR�E� .

If ` D 0, define the return matrices as QA´ D 00�0, QB´ D 00�p , QC´ D 0p�0, and QD´ D Ip .
Otherwise, let T 2 R.Qr�r/�.Qr�r/ be a nonsingular matrix such that

T QR�E� D
�
0

U

�
; T D

�
T1
T2

�
; (20)

where U D R`�� is of maximal rank `, T1 2 R.Qr�r�`/�.Qr�r/, and T2 2 R`�.Qr�r/. Note that the
choice of T is in general not unique. Define

B D T2S22; D D
�
S32
T1S22

�
;

and then define the return matrices QA´ 2 R`�`, QB´ 2 R`�p , QC´ 2 Rp�`, and QD´ 2 Rp�p as

QA´ D 0; QB´ D B; QC´ D
�
I`
0

�
; QD´ D

�
0

D

�
:

Remark 4
The quadruple returned by extend describes a p � p filter

G.s/ D
�
1
s
I` 0

0 Ip�`

� �
B
D

�
;
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12 H. F. GRIP AND A. SABERI

where �
B
D

�
D
24 0 I` 0

0 0 IpCr�Qr
IQr�r�` 0 0

3524T1 0

T2 0

0 IpCr�Qr

35�S22
S32

�
:

Since each of the matrices on the right-hand side are invertible, it is clear that the filter is invertible.

We can now describe the complete output shaping algorithm. This algorithm is iterative and
maintains a filter quadruple .A´; B´; C´;D´/ that is initialized as an identity filter, and an integer
m that is initialized as 1. At each iteration, the extended system matrices are computed according
to (18), (19) based on the current filter quadruple, and they are then passed as arguments to extend
along with the integer m. The return values from extend are used to update the current filter
quadruple before the next iteration, and to either increment m or reset it to 1.

ŒAz;Bz;Cz;Dz� D shape .A;C ;W1; : : : ;Wv/

1. Initialize the algorithm by defining A´ D 00�0, B´ D 00�p , C´ D 0p�0, D´ D Ip , and m D
1.

2. Update the extended system matrices as

Ae WD
�
A´ B´C

0 A

�
; Ce WD

�
C´ D´C

�
; Wek WD

�
0 0

0 Wk

�
; k 2 1; : : : ; v;

and let ne denote the order of the extended system.
3. If m D ne C 1, terminate the algorithm successfully.
4. Execute Œ QAz; QBz; QCz; QDz� D extend .Ae;Ce;We1; : : : ;Wev;m/ and let ` denote the order of

the returned matrix quadruple.
5. If ` D 0, increment m by 1. Otherwise reset m to 1.
6. Update the filter quadruple A´, B´, C´, and D´ respectively as� QA´ QB´C´

0 A´

�
;

� QB´D´
B´

�
;

� QC´ QD´C´
�
; QD´D´:

7. Repeat from Step 2.

Remark 5
Note that at Step 6, the filter quadruple .A´; B´; C´;D´/ is updated by creating a cascade of the
filter before the update and the filter . QA´; QB´; QC´; QD´/ returned by extend.

To get an intuitive understanding of how the output shaping algorithm works, it is helpful to
visualize the system as consisting of integrator chains interconnected in a structure dictated by Wk ,
as illustrated in Figure 1. One can think of the output shaping algorithm as starting at the top level
and moving downward, looking for problematic incoming interconnections from lower levels of the
integrator chains. The level currently being inspected corresponds to the integer m in the algorithm
shape. If a problematic interconnection is found, new integrators are added to the output to eliminate
the problem at this particular level, which corresponds to the sub-algorithm extend returning a filter
of order ` > 0. Then the process starts anew from the top level (corresponding to the reset of m to
1) and continues until all levels have been examined without encountering problems (corresponding
to the termination condition m D ne C 1).

As an example, consider the structure illustrated in Figure 1(b), which contains two problematic
interconnections. The extensions that would take place during output shaping are illustrated in
Figure 2. The top level is first examined, and a problematic interconnection is found. To eliminate
this problem, an integrator is added to one of the chains. Next, levels 1 and 2 are examined without
encountering problematic interconnections, before a new problematic interconnection is found at
level 3. Thus, another integrator is added. The process starts again at the top by examining level 1
without finding any problematic interconnections. At level 2, another problematic interconnection
is found, so yet another integrator is added to the output. Finally, the process is started over again at
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Extend filter

Problematic

interconnection found at level 1

New filter

integration

Extend filter

Problematic

interconnection found at level 3

New filter

integration

Extend filter

Problematic

interconnection found at level 2

New filter

integration

No problematic

interconnections

Figure 2. Visualization of output shaping algorithm

the top, and levels 1; : : : ; 5 are examined without encountering problematic interconnections. Thus,
the algorithm terminates successfully.

Although this visualization is helpful in order to gain an intuitive picture of what happens during
the execution of shape, it also hides much of the complexity of the process, because the structure
in Figure 2 is divided into discrete chains already before the process starts. When dealing with an
arbitrary system, we do not know a priori how we should transform the linear part into integrator
chains, because there are infinitely many ways to do so in general. These are not equivalent for the
purpose of carrying out the process illustrated in Figure 2, which accounts for the relative complexity
of the algorithm.
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14 H. F. GRIP AND A. SABERI

5.2. Validity of the output shaping algorithm

Our theoretical result on the validity of the algorithm shape is given in the next theorem, which is
proven in Section 6.

Theorem 3
Suppose that the output shaping problem for the set of matrices .A; C;W1; : : : ; Wv/ is solvable by a
filter quadruple of order nf . Then shape .A;C ;W1; : : : ;Wv/ terminates in finite time and returns
a filter quadruple .A´; B´; C´;D´/ that solves the output shaping problem. Moreover, the filter
represented by .A´; B´; C´;D´/ is of order less than or equal to nf .

