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Abstract—This paper surveys recent progress and discusses
future opportunities for Simultaneous Localization And Map-
ping (SLAM) in extreme underground environments. SLAM in
subterranean environments, from tunnels, caves, and man-made
underground structures on Earth, to lava tubes on Mars, is a key
enabler for a range of applications, such as planetary exploration,
search and rescue, disaster response, and automated mining,
among others. SLAM in underground environments has recently
received substantial attention, thanks to the DARPA Subterranean
(SubT) Challenge, a global robotics competition aimed at as-
sessing and pushing the state of the art in autonomous robotic
exploration and mapping in complex underground environments.
This paper reports on the state of the art in underground SLAM
by discussing different SLAM strategies and results across six
teams that participated in the three-year-long SubT competition.
In particular, the paper has four main goals. First, we review
the algorithms, architectures, and systems adopted by the teams;
particular emphasis is put on LIDAR-centric SLAM solutions
(the go-to approach for virtually all teams in the competition),
heterogeneous multi-robot operation (including both aerial and
ground robots), and real-world underground operation (from the
presence of obscurants to the need to handle tight computational
constraints). We do not shy away from discussing the ‘dirty
details”” behind the different SubT SLAM systems, which are
often omitted from technical papers. Second, we discuss the
maturity of the field by highlighting what is possible with the
current SLAM systems and what we believe is within reach
with some good systems engineering. Third, we outline what we
believe are fundamental open problems, that are likely to require
further research to break through. Finally, we provide a list of
open-source SLAM implementations and datasets that have been
produced during the SubT challenge and related efforts, and
constitute a useful resource for researchers and practitioners.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) remains
at the center stage of robotics research, after more than 30
years since its inception. SLAM is without a doubt a mature
field of research, and the advances over the last three decades
keep steadily transitioning into industrial applications, from
domestic robotics [1]-[3], to self-driving cars [4] and virtual
and augmented reality goggles [5], [6]. At the same time,
its pervasive nature and its blurry boundaries as a robotics
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subfield still leave space for exciting research progress. While
previous survey efforts have targeted SLAM in general [7],
SLAM is also actively investigated in specific subdomains,
from deployment on nano-drones [&] to city-scale mapping [9],
to deployment in perceptually challenging conditions. This
paper surveys algorithms and systems for LIDAR-centric
SLAM in extreme underground environments.

Present and Future of SLAM in Underground Worlds.
The past two decades have seen a growing demand for
autonomous exploration and mapping of diverse subterranean
environments, from tunnels and urban underground environ-
ments, to complex cave networks. This has led to an increasing
attention towards underground SLAM, which is a key enabler
for navigation in GPS-denied environments where a-priori
maps are unavailable. Mature SLAM systems for subterranean
mapping have the potential to enable a range of terrestrial
and planetary applications, from surveying, search and rescue,
disaster response, and automated mining, to exploration of
planetary caverns that could hold clues about the evolution
and habitability of the early Solar System.

Progress in underground SLAM has been particularly cat-
alyzed by the recent DARPA Subterranean (SubT) Chal-
lenge [10], a three-year-long global competition ended in
2021, and having the goal of demonstrating and advancing
the state of the art in mapping and exploration of complex
underground environments. The competition had a systems
track and a virtual track, and included three main events: the
Tunnel circuit event, the Urban circuit event, and the Finals.
The teams competing in the systems track had the goal of
deploying a team of robots to map a sequence of large-scale,
unknown underground environments (including caves, tunnels,
and subways), detect artifacts (i.e., objects of interest, in-
cluding survivors, mobile phones, fire extinguishers, etc.), and
report their locations with stringent performance requirements
(i.e., within 5 m errors, in underground networks branching for
hundreds of meters to kilometers). While the team of robots
was supervised by a single human operator, communication
constraints as well as the fast-pace of the competition (the
robots had to complete the exploration in under 1 hour) pushed
the teams to develop robust and highly autonomous solutions
that required minimal human intervention.

Technical Challenges for Underground SLAM. Robots
exploring underground environments typically do not have
access to sources of absolute positioning (e.g., GNSS) and



rarely have access to prior maps of the environment. While in
many cases (e.g., search and rescue operations) building a map
is not the goal of the deployment, mapping remains a crucial
prerequisite for successful underground operation. Mapping
these environments is particularly challenging; poor lighting
conditions make it challenging to deploy visual and visual-
inertial SLAM solutions; while the lack of illumination can be
partially compensated by onboard light sources, the resulting
illumination is either tenuous or creates specular reflections
that interfere with visual feature tracking. Beyond cameras,
other sensors are also challenged by the strenuous conditions
found in the undergrounds. The potential presence of dense
obscurants, such as fog, whirling dust clouds, and smoke, chal-
lenges the use of LIDARs. The use of fast-moving platforms
on rough terrains induces noise in inertial sensors, due to the
aggressive 6-DoF motion and high-frequency vibrations.

Even when the sensors themselves perform to specifications,
these environments create further challenges for SLAM al-
gorithms. For instance, the lack of perceptual features (e.g.,
long corridors, large open spaces, and chambers) induces
failures in LIDAR-odometry approaches based on feature or
scan matching. Similarly, the presence of self-similar and
symmetric areas, and the lack of distinctive visual texture
increase the number of false positives in the place recognition
methods that fuel loop closure detection in SLAM, and map
fusion and merging in multi-robot systems. The complex and
ambiguous terrain topography is further exacerbated by sudden
changes in the scale of the environment (e.g., a small tunnel
leading to a large cave), which clashes with potential scenario-
dependent parameter tuning in SLAM systems.

The challenges of underground SLAM extends to system
engineering. SLAM algorithms must operate on-board under
computational constraints, which are particularly stringent on
aerial platforms, and also require careful parameter tuning and
code optimizations on wheeled and legged robots. Moreover,
these SLAM systems are required to withstand intermittent and
faulty sensor measurements, as well as unexpected motions
and shocks due to potential robot falls and collisions.

Related Surveys. Progress in SLAM research has been
reviewed by Durrant—-Whyte and Bailey [1 1], [12] and more
recently by Cadena et al. [7]. Other relevant surveys have re-
cently focused on multi-robot SLAM and related applications.
Kegeleirs et al. [13] and Dorigo et al. [14] provide an overview
of challenges in SLAM with robotic swarms and their ap-
plication for gathering, sharing, and retrieving information.
Halsted et al. [15] survey distributed optimization algorithms
for multi-robot applications. Parker et al. [16] examine multi-
robot SLAM architectures with focus on communication issues
and their impact on multi-robot teams. Lajoie et al. [17]
provide a literature review of collaborative SLAM with focus
on robustness, communication, and resource management.
Zhou et al. [18] review algorithmic developments in making
multi-robot systems robust to environmental uncertainties,
failures, and adversarial attacks. Prorok et al. [19] discuss
resilience in multi-robot systems. None of these surveys focus
on SLAM in underground environments.

Contribution. This paper reports on the state of the art and
state of practice in underground SLAM by discussing different

SLAM strategies and results across six teams that participated
in the three-year-long SubT challenge. In particular, the paper
has four main goals. First, we provide a broad review of related
work (Section II) and then delve into the single- and multi-
robot SLAM architectures adopted by six teams that partici-
pated in the systems track of the DARPA SubT challenge (Sec-
tion III); particular emphasis is put on multi-modal LIDAR-
centric SLAM solutions, heterogeneous multi-robot operation,
and real-world underground operation. We also discuss the
“dirty details” behind the different SubT SLAM systems,
which are often omitted from technical papers. Second, we
discuss the maturity of the field by highlighting what is pos-
sible with the current SLAM systems and what we believe is
within reach with some good system engineering (Section IV).
Third, we outline what we believe are fundamental open
problems, that are likely to require further research to break
through (Section V). Finally, we provide a list of open-source
SLAM implementations and datasets that have been produced
during the SubT challenge and related efforts, and constitute
a useful resource for researchers and practitioners. These are
summarized in Table 1.

II. OVERVIEW OF RELATED WORK

This section provides a brief overview of related work
on SLAM systems for subterranean environments and multi-
robot teams, before delving into the details of modern sys-
tems in Section III. Early efforts on SLAM in subterranean
environments trace back to the work of Thrun et al. [20]
and Nuchter et al. [21], which highlighted the importance of
underground mapping and introduced early solutions involving
a cart pushed by a human operator, or teleoperated robots
equipped with laser range finders to acquire volumetric maps
of underground mines. Tardioli et al. [22], [23] present a
SLAM system for exploration of underground tunnels using
a team of robots. The system comprised of a navigation
control module, a feature-based robot localization module, a
communication module, and a supervisor module for multi-
robot collaborative exploration in a tunnel. Zlot ef al. [24]
propose a 3D SLAM system consisting of a 2D spinning lidar
and an industrial-grade MEMS IMU to map over 17km of
an underground mine. Kohlbrecher et al. [25] present Hector
SLAM, a flexible and scalable SLAM system with full 3D
motion estimation developed specifically for urban search and
rescue. The system consists of a navigation filter that uses
an IMU for attitude estimation, and a 2D SLAM system for
position and heading estimation within the ground plane.

Lajoie et al. [26] present DOOR-SLAM, a multi-robot
SLAM system which consists of two key modules, a pose
graph optimizer (combined with a distributed pairwise consis-
tent measurement set maximization algorithm to reject spuri-
ous inter-robot loop closures), and a distributed SLAM front-
end that detects inter-robot loop closures without exchanging
raw sensor data. Chang, Tian, ef al. [27], [28] present Kimera-
Multi, a distributed multi-robot system for dense metric-
semantic SLAM. Each robot builds a local trajectory estimate
and a 3D mesh. When robots are within communication range,
they initiate a distributed place recognition and robust pose
graph optimization protocol based on graduated non-convexity.



