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Abstract

We propose the use of a model helicopter to emulate the
landing dynamics of a spacecraft. Our controller accepts
thruster inputs (like those on a spacecraft) and converts
them into appropriate helicopter stick controls such that
the resulting trajectory of the helicopter is close to the
trajectory that would have been achieved by simply pro-
viding the same thruster inputs to a spacecraft. The ap-
proach relies on a simplified model of the spacecraft and
helicopter dynamics. Initial results in simulation indicate
that the approach is feasible, with tracking accuracies on
the order of 5 m.

1 Introduction

Landing sites for past missions to Mars have, for the most
part, been located in relatively benign terrain. The need
to avoid extremely rocky or sloped areas was due to the
inaccuracy of the guidance system and due to the inability
of the landing system to accommodate such features [1].
A landing accuracy of better than 100 km is difficult to
achieve and landing systems employed by vehicles such
as Pathfinder were unable to accommodate large hazards
or significant surface roughness [2]. The scientific mis-
sions for future Mars exploration require increasing ac-
curacy in the specification of the landing site. Landing in
small craters or ancient lake beds considered to be prime
sites for potential exobiology requires precision landing
capabilities. Landing safely in close proximity to haz-
ardous terrain necessitates improved landing vehicle ac-
curacy and robustness.

The next generation of Martian landers (2007 and be-
yond) will employ precision soft-landing capabilities [3]
based on vision. These algorithms will have to be tested
with extensive descent imagery in Mars-analog terrain on
Earth. To enable this, we propose a novel technique for
testing spacecraft landing algorithms during the termi-
nal landing phase. Our technique consists of using an
autonomous unmanned model helicopter which emulates

the dynamics of a spacecraft (e.g. a Mars lander). A heli-
copter is a highly maneuverable and versatile platform for
several reasons: it can take off and land vertically, hover
in place, perform longitudinal and lateral flight thus mak-
ing it an ideal platform for emulating a spacecraft.

In our approach a control emulation layer is wrapped
around the helicopter controller. The resulting system is
able to accept thruster inputs and is able to follow trajec-
tories like a spacecraft. We believe such a testbed would
be valuable to validate the trajectory following and pre-
cise landing algorithms being developed for future Mar-
tian landers.

To simplify matters, we consider the planar landing prob-
lem where the craft has three degrees of freedom. Of
these, we focus on height and roll. We present simulation
results showing that our system is able to track the trajec-
tory of a spacecraft executing a simple landing maneuver.
The concept is attractive since one could test a variety of
landing algorithms on a cheap platform before actually
implementing them on a Mars lander.

The idea of precise landing on Mars is relatively new.
Prior research on controlled atmospheric maneuvering of
a vehicle in the Martian atmosphere [4, 5], has not fo-
cused on the terminal stage of landing. [4] discusses drag-
based predictive tracking for landing with a terminal er-
ror of 2.9 km on the ground. [6] are developing a system
based on scanning laser data for safe and precise land-
ing on Mars. They use a rocket sled for testing their
algorithms. Although several simulations have been per-
formed by [4, 6] the lack of a proper testbed has prevented
validation.

The task of performing controlled descent during the
landing phase of a spacecraft is difficult since one has to
take into account 1. the atmospheric uncertainty, 2. varia-
tion is gravity, 3. the rotation of the planet, and 4. ground-
effect on the dynamics of the spacecraft when near the
ground. In the present work we focus on the terminal
phase of landing with the assumption that the first three
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are insignificant at low altitudes. As far as we know no-
one has tried to perform precise landing trajectories by
simulating them on another dynamical model though the
idea of emulating the dynamics of one system on another
is not new and has been used in robotics with success-
ful results in teleoperation [7]. It may be noted that we
have several years of experience in the autonomous con-
trol of robot helicopters [8], including vision-based land-
ing [9], however in contrast to our previous work which
was model-free, here we consider a controller for a heli-
copter based on an explicit dynamic model.

2 Problem Formulation

We formulate the problem as follows:

Problem: Given a model of a spacecraft with thruster in-
puts for control, and given a desired landing trajectory,
what are the corresponding stick inputs for a model heli-
copter to track the given landing trajectory?

The generalization of this problem is to find stick inputs
for a model helicopter for the entire range of a family of
trajectories. Although such problems have been consid-
ered for general cases [10], to our knowledge, this is the
first time that such a formalization is being applied to a
combination of spacecraft and helicopter.

Typically landing trajectories consist of controlling the
position, velocity x, y, z, ẋ, ẏ, ż and the roll, pitch and
yaw of the craft. In this paper we consider a constrained
(planar) version of the above problem with three degrees
of freedom (vertical and horizontal position, and roll) and
two control inputs (vertical thrusters).