5.3. Observer implementation

After carrying out the output shaping algorithm, one can construct an observer by first implementing
the output filter Ṕ D A´´C B´y, yf D C´´CD´y, and then implementing an observer for the
resulting extended system (17) as

POxe D Ae Oxe C �e.t; Oxe/CK.yf � Ce Oxe/:

The resulting error dynamics is then

PQxe D .Ae �KCe/ Qxe C �e.t; xe/ � �e.t; Oxe/ (21)

The gain matrixK can be chosen to achieve exponential stability of the error dynamics, as described
in Section 3.

The same result can also be achieved without the overhead of first implementing the filter states
and subsequently estimating them. Consider the observer implementation

PQ́ D .A´ �K´C´/ Q́ C .B´ �K´D´/.y � C Ox/; (22a)
POx D A Ox C �.t; Ox/CKx.C´ Q́ CD´.y � C Ox//: (22b)

Defining Qxe D Œ Q́T; xT � OxT�T and K D ŒKT
´; K

T
x�

T, we recover precisely the dynamics (21). Hence,
by the proper selection of gains, Qxe converges exponentially to the origin, and hence Qx ! 0. Notice
that the observer (22) takes the form of a standard observer for x with gain matrix Kx , except that
the residual term y � C Ox that would normally be injected has been replaced by the filtered residual
C´ Q́ CD´.y � Cx/. Notice also that, because A´ �K´C´ is always Hurwitz, the implemented
filter has no internal instabilities.

5.4. Examples

Although the output shaping algorithm is too complicated to be carried out by hand in most cases,
it can be implemented in software. The next two examples illustrate the solutions obtained using
Maple.

Example 3
Consider again the system in Example 1. As already discussed, the associated set of matrices
is inadmissible and can therefore not be transformed to the canonical form through nonsingular
transformations of the state and output spaces. Moreover, the system does not satisfy any of the
canonical forms from the literature referenced in the introduction. During iteration 1 of shape, we
have m D 1, and the extended system defined in Step 2 is equal to the original system. The sub-
algorithm extend then returns a filter of order ` D 1, described by

QA´ D 0; QB´ D
�
0 1

�
; QC´ D

�
1

0

�
; QD´ D

�
0 0

�1 1

�
: (23)

The integerm is therefore reset to 1 before iteration 2. During iteration 2, the extended system is the
cascade of the original system and the filter described by the quadruple in (23). In this case, extend
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returns the identity filter of order ` D 0. Hence, m is incremented to 2 before iteration 3. During
iteration 3, the extended system stays the same as before. Again extend returns the identity filter of
order ` D 0, and the same happens form D 3; : : : ; 6, so that, before iteration 8,m is incremented to
7. This causes the algorithm to terminate successfully at Step 3 of iteration 8, with the resulting filter
being given by the matrices in (23). To select gains for observer implementation, we first transform
the extended set of system matrices .Ae; Ce; We1/ to the canonical form, using the transformation
matrices

�x D

2666664
�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0

0 �1 0 1 0 0

0 0 �1 0 1 0

0 0 0 0 0 1

3777775 ; �y D
��1 0

0 1

�
:

This yields the canonical form

NAe D

266664
0 1 0 �1 0 0
0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

377775 ; NCe D
�
1 0 0 0 0 0

0 0 0 1 0 0

�
; NWe1 D

266664
0 0 0 0 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1
0 0 0 0 0 0
0 �1 0 0 0 0
0 0 �1 0 0 0

377775 :
In the following gain-selection procedure based on Section 3.1, we use a bar above the matrix
variables to indicate when we are dealing with the transformed system in the canonical form.
We choose NK�1 D NK�2 D Œ0:9; 0:28; 0:04�T to place the poles of NH1 and NH2 at �0:2˙ 0:2j and
�0:5. We then compute NQK1 and NQK1 for a given value of " 2 .0; 1� and assemble the gain matrix
NK according to (12). Finally, we compute the gain matrix K D �x NK��1y in the original coordinate

basis, as explained in Section 3.2, and separate it into K´ and Kx for implementation according to
Section 5.3. Simulating the system for �.t/ D sin.t/, we find that the observer error dynamics is
unstable for " D 1. For " D 0:3, we obtain the gains

K´ D
�
2 0

�
; Kx �

26664
3:11 0

1:48 0

3:11 3:00

1:48 3:11

0 1:48

37775 ;
which results in the a stable error response. Figure 3(a) shows a simulated example of the error
response, and Figure 3(b) shows the corresponding trajectory of the internal variable Q́ .
Example 4
Consider again the system in Example 2. During iteration 1, we have m D 1, and the extended
system defined in Step 2 is the same as the original system. The sub-algorithm extend returns a
filter of order ` D 1, given by the quadruple

QA´ D 0; QB´ D
�
1 0

�
; QC´ D

�
1

0

�
; QD´ D

�
0 0

0 1

�
: (24)

The integer m is therefore reset to 1 before iteration 2. During iteration 2, the extended system is
the cascade of the original system and the filter in (24). In this case extend returns the identity
filter of order ` D 0, so m is incremented to 2 before iteration 3. During iteration 3, the extended
system stays the same as before. The sub-algorithm extend now returns a filter order ` D 1, given
by exactly the same quadruple as in (24), and hence m is reset to 1. During iteration 4, the extended
system is the original system in cascade with two filters given by the quadruple (23). From here
on out, extend only returns identity filters of order ` D 0 for m D 1; : : : ; 7, so that the algorithm
terminates during iteration 11, when m D 8. It can now be confirmed that the result of the output
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Figure 3. Simulation results for Example 3

shaping algorithm is precisely the extension carried out by hand in Example 2. Hence, the extended
set of matrices are in the canonical form, given by (16).