Autonomous exploration of extreme underground environ-
ments has received significant attention in the context of the
DARPA SubT Challenge. The competition gave rise to and
inspired breakthrough technologies and capabilities in the field
of underground SLAM [29]-[54]. We review the details of key
(multi-robot) SLAM systems developed in the context of the
DARPA SubT challenge in the next section.

III. STATE OF THE ART IN UNDERGROUND SLAM

This section examines the SLAM architectures adopted by
six of the teams that participated in the systems track of
the DARPA SubT Challenge, and highlights the important
design choices, differences, and common themes that enabled
autonomous exploration of unknown underground environ-
ments. Moreover, this section provides a table of open-source
implementations and datasets that are made publicly available
by each team. In particular, Section III-A reviews the standard
architecture of a multi-robot SLAM system and provides basic
terminology. Section III-B to Section III-G describe the spe-
cific SLAM architectures adopted by the six SubT teams and
highlight key design choices and “dirty details”. Section III-H
discusses common themes, and includes a table of open-source
implementations and datasets (Table I).

A. Anatomy of Single- and Multi-Robot SLAM Systems

The architecture of a SLAM system typically includes two
main components: the front-end and back-end [7];

The SLAM front-end is in charge of abstracting the raw
sensor data into more compact intermediate representations
(e.g., odometry, loop closures, landmark observations). For in-
stance, a LIDAR-based SLAM front-end may process LIDAR
scans into odometry estimates either by registering salient fea-
tures extracted from consecutive LIDAR scans —an approach
adopted by teams CERBERUS (Section III-B) and Explorer
(Section III-F)— or by dense registration of LIDAR point
clouds (or surfels) using ICP or its variants —as adopted by
teams CoSTAR (Section III-C), CSIRO (Section III-D), CTU-
CRAS-Norlab (Section III-E) and MARBLE (Section III-G).

The SLAM back-end is in charge of building robot tra-
jectory and map estimates by fusing the intermediate repre-
sentations produced by the front-end. The back-end typically
includes a nonlinear estimator, with the de-facto standard
approach being maximum a-posteriori estimation via factor
graph optimization [7]; this indeed has been adopted by
virtually all teams below. A popular instance of factor graph
optimization is bluepose graph optimization, where one opti-
mizes the robot trajectory using relative pose measurements.
The SLAM back-end can perform tightly-coupled and loosely-
coupled sensor fusion, where the former fuses fine-grained
measurements by different sensors (e.g., 2D image features and
inertial data), while the latter fuses intermediate estimates (e.g.,
relative poses produced by a LIDAR and camera). Tightly-
coupled approaches are generally more accurate, as they rely
on more precise models of the sensor data and its noise.
Loosely-coupled approaches are easier to implement (i.e., they
are more modular) and often more convenient (e.g., they

give access to standard tools for outlier-rejection and health
monitoring [55], [56]), but at the cost of decreased accuracy.
Multi-robot SLAM systems are characterized by the fact
that sensor data is simultaneously collected by multiple robots,
which are in charge of building a consistent map of the
environment. Multi-robot SLAM architectures can be central-
ized, decentralized, or distributed. In centralized architectures,
a base station collects data from all the robots (e.g., raw
sensor data or intermediate representations from the single
robot front-ends) and then computes optimal trajectory and
map estimates for the entire team. Each robot typically runs
a local SLAM front-end (and possibly a local back-end) to
pre-process the sensor data — this reduces the amount of
data to be transmitted and the subsequent computation at the
base station; then, the base station may implement a multi-
robot front-end, which is in charge of detecting inter-robot
loop closures, and a multi-robot back-end, that estimates the
robots’ trajectories and map. In this paper, we call a multi-
robot architecture decentralized if each robot is treated as a
base station: it collects all the data from the other robots and
performs joint estimation of the trajectory and global map of
the entire team. Finally, we call an architecture distributed
if each robot only exchanges partial information with its
neighbors and only estimates its own map by relying on
distributed inter-robot loop closure detection and distributed
optimization protocols [28], [57]-[60]. The following sections
describe the SLAM architectures for each SubT team.

B. Team CERBERUS

Team CERBERUS won the Final event of the DARPA SubT
Challenge; their SLAM architecture is given in Figure 1. The
architecture is powered by CompSLAM [46], a complementary
multi-modal odometry and local mapping approach running at
each (walking, flying, or roving) robot, and M3RM, a multi-
modal, multi-robot mapping server running at the base station.

Onboard Odometry and Mapping via CompSLAM.
CompSLAM [46] is a loosely-coupled approach that allows
hierarchical fusion of a set of sensor-specific pose estimators
as each estimate is refined by the next estimator. This enables
operating in parallel into a single odometry estimate, while
performing data- and process-level health checks [01]. In
particular, CompSLAM performs a coarse-to-fine fusion of in-
dependent pose estimates including visual, thermal, depth, in-
ertial, and possibly kinematic odometry sources. This loosely-
coupled methodology provides redundancy and ensures ro-
bustness against perceptually degraded conditions, including
self-similar geometries, low-light and low-texture scenes, and
obscurants-filled environments (e.g., fog, dust, smoke), assum-
ing that each condition only affects a subset of sensors.

The visual- and thermal-inertial fusion (VTIO) components
of CompSLAM build upon the work [62] and extends it to ex-
ploit 16-bit raw data from LongWave InfraRed cameras [63],
[64] and depth from LIDAR. Furthermore, the depth data
from the LIDAR is utilized to initialize or improve depth
estimates of features tracked in visual and thermal imagery,
providing robustness for scale estimation without the need for
computationally expensive stereo-matching.
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Figure 1: Overview of team CERBERUS’ SLAM architecture. Each robot estimates and operates on its own individual map.
Periodically, these maps are sent to the mapping server on the base station for accumulation and for global multi-robot

optimization.

The LIDAR Odometry And Mapping component of Comp-
SLAM develops on top of LOAM [65]. This component, along
with VTIO priors, utilizes LIDAR point clouds to perform a
LIDAR Odometry (LO) scan-to-scan matching and scan-to-
submap matching LIDAR Mapping (LM) step. Accordingly,
the robot estimates its pose in the map and simultaneously
constructs a local map of the environment. Following the
hierarchical fusion approach, the estimates of the LO module
are utilized by and refined upon by the LM module. To assess
the quality at each iterative optimization step, the system
utilizes a threshold on the eigenvalues of the underlying
approximate Hessian [31], [66], to identify the degrees of
freedom that are possibly ill-conditioned due to geometric self-
similarity. In case certain directions are determined to be ill-
conditioned, the pose estimates from the previous estimator in
the hierarchy (e.g., visual-inertial odometry) are propagated
forward, skipping the ill-conditioned module.

Finally, to produce smooth and consistent pose estimates,
CompSLAM uses a factor-graph-based fixed-lag smoother,
implemented as part of the LO module, with a smoothing
horizon of 3 seconds. The factor graph is implemented using
GTSAM [67] and integrates relative LO estimates with IMU
pre-integration factors [68]. To reduce pose drift and improve
IMU bias estimation, zero-velocity factors are added when
more than one sensing modality reports no motion for 0.5
(consecutive) seconds. Moreover, during periods of no mo-
tion, roll and pitch estimates —calculated directly from bias-
compensated IMU measurements— are added as prior factors.

Multi-Robot Mapping and Optimization (M3RM). The
core component of the CERBERUS multi-modal and multi-
robot mapping (M3RM) approach is a centralized mapping
server that utilizes multiple modalities such as LIDAR, vision,
IMU, wheel encoders, etc., in a single factor graph optimiza-
tion. The deployed M3RM approach is based on the existing
framework maplab [69] and can generally be subdivided into
two components, namely the M3RM node and server.

The M3RM node runs onboard each robot and is in charge
of creating a local factor graph capturing multi-sensor data col-
lected and pre-processed by the robot, e.g., odometry factors
from CompSLAM. The node also tracks BRISK [70] features
and triangulates the features to a visual map using the Comp-
SLAM pose estimates. Additionally, the LIDAR scans (as

well as the corresponding timestamps and extrinsic calibration)
are attached to the factor graph. The factor graph is broken
into submaps. To reduce bandwidth, each LIDAR scan is
compressed using DRACO [71] before transmission, reaching
a total size of approximately 2 megabytes per submap. When
robots establish a connection to the base station, the M3RM
node transmits the completed submaps to the M3RM server. A
synchronization logic ensures that only a completed submap
transmission will be integrated into the multi-robot map.

The M3RM server runs at the base station and is in-charge
of keeping track of all individual submaps for each robot and
integrating them into a globally consistent multi-robot map.
During the mission, the M3RM server allows a human operator
to visualize the individual maps as well as the globally
optimized multi-robot map which enables mission planning.
Moreover, the server has certain management functions such as
removal of maps, performance profiles, and allows switching
between CompSLAM and M3RM map per robot. The Comp-
SLAM maps are not attached to the global multi-robot map but
can be visualized using an overlay. To integrate the individual
robot submaps into a single multi-robot map, the M3RM server
first processes each incoming submap using a set of operations,
namely (i) visual landmark quality check, (ii) visual loop
closure detection, (iii) LIDAR registrations, and (iv) submap
optimization. Since each submap’s processing is independent
of the processing of other submaps, the mapping server can
process up to four submaps in parallel. For visual loop
closure detection, the method presented in [72] is performed
using the tracked BRISK features and an inverted multi-index.
Correctly identified visual loop closures within a submap are
implemented by merging the corresponding landmarks and are
then integrated during the submap optimization. Moreover,
additional LIDAR constraints are added to the factor graph
by aligning consecutive scans within a submap using ICP.
Since the onboard odometry and mapping pipeline already
provides an estimate of the poses, a prior transformation is
readily available for each registration. However, if the resulting
transformation differs significantly from the prior, it is rejected
for robustness reasons as we expect that the drift between
consecutive nodes is relatively small.