As a simple example of the desired trajectory, we con-
sider a cubic polynomial trajectory for spacecraft landing
where the altitude zs varies with time t as follows:

zs(t) = a0 + a1 · t+ a2 · t
2 + a3 · t

3 (1)

with the following conditions

zs(0) = zso zs(tf ) = zsf żs(0) = 0 żs(tf ) = 0

where tf is the final time. Similarly for spacecraft roll φs
consider a linear time varying trajectory given by

φs(t) = b0 + b1(t)

φs(0) = φso φs(tf ) = 0 (2)

2.1 Assumptions

Since we are interested in the ’terminal’ phase of the
landing problem, we make several simplifying assump-
tions:

• Change in spacecraft mass due to thruster firings is
small.

• Rotation and curvature of the planet is negligible.

Table 1: Nomenclature: The subscript s refers to the
spacecraft, h refers to the helicopter.

φs, θs, ψs roll,pitch,yaw angles in the body
frame

ps, qs, rs roll,pitch,yaw rates in the body
frame

us, vs, ws velocities in the body frame
Fs1, Fs2 thruster inputs
Xs, Ys, Zs Forces in the x,y,z directions in the

body frame
Ls,Ms, Ns Moments on the spacecraft in the

body frame
xs, ys, zs translational positions in inertial

frame
zso, zsf Initial and final position in the in-

ertial frame
φso Initial roll
Ms Mass of the spacecraft
Ixxs, Iyys, Izzs Moments of inertia
α, β Moment arms for thrusters Fs1 and

Fs2 respectively
φh, θh, ψh roll,pitch,yaw angles in the body

frame
ωh angular velocity vector in the body

reference frame
Vh velocity vector in the body refer-

ence frame
δcoll, δroll collective and roll cyclic inputs to

the helicopter
xh, yh, zh translational positions in the iner-

tial frame
Mh Mass of the helicopter
Ih Rotational inertia matrix of the he-

licopter
I3×3 Identity Matrix

• Centripetal and Coriolis forces are not modeled.

• Both the spacecraft and the helicopter are modeled
as rigid bodies.

• The effect of wind and other atmospheric turbu-
lences are not considered.

• The spacecraft is assumed to have two thrusters to
control the roll and height.

• The helicopter is controlled via two control inputs:
collective and the roll cyclic.

3 Mars Lander-Spacecraft Dynamics

The equations of motion for the spacecraft are modeled as
a rigid body with six degrees of freedom in space and are
given by the Newton-Euler equations shown below [11].
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Figure 1: Coordinate frames (The same frame assign-
ment holds for the spacecraft)

u̇s = vsrs − wsqs − g sin θ +
Xs

Ms

v̇s = wsps − usrs − g cos θs sinφs +
Ys

Ms

ẇs = usqs − vsps − g cos θs cosφs +
Zs

Ms

ṗs =
(Iyys − Izz1)q1r1 + Ls

Ixx1

q̇s =
(Izzs − Ixxs)psrs +Ms

Iyys
(3)

ṗs =
(Ixxs − Iyys)qsps +Ns

Izzs

θ̇s = qs cosφs − rs sinφs

φ̇s = ps + [qs sinφs + rs cosφs] tan θs

ψ̇s = [qs sinφs + rs cosφs] sec θs

The state variables are us, vs, ws, ps, qs, rs. Two
thrusters are used for control actuation. These are mod-
eled as two forces, Fs1 and Fs2. For small perturba-
tions [12] the model can be approximated by

ẇs = −g cos θs cosφs +
Zs

Ms

ṗs =
Ls

Ixxs

φ̇s = ps (4)

żs = ws cosφs cos θs

Since we are considering only roll and height, only those
equations are given above. For a particular trajectory, a
closed loop controller can be now be written (using the
above equations) to perform trajectory control. The in-
puts to the controller are the force acting on the spacecraft
in the vertical direction Zs and the moment Ls. These
are calculated from the two thruster inputs Fs1 and Fs2
as follows

Zs = Fs1 + Fs2

Ls = Fs1α+ Fs2β (5)

3.1 Controller for Landing

A simple P-controller is implemented for tracking the de-
sired height and roll given in Equations 1, 2. The con-
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Figure 2: Multi-stage P-controller for the Spacecraft
(k, k1, k2 are the gains)

troller is shown in greater detail in Figure 2 and the cor-
responding equations1 are given by Equation 7

Zs = K1Ms(wsref − ws) +Msg cosφs

Ls = IxxsK2(psref − ps) (6)

psref = K3(φsref − φs)

3.2 Helicopter Model

The four independent inputs to a helicopter are Γ, the net
thrust generated by the main rotor, and Mφh

,Mθh
,Mψh

the net moments acting on the helicopter. These four in-
puts in a model helicopter are physically controlled by
two joysticks on a radio transmitter, each with two de-
grees of freedom. The left joystick commands throttle
with collective pitch(up/down)δcoll and yaw (left/right),
and the right joystick commands pitch cyclic (up/down)
and roll cyclic (left/right) δroll. The four values rep-
resenting the positions of the joysticks are pulse-width
modulated (PWM), and sent via radio transmitter to the
helicopter.