We remark that, although we have chosen examples for which an internal structure is visible to
the naked eye, our implementation of the algorithm executes with the same success when these and
other systems are transformed to alternative, random coordinate bases, where no such structure is
visible.

5.5. Unsuccessful termination

According to Theorem 3, shape terminates successfully if the output shaping problem is solvable.
What we have not addressed is the case when the output shaping problem is not solvable. In this
case the algorithm will continue running ad infinitum, building up a larger and larger filter, because
it contains no criterion for unsuccessful termination.

One way to create a criterion for unsuccessful termination is to look at the order of the filter
maintained by the algorithm. Since, according to Theorem 3, successful termination will always
result in a minimal-order filter, we can conclude that no solution exists if the order grows larger than
some upper bound on the minimal-order filter. Finding such an upper bound turns out to be highly
complicated, however, and we have not been successful in finding a bound that is low enough to
be of practical value in most cases. As of now, the decision to terminate the algorithm without a
solution should be dictated by practical considerations; that is, the search should be terminated if
the computational effort required to continue is too great, or if the order of the filter is too large for
practical implementation.

5.6. On the selection of W1; : : : ; Wv

As indicated in Section 2.1, the choice of matrices W1; : : : ; Wv is not unique, because the partial
derivative matrix can be decomposed based on different basis functions �k.t; x/ that are linear
combinations of the elements of the matrix. We shall show that it is always optimal to choose a
linearly independent basis, and that all such bases are equivalent with respect to solvability of the
output shaping problem.

Suppose that �k.t; x/, k 2 1; : : : ; v, is a linearly independent basis, and suppose that N� Nk.t; x/,Nk 2 1; : : : ; Nv, is an alternative basis. Then we must have

vX
kD1

�k.t; x/Wk D
NvX
NkD1

N� Nk.t; x/ NW Nk;
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for some NW1; : : : ; NW Nv . Linear independence of the basis �k.t; x/, k 2 1; : : : ; v, implies that for each
k 2 1; : : : ; v, we must have

Wk D
NvX
NkD1

˛k Nk
NW Nk

for some sets of coefficients ˛k1; : : : ; ˛k Nv . Suppose that the output shaping problem is
solvable for .A; C; NW1; : : : ; NW Nv/. Then there exists a filter quadruple that gives rise to
a set of extended matrices .Ae; Ce; NWe1; : : : ; NWe Nv/, such that NWe NkSi .Ae; Ce/ � Si .Ae; Ce/.
Using the same filter for .A; C;W1; : : : ; Wv/ gives rise to a set of extended matrices
.Ae; Ce; We1; : : : ; Wev/ where for each k 2 1; : : : ; v, Wek D

P Nv
NkD1

˛k Nk
NWe Nk . Hence, we have

WekSi .Ae; Ce/ D .
P Nv
NkD1

˛k Nk
NWe Nk/Si .Ae; Ce/ �

P Nv
NkD1
. NWe NkSi / � Si .Ae; Ce/, which shows that

the output shaping problem is also solvable for .A; C;W1; : : : ; Wv/.
The above analysis shows that if the output shaping problem is solvable for NW1; : : : ; NW Nv arising

from some set of basis functions, then, in particular, it is solvable for all W1; : : : ; Wv arising from
a set of linearly independent basis functions. The converse is not true, as can be seen by revisiting
Example 1. By using 8 identical basis functions �1.t/ D � � � D �8.t/ D �.t/, we could split the
matrix W1 into 8 separate matrices, each with only one non-zero element. However, the resulting
set of matrices would also be associated with the system

Px11 D x12 � �1.t/x12 C �2.t/x22; Px21 D x22 � �4.t/x12 C �5.t/x22;
Px12 D �3.t/x23; Px22 D x23 C �6.t/x11 C �7.t/x23;
y1 D x11; Px23 D �8.t/x12;

y2 D x21;

which is unobservable for some functions �1.t/; : : : ; �8.t/ (e.g., for the special case u1.t/ D 1
and �2.t/ D � � � D �8.t/ D 0). Hence, the output shaping problem cannot be solvable. This shows
why methods based on the pattern of the partial derivative matrix without consideration of linear
dependence (e.g., [8, 13, 17]), cannot be applied to Example 1.

5.6.1. Effect of state transformation before determining W1; : : : ; Wv According to Remark 3, the
solvability of the output shaping problem is not affected by applying nonsingular transformations
�x and �y to the set of matrices .A; C;W1; : : : ; Wv/. Suppose, however, that such a transformation
were applied to the system (1) before constructing the matrices W1; : : : ; Wv . In this case, we
would have a system described by the matrices NA D ��1x A�x , NC D ��1y C�x and the nonlinearity
N�.t; Nx/ D ��1x �.t; �x Nx/. It is pertinent to ask whether this might affect the solvability of the output
shaping problem. To answer this question, suppose that the output shaping problem is solvable for
.A; C;W1; : : : ; Wv/ and note that

@ N�
@ Nx .t; Nx/ D �

�1
x

@�

@x
.t; �x Nx/�x :

If �k.t; x/, k 2 1; : : : ; v, is a linearly independent basis such that (3) holds, then

@ N�
@ Nx .t; Nx/ D �

�1
x

vX
kD1

�k.t; �x Nx/Wk�x D
vX
kD1

�k.t; �x Nx/��1x Wk�x D
vX
kD1

N�k.t; Nx/��1x Wk�x;

where N�k.t; Nx/ WD �k.t; �x Nx/, k 2 1; : : : ; v. Hence, a set of matrices associated with the transformed
system would be . NA; NC ; NW1; : : : ; NWv/, where NWk D ��1x Wk�x , k 2 1; : : : ; v, and it follows from
Remark 3 that the output shaping problem is solvable for this set of matrices. By the above analysis,
this implies that the output shaping problem is solvable for any linearly independent partitioning of
Œ@ N�=@ Nx�.t; Nx/.
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18 H. F. GRIP AND A. SABERI

6. PROOF OF THEOREM 3

We start by proving that termination of the algorithm implies that the resulting filter quadruple
solves the output shaping problem. To this end we need the following lemma.