After individual submaps processing, they are merged into
the global multi-robot map, which is continuously optimized
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Figure 2: Overview of team CoSTAR’s SLAM architecture (LAMP). Each robot runs a local front-end and communicates to
the base station, which runs a multi-robot front-end (for loop closure detection) and back-end (for pose graph optimization).

by the M3RM server. A predefined set of operations are
executed in an endless loop on the global multi-robot map,
i.e., (i) multi-robot visual loop closure detection, (ii) multi-
robot LIDAR registrations, and (iii) factor graph optimization.
In this case, these operations are performed on the entire multi-
robot map, and have the goal of detecting intra- and inter-robot
loop closures and performing a joint optimization.

Dirty Details. Parameter tuning: As for many other sys-
tems reviewed in this paper, the top performance of team
CERBERUS’ SLAM solution requires a careful fine-tuning
of all available parameters. For example, the degeneracy
detection relies on a hand-tuned set of parameters and is robot-
dependent. The tuning is performed by using a grid search over
several clusters of parameters and measuring their performance
across relevant environments. To complicate things further,
the configurable parameters for the M3RM server have to be
consistently applied to all robots in the global multi-robot map,
making fine-tuning for specific robot types (e.g., flying and
legged systems) as well as sensors (e.g., various camera and
LIDAR systems) difficult at the stage of global mapping.

Covariances: While it is desirable to dynamically adjust the
covariances in the factor graphs depending on the quality of the
sensor data, it proved challenging to balance the uncertainty
of the visual and LIDAR factors; therefore, the system relied
on static (manually tuned) covariances for the latter.

Loop closures: None of the deployed robots performed on-
board loop closure detection. Thus, in scenarios where robots
stay out of communication range from the base station for
a considerable time, the CompSLAM errors may accumulate,
making it harder for the M3RM server to correct the estimates.
Moreover, an incorrect robot map can “break” the whole global
multi-robot map, which is why a human operator is needed to
monitor and possibly remove specific robots from the multi-
robot map.

C. Team CoSTAR

Team CoSTAR won the Urban event of the DARPA SubT
Challenge. An overview of team CoSTAR’s SLAM system,

namely, Large-scale Autonomous Mapping and Positioning
(LAMP), is provided in Figure 2. LAMP is a key component
of NeBula [73], team CoSTAR’s overall autonomy solution.
LAMP relies on data from different odometry sources (i.e.,
LIDAR, visual-inertial, wheel-inertial, and IMU) to estimate
the robot trajectories, as well as a point cloud map of the
environment. The system consists of (i) a single-robot front-
end interface that runs locally onboard each robot to produce
an estimated robot trajectory and a point cloud map of the
environment explored by each robot, (ii) a multi-robot front-
end, running on the base station, which receives the robots’
local odometry and maps and performs multi-robot loop
closure detection, and (iii) a multi-robot back-end, that uses
odometry (from all robots) and intra- and inter-robot loop
closures from the multi-robot front-end to perform a joint pose
graph optimization; the multi-robot back-end runs on the base
station and simultaneously optimizes all the robot trajectories.

Single-Robot Front-End Interface. LAMP relies on a
multi-sensor front-end interface that enables the use of robots
with different sensor configurations and odometry sources,
including LOCUS [74] and Hovermap [75]. The front-end
produces an odometric estimate of each robot’s trajectory, and
stores the corresponding information in a factor graph, where
each node corresponds to an estimated pose, while an edge
connecting two nodes encodes the relative motion between the
corresponding timestamps. Each odometry node is associated
with a keyed-scan, a pre-processed point cloud obtained at the
corresponding timestamp. The keyed-scan are used for loop
closure detection and to form a 3D map of the environment.

Within the single-robot front-end, LOCUS [74] is
CoSTAR'’s LIDAR-centric odometry estimator. LOCUS starts
with a pre-processing step, where —after removing motion-
induced distortions in point clouds— scans from multiple on-
board LIDARSs are merged into a unified point cloud given the
extrinsic calibration between LIDARs. An adaptive voxeliza-
tion filter is then applied to ensure a constant number of points
are retained independent of the environment geometry, point
cloud density, and number of onboard LIDARs. This helps
reduce the computation, memory usage, and communication



bandwidth associated with the subsequent processing. Odo-
metric estimates are obtained using a two-stage scan-to-scan
and scan-to-submap registration process; the registration relies
on a fast implementation of point-to-plane ICP, initialized
using IMU measurements or other odometry sources.

Scalable Multi-robot Front-end. The multi-robot front-end
is in charge of intra- and inter-robot loop closure detection
by leveraging a three-step process: loop closure generation,
prioritization, and computation as outlined below.

The Loop Closure Generation module relies on a modular
design, where loop closure candidates can be identified using
different methods and environment representations (i.e., Bag-
of-visual-words [76], junctions extracted from 2D occupancy
grid maps [31]). The go-to loop closure generation approach
within SubT has been based on LIDAR point clouds. In
particular, loop closure candidates are simply identified from
nodes in the factor graph that lie within a certain Euclidean
distance from the current node; the distance is dynamically
adjusted to account for the odometry drift between nodes.

The Loop Closure Prioritization module [77] selects the
most promising loop closures for processing. While loop
closures are crucial for map merging and drift reduction in the
estimated robot trajectory, it is equally crucial to avoid closing
loops in ambiguous areas with high degree of geometric
degeneracy [31], as it could lead to spurious loop closure
detections. Furthermore, loop closure detection in large-scale
environments, and with large number of robots, becomes
increasingly more computationally expensive as the density of
nodes in the pose graph, and subsequently the number of loop
closure candidates, increases. The purpose of this module is to
prioritize loop closure candidates inserted in the computation
queue by evaluating their likelihood of improving the trajec-
tory estimate. This is achieved through a three-step process
of (i) observability prioritization, where similar to the works
presented in [31], [78], [79], eigenvalue analysis is performed
to detect degenerate scan geometries, in order to prioritize
loop closures in feature-rich areas, (ii) graph information
prioritization, where a Graph Neural Network (GNN) [80]
based on a Gaussian Mixture model layer is used to predict the
impact of a loop closure on pose graph optimization, and (iii)
Receiver Signal Strength Indication (RSSI) prioritization to
prioritize loop closures based on known locations indicated by
RSSI beacons —whenever a robot is within range of an RSSI
beacon. The prioritized loop closure candidates are inserted
into a queue for the computation step in a round-robin fashion.

The Loop Closure Computation module estimates the rela-
tive pose between a pair of loop closure candidate nodes in
the queue using a two-stage process. First, an initial estimate
of the relative pose is computed using TEASER++ [81] or
SAmple Consensus Initial Alignment (SAC-IA) [82]. Then the
Generalized Iterative Closest Point (GICP) algorithm [83] is
initialized with the obtained solution to refine the relative pose
and evaluate the quality of the LIDAR scan alignment.

Robust Multi-robot Back-end. LAMP uses a centralized
multi-robot architecture, where a central base station receives
the odometry measurements and keyed scans from each robot,
along with loop closures from the multi-robot front-end, and
performs pose graph optimization to obtain the optimized

trajectory for the entire team. The optimized map is then
generated by transforming the keyed scans to the global frame
using the optimized trajectory. To safeguard against erroneous
loop closures, the multi-robot back-end includes two outlier re-
jection options: Incremental Consistency Maximization (ICM)
[29], which checks detected loop closures for consistency with
each other and the odometry before they are added to the pose
graph, and Graduated Non-Convexity (GNC) [55], which is
used in conjunction with the Levenberg-Marquardt solver to
perform an outlier-robust pose graph optimization and obtain
both the trajectory estimates and inlier/outlier decisions on the
loop closure not discarded by ICM. Pose Graph Optimization
and GNC are implemented using GTSAM [67].

Dirty Details. Parameter tuning: While LAMP provides
a robust localization and mapping framework, it is difficult
to find a set of parameters for the front-end and back-
end modules that leads to nominal performance consistently
across environments with different topography and geometry.
In order to have a more systematic approach to parameter
tuning, CoSTAR curated 12 SLAM datasets across multi-
ple challenging underground environments for evaluation and
benchmarking, with the goal of obtaining at a set of param-
eters that gave the best performance across all domains. The
parameter tuning was mostly manual, and was restricted to a
small subset of parameters which had higher impact on the
system’s performance. One area where parameter tuning was
successful was LIDAR-based loop closure detection. Here, the
dataset consisted of pairs of point clouds from a variety of
environments, with 80% of the pairs being true loop closures,
with known relative poses, and the rest being outliers.

D. Team CSIRO

Team CSIRO Data61 tied for the top score and won the
second place at the Final event of the DARPA SubT challenge
after the tiebreaker rules were invoked. The team also won
the single most accurate artifact report award in the Urban
and Final events. An overview of Wildcat [84], [85], CSIRO’s
LIDAR-inertial decentralized multi-robot SLAM system, is
given in Figure 3. We first review CSIRO’s distinctive sensing
strategy, and then introduce the key modules in the Wildcat ar-
chitecture: surfel generation, LIDAR-inertial odometry, frame
generation and sharing, and pose graph optimization.

Sensing Pack. The ground robots carried a CatPack sensing
payload designed by CSIRO. The CatPack uses an IMU and a
Velodyne VLP-16 LIDAR that is mounted at 45° off horizontal
and spins about the vertical axis of the CatPack. The CatPack
also has four RGB cameras, which were used for artifact
detection, but not for SLAM. The Emesent Hovermap [86]
payload used on the aerial robots is a similar sensing pack with
a spinning Velodyne VLP-16. Both the CatPack and Hovermap
run the Wildcat SLAM system onboard, on their NVIDIA
Jetson AGX Xavier and Intel NUC computers, respectively.

The spinning LIDAR configuration of CatPack provides
dense depth measurements with an effective 120° vertical field
of view. This played a major role in making CSIRO’s SLAM
system robust in subterranean environments, e.g., by providing
improved visibility of the floor and roof of narrow tunnels. It
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also enabled use of surfel features, which exploit the dense
depth measurements to provide a stable, robust feature set that
is effective in a wide range of environments.

Surfel Generation. Wildcat uses planar surface elements
(surfels) as dense features for estimating robot trajectory. Sur-
fels are created every 0.5s by spatial and temporal clustering
of new LIDAR points. Specifically, the space is voxelized at
multiple resolutions and points are clustered depending on
their timestamp and the voxel they fall in. Clusters smaller
than a predefined threshold (in terms of number of points) are
discarded. An ellipsoid is then fit to each remaining cluster
by computing the first two moments of its 3D points. The
centroid (mean) of an ellipsoid specifies the position of the
corresponding surfel, while its covariance matrix determines
its shape. A planarity score [87, Eq. 4] is computed based on
the spectrum of the covariance, and only sufficiently planar
surfels are kept.

LIDAR-Inertial Odometry. Wildcat’s LIDAR-inertial
odometry module processes surfels and IMU data in a sliding
window. Within a time window, the processing alternates
between (i) matching active surfel pairs and (ii) optimizing
robot trajectory, for a predetermined number of times or until
satisfying a convergence criterion. Surfel correspondences are
established through k-nearest (reciprocal) neighbor search in
the descriptor space comprising estimated surfel’s position,
normal vector, and voxel size. The estimate of the segment
of the robot trajectory within the current time window is then
updated by minimizing a cost function mainly composed of
residual error functions associated to matched surfel pairs
and IMU measurements in the current time window. The
cost function is made robust to outliers (e.g., incorrect surfel
correspondences) by using the Cauchy M-estimator.

Frame Generation and Sharing. A Wildcat frame com-
prises a six-second portion of surfel map and odometry pro-
duced by each robot’s LIDAR-inertial odometry. Each robot
generates frames periodically and stores them in a database. A
frame is discarded if its surfel submap has very high overlap
with that of the previous frame. As shown in Figure 3, Wild-
cat leverages CSIRO’s peer-to-peer ROS-based data sharing
system, Mule [85, Section 4.3], to synchronize robots’ frame
databases every time two agents (robot-robot or robot-base

station) are within communication range.

Pose Graph Optimization. Each robot uses its collection
of Wildcat frames —including those generated and shared
by other robots— to independently build and optimize the
team’s collective pose graph. Frames represent nodes of the
pose graph. Each robot’s odometry estimate is used to create
odometry edges (i.e., relative pose measurements) between
the robot’s consecutive frames. Additionally, intra- and inter-
robot loop-closure edges are created by aligning frames’ surfel
maps. This is done using ICP for nearby frames (for which
a good initial guess is available from odometry) and global
registration methods for distant ones. Pose graph nodes with
significant overlap in their local maps are merged together.
As a result, the computational complexity of the solver grows
with the size of the explored environment rather than mission
duration. The solver is made robust to outliers using Cauchy
M-estimator. The collective pose graph built and optimized by
each robot is used to render a surfel map of the environment.

Dirty Details. Parameter tuning: CSIRO’s solution uses
a single set of parameters tuned to perform across a wide
range of environments. However, ground robots and drones use
different parameters due to the independent tuning processes.

Calibration: CatPacks undergo extensive calibration on pro-
duction, comprising both LIDAR-IMU and LIDAR-camera
calibration. The incorporation of the cameras in the CatPack
successfully avoided the need for subsequent calibration, even
when packs are switched between platforms.

Loop closures: Complex LIDAR-based place recognition
techniques were rarely found to be necessary at the scale
of SubT environments, therefore team CSIRO found loop
closures candidates by searching for past poses within a
Mahalanobis distance from the current robot pose. In SubT,
the first inter-robot loop closures were created upon startup
based on joint observation of the same starting region. This
process at startup was imperfect, but difficulties could be
addressed procedurally, e.g., by restarting the affected agent.
Since each agent also solves independently for its own multi-
robot solution, it was necessary to ensure that these inter-robot
loop closures are successfully detected not only on the base,
but also on each robot. After difficulties in the Urban Event
of the competition, user interface elements were introduced
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to prominently report the connectivity status of the collective
pose graph to detect anomalies. By the Final event, these
failures were rare.

Hardware robustness: While hardware robustness is seldom
discussed in the SLAM literature, it is a significant feature
of the CSIRO system’s maturity. On the rare occasions when
Wildcat diverged in testing, almost all occurrences were found
to coincide with sensor dropouts caused by significant kinetic
impacts of the platform, or hardware failures, which typically
start with intermittent errors.

E. Team CTU-CRAS-Norlab

The CTU-CRAS-Norlab team employed two separate
SLAM systems for their Unmanned Ground Vehicles (UGVs)
and Unmanned Aerial Vehicles (UAVs). The corresponding
architectures are given in Figure 4 and Figure 5, respectively.

UGV SLAM. The UGV SLAM architecture relies exclu-
sively on a LIDAR odometry system, Norlab ICP Mapper, that
focuses on reducing drift at the front-end level. The mapper
operates as follows: (A) first, the robot orientations during a
LIDAR scan are estimated by passing the IMU measurements
through a Madgwick filter [88]. (B) then, this orientation
information is fused with translation estimates from wheel
odometry to estimate the robot motion during the scan. (C)
the motion estimate allows to de-skew the current LIDAR scan
(i.e., motion correction). (D) once de-skewed, the LIDAR scan
is registered in the local map using ICP, taking the robot pose
as prior. A modified version of point-to-plane ICP [89] is used,
where only 4 degrees of freedom (3D position and yaw angle
of the scan) are optimized, while roll and pitch angles are
directly obtained from the IMU. (E) the robot pose found using
registration, is used by the voxel manager to load and unload
voxels of the local map to ensure it stays centered on the robot.
(F) lastly, the registered cloud is merged into the local map
and maintenance operations are performed. These maintenance
operations include identifying and removing points belonging
to dynamic objects using the technique described in [90]. The
resulting map is then set as the new local map. These steps are
performed in different threads to allow the system to localize
at a higher rate than the rate at which the map is updated.

UAV SLAM. The UAV SLAM architecture relies on a
LIDAR sensor that is complemented by an IMU for precise
roll-and-pitch orientation estimation. While not necessary for
localization, which utilizes only LIDAR and IMU measure-
ments, data from upward- and downward-facing depth cameras
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Figure 5: CTU-CRAS-Norlab UAV SLAM architecture. Pp
and P, are the depth camera and 3D LIDAR point clouds.
Ppr and P, are the respective point clouds after filtration.
The outputs are the map M and the state s, which consists of
position r, orientation R, and their first derivatives I and R.
The Kalman filter corrections z consist of r, R, and ¥.

are integrated into a dense metric map to cover the blind spots
of the LIDAR field of view. The output of the system is a state
estimate (i.e., robot poses in a gravity-aligned reference frame,
and their derivatives), and a volumetric occupancy map.

The UAV SLAM pipeline (Figure 5) starts with pre-
processing of LIDAR scans. First, a range-clip filter is applied
to the raw scans to filter out the robot frame and distant
measurements. Second, a local intensity-threshold filter is
applied to the data, which proved to be a highly robust method
for filtration of dust even in the harshest conditions. Due to
computational constraints, this pre-processing does not involve
LIDAR scan de-skewing; while this negatively impacts the
SLAM performance, it reduces the delay incurred by the pose
estimate. The processed data is passed to LOAM [65], which
optimizes the alignment of geometric features extracted from
the data in a two-step odometry process — fast scan-to-scan
and slow scan-to-map matching in the feature space. The
team has adapted the advanced implementation of LOAM (A-
LOAM') to be suitable for UAVs by extending the method
with platform-optimized parallelization. The state estimation
module (based on [35]) takes the LOAM pose estimate and
fuses it with the IMU measurements using a linear Kalman
filter to obtain a high-rate delay-compensated state estimate
that is suitable for the control system feedback loop [91]. The
non-constant delay introduced by LOAM negatively impacts
the controller performance and, most importantly, the control
error. The idea of the delay-compensation method [92] is to
recompute the current state if a measurement with a past

! https://github.com/HKUST- Aerial-Robotics/A-LOAM
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Figure 6: Overview of team Explorer’s SLAM architecture. Each robot estimates and operates on its own individual map.

timestamp arrives. When a delayed measurement arrives, it is
applied to the state in a circular buffer with the nearest times-
tamp. The corrected state is then propagated to the current
time using the system model and other relevant updates.