Lemma 1
For a set of matrices . QA; QC ; QW1; : : : ; QWv/ and an integerm � 1, suppose that for each i 2 1; : : : ; m �
1, QWkSi . QA; QC/ � Si . QA; QC/ for all k 2 1; : : : ; v. Then, if extend ( QA, QC , QW1; : : : ; QWv , m) returns a
filter quadruple of order ` D 0, then we also have QWkSm. QA; QC/ � Sm. QA; QC/ for all k 2 1; : : : ; v.

Proof
Let R, QR, QR�, and E0; : : : ; E� refer to the internal values from the execution of extend. The
subspace imE� is the smallest subspace containing ker QR that is QWk-invariant for all k 2 1; : : : ; v.
This can be seen by noting that the definition of E� implies QWk imE��1 � imE� , and that
imE� D imE��1. Thus QWk imE� � imE� . Since imE0 D ker QR, it is clear that ker QR � imE� .
Finally, if N is a QWk-invariant subspace for all k 2 1; : : : ; v that contains ker QR, then we must have
imE0 C

Pv
kD1.

QWk imE0/ D imE1 � N , imE1 C
Pv
kD1.

QWk imE1/ D imE2 � N , and so on.
Hence imE� � N .

We have that Sm�1. QA; QC/ D kerR � ker QR and that Sm. QA; QC/ D ker QR. From the statement
of the theorem, Sm�1. QA; QC/ is QWk-invariant for all k 2 1; : : : ; v; hence imE� � kerR, and thus
RE� D 0. Using this and ` D 0, we can write

` D rank QR�E� D rank

24 RQR�
0

35E� D rankS QRE� D rank QRE� D 0:

Hence imE� � ker QR. Combined with ker QR � imE� , this implies that ker QR D imE� . Hence,
Sm. QA; QC/ D ker QR is QWk-invariant for all k 2 1; : : : ; v.

Using Lemma 1, we can state another lemma.

Lemma 2
After Step 2 of a given iteration, let .A�e ; C

�
e ; W

�
e1; : : : ; W

�
ev/ denote the set of extended system

matrices, n�e the corresponding dimension, and m� the integer m. Then for each i 2 1; : : : ; m� � 1,
W �ekSi .A

�
e ; C

�
e / � Si .A

�
e ; C

�
e / for all k 2 1; : : : ; v.

Proof
Sincem is reset to 1 every time the execution of extend results in ` ¤ 0, we know that we must have
had ` D 0 during the previous m� � 1 iterations. Moreover, since ` D 0 leaves the filter quadruple
.A´; B´; C´;D´/ (and therefore the extended system in the following iteration) unchanged, we
know that extend has been executed on .A�e ; C

�
e ; W

�
e1; : : : ; W

�
ev/ for m D 1; : : : ; m� � 1, each time

resulting in ` D 0. We can now prove the lemma by noting that the premise of Lemma 1 is
always satisfied for m D 1. Hence, Lemma 1 establishes an induction that implies that for each
i D 1; : : : ; m� � 1, W �ekSi .A

�
e ; C

�
e / � Si .A

�
e ; C

�
e / for all k 2 1; : : : ; v.

From Lemma 2, we can now conclude that the termination criteria in Step 3 is satisfied only if the
current set of extended matrices .Ae; Ce; We1; : : : ; Wev/ is admissible. Moreover, .Ae; Ce/ is built
up by progressively adding invertible output filters returned by extend to the original pair .A; C /,
and these filters contain no invariant zeros. It can be shown that this does not affect observability,
and hence the filter solves the output shaping problem.

6.1. Termination in finite number of steps

Next, we shall prove that, if the output shaping problem is solvable, termination occurs after a
finite number of steps. This part of the proof is quite involved; however, the idea is simple. By
the premise of the theorem, the output shaping problem is solvable for the original set of matrices
.A; C;W1; : : : ; Wv/ by a filter of minimal order �1. Letting � 2 1; 2; : : : ; enumerate the iterations,
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we shall establish an induction by focusing on the set of extended matrices defined in Step 2 of
some arbitrary iteration ��, denoted by .A�e ; C

�
e ; W

�
e1; : : : ; W

�
ev/, and assume that the output shaping

problem is solvable for this set of matrices by a filter of minimal order ��� . Based on this assumption
we shall show that for the set of extended matrices defined in Step 2 of iteration �� C 1, the output
shaping problem is solvable by a filter of minimal order ���C1. Moreover, we shall show that
���C1 D ��� � `, where ` is the order of the filter returned by extend during iteration ��. Thus, as
the algorithm progresses, the order of the filter needed to solve the output shaping problem for the
current set of extended matrices is reduced, and we shall show that this implies eventual termination
of the algorithm.