The approach is fully decentralized, with each UAV running
its own SLAM pipeline. To allow multi-robot cooperation, the
reference frames of UAVs are initially aligned by one of the
following procedures. The reference frames are either given
in advance (e.g., from a total station) or their alignment is
estimated with respect to a leader-robot by scan matching
using LIDAR data shared among all the UAVs before takeoff.

Dirty Details. Loop closures: The only tunable parameter
of the UAV SLAM method is the resolution of the feature
map. For both SLAM systems, it was found empirically that
one set of parameters worked well in a majority of scenarios;
any changes to the parameters led to degraded state estimation
quality or slower-than-real-time performance. Not adapting
the parameters dynamically also ensured static assignment of
computational resources, which helped to predict and optimize
the system behavior under resource constraints.

Loop closures: Neither the UGV nor the UAV SLAM
systems detect loop closures; therefore, no pose graph opti-
mization is used to refine the odometric trajectories.

Computation prioritization: When the CPU is fully loaded,
critical components such as control and SLAM might have to
wait for CPU resources shared with non-flight-critical software
such as object detectors, which results in triggering failsafe
recovery behaviors. Prioritizing the critical modules at the
process level by reducing CPU affinity and using negative
nice [93] values for non-critical processes resulted in lower
computation times, lower jitter, and smoother flights. Addi-
tional performance was gained by running the algorithms that
process large amounts of data as nodelets under a common
ROS nodelet manager. This avoids the overhead of copying
large data structures by simply passing pointers instead.

FE. Team Explorer

Team Explorer won the Tunnel event of the DARPA
SubT Challenge. Team Explorer’s SLAM architecture is given
in Figure 6. The architecture relies on Super Odometry [94]
to fuse outputs of multiple odometry sources including visual
or thermal fusion [95] using a probabilistic factor graph
optimization, and a loop-closing back-end.

Lidar-Inertial Localization Module for Odometry Esti-
mation. The lidar-inertial localization module relies on Super
Odometry (SO) [94]. In SO, a factor graph optimization
performs estimation over a sliding window of recent states
by combining IMU pre-integration factors with point-to-point,
point-to-line, and point-to-plane LIDAR factors. SO strikes
a balance between loosely- and tightly-coupled estimation
methods. The IMU-centric sensor fusion architecture does
not combine all sensor data into a full-blown factor graph.
Instead, it breaks it down into several “sub-factor-graphs”, with
each one receiving the prediction from an IMU pre-integration
factor. The motion from each odometry factor is recovered in
a coarse-to-fine manner and in parallel, which significantly
improves real-time performance. SO enables achieving high
accuracy and operates with a low failure rate, since the IMU
sensor is environment-independent, and the architecture is
highly redundant. As long as other sensors can provide relative
pose information to constrain the IMU pre-integration results,
these sensors will be fused into the system successfully.

Loop-Closing Back-End. While SO is a low-drift odometry
algorithm, it is still important for the SLAM system to be
able to correct long-term drift. This is specially true when the
traversed distance is high. Considering that Explorer’s ground
robots moved at 0.5ms~! and had an aggressive exploration
style, it was not uncommon to observe traversed distances
larger than 1km in a single test. Team Explorer’s solution
reduces the drift by detecting loop closures and performing
pose graph optimization. In particular, the back-end filters the
poses and point clouds generated by the front-end. It applies a
heuristic method to accumulate these results into a keyframe,
which is composed by a key pose and a key cloud, which



is the point cloud generated by accumulating all the point
clouds generated since the last keyframe, and downsampling
to maintain a fixed size. The heuristic used is distance-based:
a new keyframe is created after the robot moves by 0.2m.
Search for loop closures is performed using a radius-search
among the nearest poses, or by querying a database of sensor
data to find matches with previously visited places.

Autocalibration. To achieve a common task, multiple
robots need to be able to establish and operate in a common
frame of reference. Towards this goal, team Explorer used
Autocalibration, a process in which a Total Station is used to
obtain the pose of one robot with respect to the fiducial mark-
ers with known positions in the world frame set by DARPA.
This robot shares its pose with respect to its own map frame
and the latest three keyframes it created. All the following
robots will then be placed near the calibration location of the
first robot; they receive the reference information from the base
station, and use GICP [83] to align their current keyframes to
establish their initial pose in the world frame.

Dirty Details. Loop closures: The most important parame-
ters tuned during testing were those related to the downsam-
pling of the point clouds before the scan-to-map registration.
This downsampling affected the number and the quality of
features available to SO. In particular, a key parameter is the
voxel size used in the PCL library voxel grid filter. When the
robot traverses a narrow urban corridor, it is desirable to use a
smaller voxel size, to avoid decimating important details in the
point cloud. In contrast, in a large cave, a larger voxel size is
required, otherwise the processing becomes too slow due to the
large number of features. To solve this problem, we created
an heuristic method to switch voxel sizes in real-time. The
method consists in calculating, for each 3D axis separately,
the average distance to the points in the current point cloud.
Then, we multiplied the 3 values together to obtain an “average
volume”. This volume was thresholded to create 3 different
modes, each associated to a predefined voxel size.

Dust Filters: Team Explorer had a strong focus on UAVs.
These platforms bring their own unique challenges to the
SLAM problem. One that was particularly important for SubT
was being able to handle the dust that arises due to the robot’s
propellers. The simple solution that was implemented was to
test if there was a minimum number of features farther than
3m from the robot. If true, all the other points inside this
radius were ignored when performing pose estimation. This
solution was based on the assumption that dust would usually
accumulate circularly around the robot, but usually there are
still other distant features in the environment that allow the
robot to solve the optimization correctly. If the robot were
capable of performing estimation and continuing operation,
it would usually escape the dusty area in the environment.
Otherwise, dust would eventually cover the robot from all sides
and a catastrophic failure would occur.

Robot-specific computational budget: Analysis of empirical
results showed that after a certain number, having more
LIDAR features does not necessarily translate to substantial
accuracy gains. Therefore, a threshold on the number of sur-
face features is used. If the current scan frame contains more
than the threshold, the list of features is sampled uniformly

such that the number of features does not exceed the threshold.

G. Team MARBLE

Team MARBLE’s SLAM architecture is given in Fig-
ure 7. The core of MARBLE’s LIDAR-centric solution’ is
the open-source LIO-SAM [98] package, which performs
tightly-coupled fusion of IMU data and LOAM-based LIDAR
features [65]. The localization results are then passed to
MARBLE Mapping, that creates a voxel map.

LIDAR Localization via LIO-SAM. Each robot in the
MARBLE system was responsible for its own localization,
from input (i.e., LIDAR scans at 20 Hz and IMU data at
500Hz) to optimization. The localization process includes
multiple subcomponents (Figure 7). First of all, in order to
be processed by LIO-SAM, each point in the LIDAR point
cloud required two extra data fields in addition to the standard
x,Yy, z position: a timestamp, and a ring number to provide
their relative position in the vertical scan. This additional
data is used to de-skew the point clouds. While current
Velodyne LIDAR and Ouster-OS1 LIDAR drivers provide
this information by default, the Ouster-OS1 LIDAR driver
required some slight modification to enable this information.
In particular, timestamps were added to each vertical angle of
arrival, and rings were designated by their elevation angle.

Localization via LIO-SAM is based on factor graph op-
timization and involves three types of factor. The first type
consists in IMU pre-integration factors [68]. The second type
includes LIDAR odometry factors; in particular, once the
LIDAR has been de-skewed, LIO-SAM extracts key features
along lines and edges (as in LOAM [65]). These features are
then compared and scan-matched along a subset of local key
frames in a sliding window filter. Lastly, loop closure factors
are determined by a naive Euclidean distance metric. Each
time a new factor is added to the graph, the iSAM2 solver [99]
is applied to optimize the graph using GTSAM [67]. After
generating an odometry estimate, LIO-SAM then estimates the
IMU bias with the updated odometry.

Multi-Robot Mapping via Octomap. LIO-SAM outputs
robot pose estimates. A voxel based map can also be queried
via a ROS service call, however, MARBLE relied on a separate
custom package, MARBLE Mapping, a fork of Octomap
[100], which allowed creating voxel grid map differences
with low data transfer requirements. In particular, MARBLE
Mapping uses the latest LIO-SAM pose estimate and the
corresponding LIDAR scan to update the log-odds probability
(occupancy) value inside an octomap with voxel size of
0.15 m. When enough voxels have been added or have changed
state, or if enough time or distance has been traversed, a new
map difference is created by the robot with the changed voxels.

Map differences are then shared between robots in a peer-to-
peer fusion. Each robot tracks differences in a sequence tied to

ZInitially, MARBLE explored the use of onboard cameras and a visual-
inertial odometry system [38], namely, Compass [96]. While this solution was
tenable in some cases, changing lighting conditions and specular highlights
caused by on board illumination in dark scenes often lead to instability.
This was especially true in longer deployments, such as the hour-long runs
necessitated by SubT. A dataset for benchmarking visual-inertial SLAM
systems with onboard illumination was released as a part of these tests [97],
however team MARBLE switched to a LIDAR based architecture soon after.
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Figure 7: Overview of team MARBLE’s SLAM architecture.

its own identifier and that of their neighbors. Then when two
robots connect to each other or the base station via a deployed
mesh network, they request any differences not contained
with their own maps, and pass on any differences they had
generated to the neighboring agent. To minimize overhead,
maps were transmitted in their binary state, after thresholding
the occupancy probability to an occupied/unoccupied state.

As each robot only optimized its own trajectory and map,
any significant drift or misalignment between robots could
cause potential downstream issues with multi-agent planning
algorithms. To mitigate this issue, each robot prioritizes its
own map, specifically during the merging process, where free
voxels in the parent robot were kept free and the occupied
voxels were merged together. The base station operator also
had the ability to remove or stop merging differences from
specific agents if significant tracking errors occurred.

Dirty Details. Parameter tuning and IMU: The IMU covari-
ance was found to have a substantial impact on the roll, pitch,
and yaw estimation. In constrained passage ways, rotation
accuracy significantly decreased as a result of a significant
number of LIDAR points falling below a minimum range
threshold. Relying more heavily on the IMU during these
maneuvers improved rotation accuracy substantially (although
it did not fully eliminate the problem). In this regard, using
a good IMU is paramount: the LORD Microstrain 3DM-
GX5-15, provides exceptionally high accuracy pitch and roll
estimates of 0.4°, along with a 0.3 °/\/IE gyro estimate [101],
which allowed the MARBLE system to rely on IMU-only
measurements for extended periods of time.

A second key parameter in the system was the key-frame
search radius for loop closures. Given the localization main-
tained qualitatively good accuracy, the Euclidean search dis-
tance was continually reduced, resulting in a final distance of
2 m for loop closure constraints. As loop closure optimization
were computationally expensive, this saved on CPU cycles
and additionally helped avoid spurious loop closure between
different elevations of tunnels or floors in a building.

Hardware design: Team MARBLE relied on precision ma-
chining to obtain (and preserve) an accurate extrinsic cali-
bration between LIDAR and IMU. Further calibration may

have benefited the final solution —specifically, improved IMU
noise and bias estimation. It was found that certain IMUs
did not perform as well as others in qualitative analysis of
two robots traversing roughly the same trajectories. The team
opted to swap hardware over further exploration of the cause
of these errors. The chosen hardware likely had the closest
noise parameters to those provided by the IMU manufacturer.
LIO-SAM enhancements: Team MARBLE also made two
minor adjustments to LIO-SAM. During initialization, the
team chose to ignore measurements from the IMU until a
point cloud had been received, since the IMU was not a full
AHRS unit and did not have a heading compass. The second
adjustment was to the IMU timestamps, prior to integration. As
a result of the (ACM-based) USB driver used by the IMU, the
measurements did not have guaranteed priority on the kernel.
This meant the timestamps generated by the system were
not always consistent, which often caused negative timestamp
values in the IMU pre-integration, leading to instabilities.
To avoid this issue, the MARBLE implementation replaced
the timestamps (using the nominal IMU frequency) if they
were outside an acceptable range. While this method was less
precise than a full hardware clock sync, it was fairly easy
to implement given the available onboard connections (a full
hardware sync would have required an extra RS232 port). In
practice, we noticed that the back-end optimizer was able to
mitigate the impact of minor timestamp mismatches.

H. Common Themes on the Path to Robustness

Despite the unique features that distinguish the architectures
adopted by the SubT teams, the previous sections reveal a
substantial convergence of technical approaches across teams.
This convergence is a testament of the maturity of multi-robot
LIDAR-centric SLAM, at least for small robot teams, (e.g., 5-
10 robots). We discuss commonalities across systems below.

Sensing. Most teams relied on LIDAR and IMU as the dom-
inant sensing modalities; IMUs are not sensitive to perceptual
aliasing (i.e., the case where different places have the same
appearance/sensor footprint) and environmental disturbances;
LIDARs afford accurate and long-range depth measurements



even in the absence of external illumination. At the same
time, visual, thermal, and wheel/kinematic odometry remain
an important addition to LIDAR, especially in the presence
of obscurants and to increase redundancy. Many teams (e.g.,
CSIRO, Explorer, MARBLE, CoSTAR) adopted a common
sensor payload to be mounted on the different robots. This
modular design allows standardizing calibration and testing
procedures, and partially decouples the development of the
SLAM system from other hardware choices.

SLAM Front-end and Back-end. All teams relied on
local (single-robot) front-ends to pre-process the LIDAR data.
Such pre-processing reduces the data volume communicated
to the base station or to the other robots. Moreover, it allows
splitting computation across the robots, improving scalability.
Most solutions perform extensive point cloud pre-processing,
including de-skewing and voxel grid filtering. The front-ends
then process the LIDAR scans using feature-based (akin to
LOAM [65]) or dense (e.g., ICP-based) matching. Regarding
the SLAM back-end, virtually all teams relied on factor graph
or pose graph optimization (except for the Kalman-filter-based
odometry from CTU-CRAS-Norlab). Several teams decided
not to detect loop closures (e.g., CTU-CRAS-Norlab, and
partially CERBERUS), based on considerations about the
scale of the environment and the computational constraints at
the robots. Finally, most teams built on top of open-source
libraries for the LIDAR front-end and back-end, including
GTSAM [67], maplab [69], LOAM [65], LIO-SAM [98],
Octomap [100], and libpointmatcher [102].

Loosely-coupled vs. Tightly-coupled Architectures. Most
teams resorted to loosely-coupled sensor fusion techniques,
where estimates from multiple sensors are first fused into
pose estimates and then combined together. Loosely-coupled
approaches enable a more modular software design and make
the implementation of health checks for each data source and
intermediate pose estimate easier. This has been shown to
largely increase robustness to hardware and software failures,
e.g., [30], [46], [94]. In addition, tightly-coupled fusion leads
to larger optimization problems, which prevents scaling the
multi-robot back-ends to large teams.

Centralized and Decentralized Architectures. CER-
BERUS and CoSTAR adopted centralized architectures, where
the base station performs a joint optimization over the entire
robot team. All the other teams adopted a decentralized

approach, where each robot mostly operated on its own, with
the occasional exchange of the mapping results (see CTU-
CRAS-Norlab, Explorer, and MARBLE) or with a multi-robot
pose graph optimization executed at each robot (CSIRO). No
team adopted a distributed architecture, which are still the
subject of active research [28] and were less amenable to the
rules of the SubT competition, which required collecting data
at a base station for visualization and scoring purposes.

IV. STATE OF PRACTICE AND
MATURITY OF UNDERGROUND SLAM

The previous section discussed state-of-the-art approaches
for SLAM in underground environments across six SubT
teams. This section reports on the practical performance that
can be achieved by these approaches, which provides useful
data points to assess the maturity of LIDAR-centric SLAM
in underground worlds. We focus on three dimensions —
odometry, loop closures, and multi-robot mapping— and for
each we discuss performance and key aspects impacting it.

Odometry Estimation Accuracy. This section shows that
modern LIDAR-centric odometry estimators can achieve a
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Figure 8: CTU-CRAS-Norlab’s odometry accuracy for three
single-UAV deployments in the Bull Rock Cave system [103]

Table I: Open-source Datasets and Code Released by the SubT teams

Team Code Dataset
CERBERUS https://www.subt-cerberus.org/code--data.html
CoSTAR https://github.com/NeBula- Autonomy

CTU-CRAS-Norlab

https://github.com/ctu-mrs/aloam
https://github.com/ctu-mrs/octomap_mapping_planning
https://github.com/ctu-mrs/mrs_uav_system
https://github.com/norlab-ulaval/norlab_icp_mapper
https://github.com/norlab-ulaval/norlab_icp_mapper_ros
https://github.com/ethz-asl/libpointmatcher
https://github.com/norlab-ulaval/libpointmatcher_ros
https://github.com/ethz-asl/libnabo

https://github.com/ctu-mrs/slam_datasets

Explorer https://www.superodometry.com/ https://theairlab.org/dataset/interestingness
https://theairlab.org/research/2022/05/02/subt_code/ https://www.superodometry.com/datasets
MARBLE https://github.com/arpg/marble_mapping https://arpg.github.io/coloradar

https://github.com/arpg/LIO-SAM

https://arpg.github.io/oivio
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Autonomous Aerial Exploration of Fog-Filled Underground Mine

Figure 9: (Top) Autonomous exploration of a self-similar envi-
ronment making LIDAR only localization unreliable. (Middle)
Aerial exploration in a fog-filled environment using Comp-
SLAM and exploiting thermal vision. (Bottom) Underground
tunnel environment exploration in conditions of darkness and
subject to reflections due to mud/water puddles.

very low-drift (0.1-0.5 % of the trajectory traveled) in chal-
lenging underground environments. This enables impressive
localization performance over long distances. For instance,
Figure 8 shows results from team CTU-CRAS-Norlab’s un-
manned aerial vehicles, achieving localization error under 1 m
in the Bull Rock cave system with flights reaching trajectory
lengths of 600 m and maximum velocities up to 2ms™!.
Multi-modality: Multi-modal sensing enhances robustness
in challenging environmental conditions (e.g., darkness, fog,
smoke, dust, or feature-less scenes), as well as in the presence
of hardware and software failures. Figure 9 shows the map
obtained by the multi-modal, onboard CompSLAM approach
by team CERBERUS; CompSLAM achieves a low-drift tra-
jectory estimate in extreme conditions with significant dust
and obscurants. Although primarily driven by LIDAR, Comp-
SLAM also uses other modalities (e.g., kinematic odometry or
thermal) that are less sensitive to dense obscurants. This is still
achieved on a modest computational budget: CompSLAM has
been deployed on both ANYmal C robots that are equipped
with powerful processors (i7-class systems), and on the RMF-
Owl aerial robot [104], that relies on a single-board computer.
LIDAR pre-processing: LIDAR data pre-processing is a key
ingredient for accurate odometry estimation. Figure 10 shows
an ablation study conducted by team CTU-CRAS-NORLAB

on an unmanned ground vehicle, which highlights the impact
of de-skewing the LIDAR scans, as well as the impact of
constraining the roll and pitch of the platform using IMU
data during ICP (see Section III-E). The path consists of
a robot traveling through an unknown environment up to
150m (the ‘“‘exploration” phase), to which point it turned
around to come back to the base station (the “exploitation”
phase). Although CTU-CRAS-Norlab’s SLAM solution does
not use loop closures, it assumes low odometry drift and
can reuse its global map for scan-to-map matching when
revisiting known environments. All curves in Figure 10(a)
exhibit increasing errors (drift) during exploration but the de-
skewing and roll-and-pitch-constrained optimization lead to
reduced errors. The result is confirmed by the localization
error box plots in Figure 10(b). LIDAR pre-processing (e.g.,
point down sampling via voxel grid filtering) is also crucial to
reduce the computational burden, see the analysis in [74].