In the following, we denote by n�e the dimension of the system with associated set of matrices
.A�e ; C

�
e ; W

�
e1; : : : ; W

�
ev/. We denote by .A�´; B

�
´ ; C

�
´ ;D

�
´ / the ���-dimensional filter quadruple

that solves the output shaping problem for the set of matrices .A�e ; C
�
e ; W

�
e1; : : : ; W

�
ev/. For

the purpose of achieving admissibility, extending the set of matrices .A�e ; C
�
e ; W

�
e1; : : : ; W

�
ev/

with the filter quadruple .A�´; B
�
´ ; C

�
´ ;D

�
´ / is equivalent to extending the set of matrices

.A�e ; ƒ
�1
u C

�
e ; W

�
e1; : : : ; W

�
ev/ with a filter quadruple .A

�
´; B

�
´ ; C

�
´ ;D

�
´/ of the same order,

where A�´ D ƒ�1´ A�´ƒ´, B�´ D ƒ�1´ B�´ƒu, C �´ D ƒ�1y C �´ƒ´, and D
�
´ D ƒ�1y D�´ƒu for some

nonsingular matrices ƒ´, ƒy , and ƒu. To see this, note that the set of extended matrices��
A�´ B�´Ce�

0 A�e

�
;
�
C �´ D�´C

�
e

�
;

�
0 0

0 W �e1

�
; : : :

�
0 0

0 W �ev

��
;

obtained by extending .A�e ; C
�
e ; W

�
e1; : : : ; W

�
ev/ with the filter quadruple .A�´; B

�
´ ; C

�
´ ;D

�
´ /, is

admissible and that

Ae WD
�
A
�
´ B

�
´ƒ
�1
u Ce�

0 A�e

�
D
�
ƒ´ 0

0 I

��1 �
A�´ B�´Ce�

0 A�e

� �
ƒ´ 0

0 I

�
;

Ce WD
h
C
�
´ D

�
´ƒ
�1
u C

�
e

i
D ƒ�1y

�
C �´ D�´C

�
e

� �ƒ´ 0

0 I

�
;

Wek WD
�
0 0

0 W �ek

�
D
�
ƒ´ 0

0 I

��1 �
0 0

0 W �ek

� �
ƒ´ 0

0 I

�
; k 2 1; : : : ; v:

Hence, it follows from Remark 1 that .Ae; Ce; We1; : : : ; Wev/, which corresponds to the set of
extended matrices obtained by extending .A�e ; ƒ

�1
u C

�
e ; W

�
e1; : : : ; W

�
ev/ with the filter quadruple

.A
�
´; B

�
´ ; C

�
´ ;D

�
´/, is admissible.

Let ƒ´, ƒy , and ƒu be defined such that .A�´; B
�
´ ; C

�
´ ;D

�
´/ is in the SCB [21, 24]. Then we can

write the state of the filter as ´� D Œ´T
a; ´

T
d
�T, where ´a 2 Rna and ´d 2 Rnd with na C nd D ��� .

We can write the input as u� D ŒuT
0; u

T
d
�T, where u0 2 Rp0 and ud 2 Rpd with p0 C pd D p.

We can write the output as y�
f
D ŒyT

f 0
; yT
fd
�T where yf 0 2 Rp0 and yfd 2 Rpd . Furthermore,

we can write ´d D Œ´T
d1
; : : : ; ´T

dpd
�T, where for each i 2 1; : : : ; pd , ´di 2 Rqi with qi � qiC1;

ud D Œu1; : : : ; upd �T; and yfd D Œyfd1; : : : ; yfdpd �T. The filter dynamics is then given by� Ṕa
Ṕd
�
D
�
Aa 0

BdEa Ad C BdEd
� �
´a
´d

�
C
�
La0 Lad
Ld0 Ldd

� �
yf 0
yfd

�
C
�
0 0

0 Bd

� �
u0
ud

�
;�

yf 0
yfd

�
D
�
C0a C0d
0 Cd

� �
´a
´d

�
C
�
Ip0 0

0 0

� �
u0
ud

�
;

where Ad D diag.Aq1 ; : : : ; Aqpd /, Bd D diag.Bq1; : : : ; Bqpd /, Cd D diag.Cq1 ; : : : ; Cqpd /, and
where the matrices Aqi , Bqi , and Cqi have the special form

Aqi D
�
0 Iqi�1
0 0

�
; Bqi D

26664
0
:::

0

1

37775 ; Cqi D
�
1 0 � � � 0

�
:
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We can assume that columns 1; 1C q1; 1C q1 C q2; : : : ofEd are zero, since any nonzero elements
here can be absorbed in the term Lddyfd . We may also assume that the same columns of C0d are
zero, since any nonzero columns can be canceled through an output transformation by adding to
yf 0 a multiple of yfd without changing the SCB structure.

From Lemma 5 in Appendix B, we can see that output injection terms can be removed from
the filter without affecting the admissibility of .Ae; Ce; We1; : : : ; Wev/. Moreover, removing output
injection terms does not change observability of .Ae; Ce/ or the invertibility properties of the filter.
Thus, we can modify the filter by setting La0, Lad , Ld0, and Ldd to zero. Next, we show that the
´a subsystem is of dimension zero.

Lemma 3
The dimension na of ´a is zero.

Proof
We shall show that, if we apply the filter with the state ´a removed, the corresponding set of
extended matrices is also admissible. Moreover, the filter remains invertible, since it still has the
form of an invertible filter in the SCB, and observability is preserved, since removing the ´a renders
the filter zero-free. This will prove the lemma, since the filter is assumed to be of minimal order.

With ´a removed, the extended matrices after applying the filter to .A�e ; ƒ
�1
u C

�
e ; W

�
e1; : : : ; W

�
ev/

are

NAe D
� NA´ NB´ƒ�1u C �e
0 A�e

�
; NCe D

� NC´ ND´ƒ�1u C �e
�
; NWek D

�
0 0

0 W �ek

�
;

where

NA´ D Ad C BdEd ; NB´ D
�
0nd�p0 Bd

�
; NC´ D

�
C0d
Cd

�
; ND´ D

�
Ip0 0

0 0

�
:

We have Si . NAe; NCe/ D \i�1jD0 ker NXj , where NX0 D NCe and NXj D NXj�1 NAe for each j 2 1; : : : ; i � 1.
Without ´a removed, the extended matrices can be written as

Ae D
�
Aa 0

A21 NAe

�
; Wek D

�
0 0

0 NWek

�
; Ce D

�
C1 NCe

�
;

where

A21 D
�
BdEa
0n�

e �na

�
; C1 D

�
C0a
0pd�na

�
:

We have Si .Ae; Ce/ D \i�1jD0 kerXj where X0 D Ce and Xj D Xj�1Ae.
Let Xj D ŒXj1; Xj2�, where Xj1 2 Rp�na and Xj2 2 Rp�.n

�
e Cnd /. For a given j 2 0; : : : ; i � 2,

suppose that Xj2 D NXj . This holds for j D 0, because X0 D ŒC1; NCe� D ŒC1; NX0�. Then we have
XjC1 D ŒXj1; NXj �Ae D ŒXj1Aa C NXjA21; NXj NAe� D ŒXj1Aa C NXjA21; NXjC1�. Hence, XŒjC1�2 D
NXjC1 and by induction, we have Xj2 D NXj for all j 2 0; : : : ; i � 1.

For some i 2 1; : : : ; n�e C nd let Nxe D Œ´T
d
; x�T

e �T 2 Si . NAe; NCe/ be chosen arbitrarily, where ´d 2
Rnd and x�e 2 Rn

�
e . For each j 2 0; : : : ; i � 1, we then have NXj Nxe D 0. By the above derivation,

this implies

Xj

�
0na�1
Nxe

�
D 0 H)

�
0na�1
Nxe

�
2 Si .Ae; Ce/:

Since WekSi .Ae; Ce/ � Si .Ae; Ce/, we have

Wek

�
0na�1
Nxe

�
D
�
0.naCnd /�1
W �ekx

�
e

�
2 Si .Ae; Ce/ H) Xj

�
0.naCnd /�1
W �ekx

�
e

�
D 0; j 2 0; : : : ; i � 1:

Noting that

Xj

�
0.naCnd /�1
W �ekx

�
e

�
D NXj

�
0nd�1
W �ekx

�
e

�
D NXj NWek Nxe;

we conclude that NWek Nxe 2 Si . NAe; NCe/. Hence, admissibility is satisfied with ´a removed.
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Using Lemma 3, we can write the filter equations as

Ṕd D .Ad C BdEd /´d C Bdud ;
yf 0 D C0d´d C u0;
yfd D Cd´d :

Let B, D , and ` refer to the internal values produced during the execution of extend in iteration ��,
where A�e , C �e , W �e1; : : : ; W

�
ev , and an integer m � 1 are parameters. Define a transformation of the

filter input as � Nu1
Nu2
�
D
�

B
D

�
ƒu

�
u0
ud

�
;

where Nu1 2 R` and Nu2 2 Rp�`.

Lemma 4
We can write �

u0
ud

�
D
�
0 NC02NCd1 NCd2

� � Nu1
Nu2
�
;

where NC02 2 Rp0�.p�`/ and NCd1 2 Rpd�` are of rank p0 and `, respectively.

Proof
Let m refer to the integer parameter to extend at iteration ��, and let R, QR, QR�, r , Qr , S , E� , �,
T , and U refer to the internal values during the execution of extend. We start by showing that
ker D � kerD�

´ƒ
�1
u . We can write

Si .Ae; Ce/ D ker
�
Yi1 Yi2

�
;

Yi1 WD

264 C
�
´

:::

C
�
´A

�i�1
´

375 ; Yi2 WD
264 D

�
´ƒ
�1
u C

�
e

:::

D
�
´ƒ
�1
u C

�
e A
�i�1
e CPi�2

jD0 C
�
´A

�i�j�2
´ B

�
´ƒ
�1
u C

�
e A
�j
e

375 :
Let X � Rn

�
e consist of all x�e such that Œ01�nd ; x

�T
e �T 2 Sm.Ae; Ce/, which is equivalent to

Ym2x
�
e D 0. For any x�e 2 X, we then have

Wek

�
0nd�1
x�e

�
D
�
0nd�1
W �ekx

�
e

�
2 Sm.Ae; Ce/ H) W �ekx

�
e 2 X:

Hence X is W �ek-invariant. For any � 2 ker QR, we have C �e A
�i�1
e � D 0 for all i 2 1; : : : ; m. It

follows that Ym2� D 0, which implies � 2 X. Thus, ker QR � X. Following the proof of Lemma
1, we know that imE� is the smallest subspace containing ker QR that is W �ek-invariant for all
k 2 1; : : : ; v. Hence, we must have imE� � X, which implies Ym2E� D 0.

From Lemma 2, we know that ifm > 1, then Sm�1.A
�
e ; C

�
e / isW �ek-invariant for all k 2 1; : : : ; v.