Importance of Loop Closures. While LIDAR-centric solu-
tions compute low-drift odometric trajectories, such trajectory
estimates keep accumulating error over time. With a 0.5%
odometry drift, a robot would have 5m error after 1km
traverse. This stresses the importance of detecting and en-
forcing loop closures to keep the localization error bounded.
Figure 11 provides an example of accurate localization and
mapping results by team Explorer, achieved by successful
detection of loop closures. The figure shows mapping results in
Brady’s Bend cave near Pittsburgh, PA, on a wheeled ground
robot. According to DARPA, team Explorer’s SLAM system
achieved a deviation of 6% in the grand finale of the DARPA
SubT challenge, a performance that is the second best among
all competing teams, behind CSIRO’s Wildcat.”

Robustness to outliers: LIDAR-based loop closure detection
is quite challenging in underground scenarios due to per-
ceptual aliasing. At larger scales, and with more robots, the
chances of false positive loop closures increase, especially in
environments with self-similar locations. False loop closures,
if not rejected, can have a negative impact on localization

3Team Explorer’s performance was also recognized with the “Most Sectors
Explored Award” by DARPA.
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Figure 10: Localization error as a function of distance traveled.
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represent the first and third error quartiles. The dashed line
delimits the exploration phase, during which the robot ex-
plored new areas, before returning to previously visited areas.
Statistics are computed over ten experiments.



performance and lead to dramatic distortions in the map.
Figure 12 shows CoSTAR’s SLAM results (a) without and (b)
with outlier rejection. CoSTAR’s GNC-enabled [55] approach
has been shown to produce accurate maps and reject up to 90%
outlier loop closures during the Final event of the DARPA
SubT challenge [105]. As depicted in Figure 13, CoSTAR’s
outlier-robust loop closure detection enables creating high-
precision 3D maps from multi-level urban environments with
a combination of large rooms and small spaces, to complex
weaving lava tubes, to mines that are massive in scale, and
finally the narrow passages found in the SubT Final event.
Heterogeneous environments: Other examples of high pre-
cision localization and mapping in a large-scale and long-
duration exploration are shown in Figure 14 and Figure 15 for
the LIO-SAM system adopted by team MARBLE. In these
experiments, a robot is teleoped from within the University
of Colorado-Boulder Engineering Center through all three
levels of a parking garage before returning to its approximate
original location in an hour-long operation. The test spans

heterogeneous environment types, from tight urban indoor
environments (with sharp turns, feature-less and narrow cor-
ridors, and staircases) to wide-open outdoor environments.
The SLAM system accurately maintains elevation estimation
through multiple levels of the parking garage with high level
of geometric self-similarity while relying on only the OS1
LIDAR and IMU. The 2.2 km long trajectory shows a position
difference of 0.31 m from the start to the final position, which
is equivalent to an error (after loop closures) of just 0.014%.

Importance of Multi-robot Operation. Multi-robot SLAM
allows mapping larger areas while simultaneously reducing
the localization and mapping errors thanks to inter-robot loop
closures. Figure 16 shows the maps produced by CSIRO’s
Wildcat decentralized multi-robot SLAM system in two SubT
events (Urban and Final) and in a cave in Australia. The map
in Figure 16(a) is built by three ground robots, while the
maps in Figure 16(b-c) are created by four robots (including
a UAV, in the cave case). According to DARPA, in the Final
SubT event Wildcat produced the top map with less than 1%

Figure 11: Team Explorer mapping results in Brady’s Bend cave near Pittsburgh, PA, on a wheeled ground robot. The red dots
represent the key poses and yellow edges show potential loop closure edges.

Figure 12: CoSTAR’s SLAM results (a) without and (b) with the outlier rejection module during the preliminary run of the
SubT Finals. Each color represents the map of a different robot (four in total), blue lines represent accepted loop closures and
gray lines represent rejected loop closures. GNC is able to successfully reject numerous false loop closures (gray lines in (b)).



All to scale

Figure 13: A to-scale representation of the robot-produced
maps across a variety of environments team CoSTAR tested
in. (a) a 3-level abandoned subway in Los Angeles. (b) A
lava tube in Lava Beds National Monument. (c) part of Ken-
tucky Underground. (d) DARPA-created SubT Finals course.
(e) Bruceton Research Mine (SubT Tunnel Competition). (f)
Valentine cave (a lava tube) in Lava Beds National Monument.
(g) Satsop power plant (SubT Urban Competition). All maps
are the best runs from a single-robot.

Figure 14: LIO-SAM map generated by MARBLE’s Spot
robot traversing from the University of Colorado-Boulder
Engineering Center to the bottom of a nearby parking garage
and back. The trajectory is marked in pink, and the point cloud
is colored by elevation from red low to blue high.

deviation from the ground truth where they defined deviation
as the percentage of points in the submitted point cloud that are
farther than one meter from the points in the surveyed point
cloud map. Wildcat also produced the single most accurate
reports in the Urban and Final events with 22 ¢cm and 4.8 cm
error, respectively. We refer the reader to [84] for a more ex-
tensive experimental evaluation. Additional qualitative results
produced by Wildcat in perceptually challenging environments
are also available on the websites of two commercial partners
of CSIRO, Emesent [86] and Automap [106].

Inter-robot loop closures: Figure 17 shows the dramatic
reduction of the Absolute Pose Error (APE) in team CoSTAR’s
SLAM architecture due to inter-robot loop closures and multi-
robot pose graph optimization. As in the single-robot case,
capitalizing on inter-robot loop closures requires a good strat-
egy for outlier rejection, since many inter-robot loop closure
detections will be incorrect due to perceptual aliasing.
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Figure 15: Position z, y, z trajectory data of path in Figure 14.
The final position offset from the initial starting location was,
0.31m with a total trajectory length of 2.2 km.

Figure 16: CSIRO’s Wildcat results: (a) Point cloud map
produced by three ground robots in the Beta Course of the
Urban Event; estimated map is color-coded by agent, while
DARPA reference point cloud is shown in gray. (b) Map
produced during cave testing at Capentaria Caves, Chillagoe,
Queensland; the merged agent-collected map is shown in gray,
with agent trajectories in colors (drone colored as yellow). (c)
Merged point cloud map from the Final Event, color-coded by
agent, with DARPA reference cloud in gray.

In the DARPA SubT finals event, team CERBERUS de-
ployed four ANYmal quadrupedal robots to autonomously
navigate a total distance of 1.75km. The maps generated by
the onboard solution, CompSLAM, along with scoring arti-
facts, are qualitatively compared against the DARPA-provided
ground truth map in Figure 18. The individual robot results are
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Figure 17: CoSTAR results: improvement in Absolute Pose
Error (APE) due to inter-robot loop closures and multi-robot
pose graph optimization, with the resulting multi-robot map
on the right. (a) Test with three robots in the Satsop power
plant. (b) Test with two robots in the Bruceton Research Mine.
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Figure 18: CERBERUS results: Onboard maps for all deployed
robots generated using CompSLAM are overlaid on top of
the DARPA provided ground truth for the final event of the
DARPA SubT Challenge. The scored artifacts are shown and
are colored to correspond with the reporting robot.

made globally consistent by M3RM by exploiting inter-robot
loop closures; a quantitative comparison between the onboard
and global mapping approaches is presented in Table II.

Robot | CompSLAM (Onboard) | M3RM (Server)
Rotation [°] Translation [m] | Rotation[°] Translation [m]
ANYmal 1| 2.45(0.67) 0.72(0.41) 1.59 (0.46) 0.25(0.13)
ANYmal 2 | 3.97(0.40) 1.29 (0.90) 0.96 (0.30) 0.36(0.28)
ANYmal 3 | 0.89(0.50) 0.23(0.43) 2.30(1.02) 0.20(0.34)
ANYmal 4 | 2.22(0.79) 1.00(0.71) 2.16(0.55) 0.24(0.17)

Table II: Comparison of the mean and standard deviation of
the Absolute Pose Error (APE) for CERBERUS’ CompSLAM
(each robot) and M3RM (all robots considered together)
approaches for the DARPA SubT challenge Final Event.

Heterogeneous teams: We already commented on the benefit
of having heterogeneous sensing capabilities. Here, we discuss
the advantage of using heterogeneous platforms for explo-
ration. Indeed, most of the SubT teams used a combination
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Figure 19: Testing sites and results of Explorer’s SLAM
system. (a) UAV, UGV, and legged robot exploration in the
Final Circuit of SubT, including urban, cave, and tunnel
environments. (b) UAV and UGV exploration in the Urban
Circuit of SubT. (c¢) Tunnel environments, test site with smoke.
(d) Cave environment UAV test site. (¢) Urban environment
with legged robot.

of wheeled and legged ground robots and UAVs. Figure 19(c)
shows Explorer’s mapping result in the Urban Challenge
Alpha Course reconstructed by multiple robots (UGV1, UAVI,
and UAV2) operating in a dark and foggy environment with
a vertical shaft. Green, orange, and red lines are the esti-
mated trajectories of UGV1, UAV1, and UAV2 respectively.
Figure 19(a) shows the mapping result in the SubT Finals
by a heterogeneous fleet. The blue, green and red lines
are the estimated trajectories of UGV1, UGV2, and UGV3
respectively. The travel distance of UGV 1, UGV2, and UGV3
are 445.2m, 499.8 m, and 596.6 m, respectively. Explorer’s
SLAM solution achieved accurate localization and mapping
despite the challenging environmental conditions, including
low light, long corridors, heavy dust/fog, and even dynamic
scenes. Heterogeneity enables mapping a broader variety of
environments (e.g., UAVs enable exploring vertical shafts) and
allows richer exploration strategies (e.g., using UAVs for fast
exploration, and UGVs for more accurate mapping).

V. FUTURE RESEARCH DIRECTIONS
AND OPEN PROBLEMS

In the light of the results in Section IV and the outcome
of the DARPA SubT competition, this section provides a
summary of which problems in underground SLAM can be
considered solved or can be solved with some good engineer-
ing and what are still open problems that will likely require
more fundamental research.

LIDAR-centric SLAM solutions have become increasingly
robust to challenging environments. Feature detection or scan
pre-processing enable real-time point cloud alignment. Tight
coupling with inertial data enables more robust motion estima-
tion, by allowing de-skewing the LIDAR scans, bootstrapping
ICP-based scan matching, and potentially eliminating roll and
pitch drift. Keyframe-based or sub-map-based approaches,
combined with a factor graph framework, allow sparsifying
the trajectory into a reduced set of poses and enable online



operation in large-scale, long-term, multi-robot explorations
with reduced computational complexity. The addition of other
sensing modalities further increases robustness.

Looking across the six solutions examined in Section III-
IV, there is reason to believe that the underground SLAM
problem, with high-quality multi-modal sensing suites, is a
solved problem. Yet only solved with sufficient qualifications
of the environment, the scale, the sensors, the parameter
tuning, and the computation power. We believe that in the
context of extreme subterranean environments, the majority of
open problems defined in [7] still applies. In the rest of this
section, we highlight current challenges and open problems in
underground localization and mapping.

Robust and Resilient Perception. One of the common fail-
ure modes observed across most of the presented architectures
is localization failure due to falls, drops, or collisions [107]
when traversing rough terrains in unstructured underground
environments. These-high frequency motions are not entirely
captured by the onboard perception system, e.g., due to the
lower sampling frequency of structured-light sensors [108].
This could lead to poor motion estimates and eventually
localization failure. With robotic systems that can withstand
a fall and continue to operate (e.g., Boston Dynamics Spot,
Flyability drones, BIAS Titan, ANYmal, RMF-Owl), a rela-
tively under-explored area is reliable state estimation under
unexpected collisions and temporary interruptions of the sen-
sor streams. Although early work on localization subject to
collision shows promising results [109], better exploring the
limitations of different systems and algorithms in “crash tests”
scenarios would help improve all-round real-world robustness.
Furthermore, engineering work in incorporating velocity-based
sensors (e.g., event-based cameras [I10]) which might main-
tain ego-motion tracking without saturation during adverse
events could greatly benefit SLAM systems.

At a more fundamental level, underground operation re-
quires redundancy and resourcefulness, but this needs to be
achieved beyond just “adding more sensors”. The SLAM
literature is lacking fundamental research in resilient algo-
rithms and systems. While robust systems are designed to
withstand (often small) disturbances (e.g., degraded sensing
or environmental changes), resilient methods dynamically
reconfigure to regain performance in the face of changing
environmental stressors [19]. For instance, a resilient system
would dynamically change its parameters (or even its algorith-
mic components) depending on the scenario, contrarily to the
current SLAM systems, which are “rigid” and heavily rely on
manual parameter tuning; see the comments about parameter
tuning in the dirty details subsections in Section III, as well
as the discussion about the “curse of parameter tuning” in [7].

Beyond Traditional SLAM Sensors. Achieving robustness
under perceptual aliasing, dense obscurants, and severe envi-
ronment degradation remains a challenge and can benefit from
incorporating non-traditional sensing modalities and designing
methods for failure detection and recovery. Thermal vision
allows penetrating conditions of visual degradation, where
cameras and LIDARs fail due to the presence of obscurants.
Similarly, radar is able to maintain localization despite the
presence of fog, as the wavelengths in commercial automotive

millimeter-wave radars are large enough to bypass particulate
such as fog and dust that causes spurious reflections that
render LIDAR point clouds unusable for localization and
mapping purposes. While research into millimeter-wave radar-
based localization [111]-[114] and the creation of radar factors
for SLAM applications is ongoing, including the release of
public datasets such as [115], [116], the integration of these
sensors is not as established as other sensing modalities,
due to complexity of the corresponding sensor models and
data association. Multi-modal SLAM systems could also be
pushed further by developing failure detection and recov-
ery methods. Autonomous exploration of subterranean set-
tings requires dynamically adaptive algorithmic architectures
to achieve solution resourcefulness. Still related to resilient
operation, it would be desirable to design approaches that
can detect failures of a sensing modality and reconfigure the
system accordingly. The importance of degeneracy detection in
multi-modal sensing is discussed in [31], while fault detection
in perception system is investigated in [117].

Scaling Up: Centralized vs. Distributed Systems. Multi-
robot LIDAR-centric SLAM is a mature research area. This
paper showed that centralized approaches can achieve accurate
and real-time performance for moderate team sizes (5-10
robots); moreover, decentralized approaches attain small errors
even without relying on inter-robot loop closures in moderate-
scale scenarios (e.g., <1km traversal). However, scaling up
SLAM solutions to very large teams (e.g., >100 robots)
and very large-scale scenarios (e.g., city-scale [9] and forest-
scale [118]) is likely to require a more distributed approach. In
centralized approaches, large team sizes would quickly reach
a bottleneck in terms of communication as well as processing
at the base station.* Therefore, distributed architectures are
likely to be needed to scale up operation. For large fleets
covering large-scale geographic areas, it will be necessary
to consider (i) resource-aware collaborative inter-robot loop
closure detection techniques [57]-[59] that intelligently utilize
limited mission-critical resources available onboard (e.g., com-
pute, battery, and bandwidth) and (ii) distributed factor-graph
and pose-graph optimization methods [27], [28], [60], [119],
both of which are active research areas. We also believe that
hierarchical map representations (e.g., [120]) will be needed
for large-scale environments where point-cloud or voxel-based
representations would clash with memory constraints.

In terms of engineering, it would be desirable to develop and
release open-source implementations of multi-robot SLAM
systems. As we observed, SLAM progress in SubT was
also enabled by the availability of high-quality open-source
implementation for SLAM components (e.g., the back-end
provided by GTSAM) or entire systems (e.g., LIO-SAM).
Therefore, the development of distributed SLAM systems will
benefit from a similar open-source infrastructure.

Scaling Down: Miniaturization and Low-Cost Sensing.
All solutions examined in this paper leverage one or multiple

4The SubT teams carefully handled communication (e.g., via compression
and down-sampling) to meet the bandwidth constraints. Moreover, teams using
centralized solutions relied on powerful base stations, e.g., CoOSTAR’ base
station relied on an AMD Ryzen Threadripper 3990X with 64 cores/128
threads at 2.9GHz.



LIDARs, and powerful embedded computers. More work is
required to enable the capabilities presented in this paper, but
with low-cost components that might be suitable for smaller,
cheaper, expendable systems. For instance, it would be desir-
able to deploy a large number of expendable robots for high-
risk missions (e.g., search & rescue, planetary exploration), or
to design more affordable robots to increase adoption by first
responders. These platforms would ideally have a small form
factor to enable exploration of narrow passages (e.g., pipes)
while being easy to transport by human operators. Achieving
this goal entails both engineering efforts (e.g., development of
novel sensors or specialized ASICs for on-chip SLAM [8]) and
more research on vision-based SLAM in degraded perceptual
conditions (e.g., dust or fog).

VI. CONCLUSION

While progress in SLAM research has been reviewed in
prior works, none of the previous surveys focus on under-
ground SLAM. Given the astonishing progress over the past
several years, this paper provided a survey of the state-of-the-
art, and the state-of-the-practice in SLAM in extreme subter-
ranean environments and reports on what can be considered
solved problems, what can be solved with some good systems
engineering, and what is yet to be solved and likely requires
further research. We reviewed algorithms, architectures, and
systems adopted by six teams that participated in the DARPA
Subterranean (SubT) Challenge, with particular emphasis on
LIDAR-centric SLAM solutions, heterogeneous multi-robot
operation (including both aerial and ground robots), and real-
world underground operation (from the presence of obscu-
rants to the need to handle tight computational constraints).
Furthermore, we provided a table of open-source SLAM
implementations and datasets that have been produced during
the SubT challenge and related efforts, and constitute a useful
resource for researchers and practitioners.
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