Since Sm�1.A
�
e ; C

�
e / D kerR and ker QR � kerR, we therefore have imE� � kerR, and hence

RE� D 0. This implies that C �e A
�i�1
e E� D 0 for all i 2 1; : : : ; m � 1. It therefore follows from

Ym2E� D 0 that D�
´ƒ
�1
u C

�
e A
�m�1
e E� D 0. This can be rewritten as

D�
´ƒ
�1
u C

�
e A
�m�1
e E� D D�

´ƒ
�1
u

�
S22
S32

��1 �
S22
S32

�
C �e A

�m�1
e E�

D D�
´ƒ
�1
u

�
S22
S32

��1 � QR�
�S31R

�
E�

D D�
´ƒ
�1
u

�
S22
S32

��1 � QR�E�
0

�
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D D�
´ƒ
�1
u

�
S22
S32

��1 �
T 0

0 IpCr�Qr

��1 �
T 0

0 IpCr�Qr

� � QR�E�
0

�

D D�
´ƒ
�1
u

�
S22
S32

��1 �
T 0

0 IpCr�Qr

��124 0U
0

35 D 0:
Define

Q D
�
S22
S32

��1 �
T 0

0 IpCr�Qr

��124 0U
0

35 :
Then D�

´ƒ
�1
u Q D 0, so imQ � kerD�

´ƒ
�1
u . Since rankU D `, it follows that dim imQ D `. On

the other hand, we can write

D D
�

0 0 IpCr�Qr
IQr�r�` 0 0

�24T1 0

T2 0

0 IpCr�Qr

35�S22
S32

�
H) DQ D 0:

Hence, imQ � ker D . Since D has full row rank p � `, we have dim ker D D `, and we can
therefore conclude that imQ D ker D . It now follows that ker D � kerD�

´ƒ
�1
u .

Since ker D � kerD�
´ƒ
�1
u D kerŒIp0 ; 0p0�pd �ƒ

�1
u , we have im DT � im.ŒIp0 ; 0p0�pd �ƒ

�1
u /

T,
and hence there is a matrix NC02 such that NC02D D ŒIp0 ; 0p0�pd �ƒ�1u . It follows that

�
0p0�`

NC02
� �B

D

�
D �Ip0 0p0�pd

�
ƒ�1u H) �

0p0�`
NC02
� D �Ip0 0p0�pd

�
ƒ�1u

�
B
D

��1
:

We therefore have

u0 D
�
Ip0 0p0�pd

� �u0
ud

�
D �Ip0 0p0�pd

�
ƒ�1u

�
B
D

��1 � Nu1
Nu2
�
D �0p0�` NC02

� � Nu1
Nu2
�
:

Now writing

ud D
� NCd1 NCd2

� � Nu1
Nu2
�
;

we get the desired expression. Since the transformation from ŒuT
0; u

T
d
�T to Œ NuT

1; NuT
2�

T is nonsingular,
it immediately follows that NC02 must have full row rank p0 and NCd1 must have full column rank
`.

We can now write the filter equations as

Ṕd D .Ad C BdEd /´d C Bd . NCd1 Nu1 C NCd2 Nu2/;
yf 0 D C0d´d C NC02 Nu2;
yfd D Cd´d :

We can assume that NCd2 2 Rpd�.p�`/ has rank pd � `; otherwise, we can select an L such that
NCd2 C L NC02 has rank pd � ` and add the output injection term BdLyf 0 to the dynamics. The term
BdLC0d´d thus generated in the dynamics can be absorbed by BdEd´d .

Next, perform a state transformation by defining Q́d D .I � Bd QEd /´d , where QEd is defined as
Ed , but with each column shifted once to the left and with the last column zero, which implies
Ed D QEdAd and QEdBd D 0. Then

PQ́d D .I � Bd QEd /..Ad C BdEd /´d C Bd . NCd1 Nu1 C NCd2 Nu2//
D .Ad C BdEd � Bd QEdAd � Bd QEdBdEd /´d C Bd . NCd1 Nu1 C NCd2 Nu2/
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� Bd QEdBd . NCd1 Nu1 C NCd2 Nu2/
D .Ad C BdEd � BdEd /´d C Bd . NCd1 Nu1 C NCd2 Nu2/
D Ad´d C Bd . NCd1 Nu1 C NCd2 Nu2/:

We furthermore have

Ad´d D Ad .I � Bd QEd /�1 Q́d D .Ad C QBd QEd / Q́d ; (25)

where QBd WD AdBd . The last equality in (25) can be confirmed by noting that

Ad D Ad C QBd QEd � QBd QEd � QBd QEdBd QEd
D Ad C QBd QEd � AdBd QEd � QBd QEdBd QEd
D .Ad C QBd QEd /.I � Bd QEd /;

which implies (by post-multiplication with .I � Bd QEd /�1) that Ad .I � Bd QEd /�1 D Ad CQBd QEd . Hence, the filter can be written as

PQ́d D .Ad C QBd QEd / Q́d C Bd . NCd1 Nu1 C NCd2 Nu2/;
yf 0 D QC0d Q́d C NC02 Nu2;
yfd D QCd Q́d ;

where QC0d D C0d .I � Bd QEd /�1 and QCd D Cd .I � Bd QEd /�1.
Let Q́d be partitioned in the same way as ´d . Considering the dynamics of Q́di D

Œ Q́di1; : : : ; Q́diqi �T for i 2 1; : : : ; pd , we have

PQ́dij D Q́diŒjC1�; j 2 1; : : : ; qi � 2;
PQ́diŒqi�1� D Q́qi C QEdi Q́d ;
PQ́diqi D NCd1i Nu1 C NCd2i Nu2;

where QEdi , NCd1i , and NCd2i represent the i ’th row of QEd , NCd1, and NCd2, respectively. Gathering the
states Q́diqi , i 2 1; : : : ; pd , together in a vector Q́dq , we get

PQ́dq D
� NCd1 NCd2

� � Nu1
Nu2
�
:

Let � D Œ�T
1 ; �

T
2 �

T be a nonsingular matrix, where �1 2 R.pd�`/�pd and �2 2 R`�pd , such that

� NCd2 D
�
�1 NCd2
0

�
;

which is possible because NCd2 has rank pd � `. Using the state transformation ´0
dq
D � Q́qi then

yields

Ṕ 0dq D
�
�1 NCd1 �1 NCd2
�2 NCd1 0

� � Nu1
Nu2
�
;

where �2 NCd1 2 R`�` is invertible, which follows from the fact that Œ NCd1; NCd2� has full row rank.
Furthermore defining

Ńdq D
�
Ipd�` ��1 NCd1.�2 NCd1/�1
0 .�2 NCd1/�1

�
´0dq

we obtain
PŃdq D

�
0 �1 NCd2
I` 0

� � Nu1
Nu2
�
:
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Notice now that, because the dynamics of Ńdq are not affected by any other states of the filter, and
because Nu1 does not affect the filter except in the last ` states of Ńdq , we can split the filter into two
cascaded filters. Specifically, we can separate out the last ` states of Ńdq as Ńdq2 to create a separate
filter †1 that integrates Nu1 and feeds Nu2 directly through:

PŃdq2 D Nu1; (26a)
Ny1 D Ńdq2; (26b)
Ny2 D Nu2: (26c)

The overall filter can now be viewed as a cascade of †1 and an .nd � `/-dimensional filter †2
with input Œ NyT

1 ; NyT
2 �

T. Since †1 and †2 are square and the cascade is invertible, both †1 and †2 are
invertible. Notice that we can write †1 as

PŃdq2 D Bƒu

�
u0
ud

�
D QA´ Ńdq2 C QB´ƒu

�
u0
ud

�
;� Ny1

Ny2
�
D
�
I`
0

�
Ńdq2 C

�
0

D

�
ƒu

�
u0
ud

�
D QC´ Ńdq2 C QD´ƒu

�
u0
ud

�
;

where QA´, QB´, QC´, and QD´ are the return values produced by extend during iteration ��;
that is, †1 is represented by the quadruple . QA´; QB´ƒu; QC´; QD´ƒu/. Using †1 to extend
.A�e ; ƒ

�1
u C

�
e ; W

�
e1; : : : ; W

�
ev/, we obtain

�� QA´ QB´C �e
0 A�e

�
;
� QC´ QD´C �e

�
;

�
0 0

0 W �e1

�
; : : : ;

�
0 0

0 W �ev

��
; (27)

and we know that, if we use †2 to further extend (27), we obtain an admissible set of matrices. It
is easy to confirm that (27) is precisely the set of extended matrices defined in Step 2 of iteration
�� C 1. Hence, †2 represents an invertible filter of order ���C1 WD nd � ` D ��� � ` that solves the
output shaping problem for the set of extended matrices defined in Step 2 of iteration �� C 1. This
completes the induction, showing that at each iteration of the algorithm, the output shaping problem
for the current extended system is solvable by a filter of minimal order �� D ���1 � `, which is
always proper.

Since �� cannot become non-negative, ` > 0 can occur for a maximum of �0 iterations. Hence,
there must be a point at which ` D 0 occurs a sufficient number of times in a row that the condition
m D ne C 1 in Step 3 is satisfied, thus causing termination. Clearly, the filter returned by the
algorithm is of minimum order �0.

7. CONCLUDING REMARKS

In this paper, we have investigated the observer design problem for a class of linear systems
perturbed by nonlinear, time-varying terms. We have shown that there exist linear, nonsingular
transformations to a canonical form suitable for high-gain observer design if a certain admissibility
condition on the system data is satisfied. We have furthermore introduced an algorithm that solves
the problem of making the system data admissible through the addition of an invertible output filter,
whenever such a solution exists.

The results presented here are not motivated by a particular observability property of the nonlinear
system in question, but by the goal of providing a constructive design methodology for a large class
of systems. No direct connection to observability is currently known, and the exploration of such a
connection is a topic of interest for future work.
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A. REWRITING THE NONLINEAR ERROR TERM

To see why (6) holds, note that we can use Taylor’s theorem [25, Theorem 11.1] to write

�.t; x/ � �.t; Ox/ D
Z 1

0

@�

@x
.t; Ox C p.x � Ox// dp .x � Ox/

D
Z 1

0

vX
kD1

�k.t; Ox C p.x � Ox//Wk dp .x � Ox/

D
vX
kD1

Z 1

0

�k.t; Ox C p.x � Ox// dpWk.x � Ox/

D
vX
kD1

�k.t; x; Ox/Wk.x � Ox/;

(28)

where

�k.t; x; Ox/ WD
Z 1

0

�k.t; Ox C p.x � Ox// dp

is uniformly bounded due to the boundedness of �k.t; x/.

B. A USEFUL LEMMA

Lemma 5
For all i 2 1; : : : ; n, we have that Si .AC LC;C / D Si .A; C /, where A 2 Rn�n, L 2 Rn�p , and
C 2 Rp�n.

Proof
Suppose that for some i 2 1; : : : ; n � 1, Si .AC LC;C / D Si .A; C /. This holds for i D 1, since
S1.AC LC;C / D S1.A; C / D kerC . Using the fact that for all j 2 1; : : : ; i , kerCAj�1 �
Si .A; C /, we can write

SiC1.AC LC;C / D Si .A; C / \ kerC.AC LC/i
D Si .A; C / \ kerC.AC LC/i�1A
D � � �
D Si .A; C / \ kerC.AC LC/Ai�1
D Si .A; C / \ kerCAi D SiC1.A; C /:

Hence, the lemma holds by induction.
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