Our physical helicopter [13] is autonomously controlled,
and hence the stick inputs are generated by using a PD
controller based on the reference values. Currently no dy-
namical model of our helicopter exists. We assume that
the roll, pitch and yaw of the helicopter are decoupled,
and control them independently. This has the disadvan-
tage that the helicopter has a very limited flight regime
and cannot be used for emulating the landing trajectories
of a spacecraft. In future work, we plan to use the model
developed in [14] (described below), and identify it for
our helicopter. Note that the gains K4 . . .K12 in Equa-
tions 7 depend on accurate system identification. For the

1The inertial cross terms Iyz , Izx, Ixy are neglected
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Figure 3: Schematic Representation of the Emulator

results presented in this paper we use the gains from [14],
as proof of concept. The model [12] is obtained by con-
sidering the helicopter as a rigid body in space and ignor-
ing the effects of the spinning rotor.

(

MhI3×3 0
0 I

)(

V̇h
ω̇h

)

+

(

ωhMhVh
ωhIωh

)

=

(

f

τ

)

where the external forces and torques acting on the he-
licopter in the body frame are given by f and τ . The
throttle/collective command δcoll controls the thrust to
the main rotor as well as the collective pitch (θo) of the
main rotor blades. The collective pitch [14] and the thrust
on the main rotor are given by Equation 7

θ̈o +K9θ̇o +K10θo = K11δcoll

Γ = Knon−linear(
C3

3
θo −

C2

2
) (7)

where C is a constant which models the atmospheric un-
certainties. Extensive modeling of the dynamics of a
model helicopter is discussed in [14]. We use those re-
sults to perform the simulations reported here. The trans-
fer function for height as a function of collective stick

command is given by

Zh(s)

δcoll(s)
=

K4K5

(s2 +K6s+K7)(s2 +K8s+K9)
(8)

Similarly the transfer function for roll as a function of roll
cyclic stick command is given by

φh(s)

δroll(s)
=

K12

s(s+K13)
(9)

4 Emulator Design

The next step is the design of the emulation layer which
takes the forces Fs1 and Fs2 as inputs and converts them
to roll and collective commands to the helicopter. This
“emulator function” is given by:

δcoll = Fs1 + Fs2

δroll =

∫ T

0

∫ T

0

(Fs1 − Fs2)dtdt (10)

where T is the total time of flight. For finding the refer-
ence values of the roll and collective commands δcollref
and δrollref , we take the height trajectory as obtained
from the spacecraft and simply invert the linear transfer



functions in Equations 8, 9. Notice that even though we
are inverting the linear transformation functions in Equa-
tions 8, 9, we will not be able to track the specified tra-
jectories because of the coupling between the roll and the
collective inputs.

We use a PID controller given by

δcolleff
= Kcoll(δcollref − δcoll) +Kdcoll(δ̇collref −

−δ̇coll) +Kicoll

∫

(δcollref − δcoll) (11)

δrolleff
= Kroll(δrollref − δroll) +Kdroll(δ̇rollref −

−δ̇roll) +Kiroll

∫

(δrollref − δroll) (12)

based on the reference values δcollref and δrollref
and values, which are given by Equation 10.
Kcoll,Kdcoll,Kicoll,Kroll,Kdroll,Kiroll are the
PID gains. The δcolleff

and δrolleff
are the inputs to the

helicopter.

5 Results

For finding the gains we used a trajectory for height given
by

zs(t) = −150 + 4.5 · t2 − 0.3 · t3 (13)

The above equation satisfies the constraints specified in
Equation 1 at t = 10 seconds. This is a sample trajectory
and by no means restricts the class of trajectories which
can be given to the controller. For roll we consider a lin-
ear time varying trajectory given by

φs(t) =
π

10
−

π

100
t (14)

Using the height and roll given by Equations 13 and 14
as the reference, the forces Fs1 and Fs2, which are the
inputs to the spacecraft, are calculated [section 3.1]. The
values δcollref and δrollref , which the helicopter requires
for tracking the same trajectory [Equations 13, 14] are
calculated by inverting the dynamics of the helicopter.
[section 3.2].

The quantities calculated using Equation 10 are the
values which are inputs to the PID controller [Equa-
tions 11, 12]. Since we know the desired trajectory to be
followed, the reference values and the inputs, the gains
for the controller can be obtained. This PID controller
with the specified gains is used in all subsequent trials for
tracking other trajectories. For tracking a new trajectory
the δcoll and δroll inputs to the helicopter are calculated
using Equation 10. The reference inputs for the controller
δcollref and δrollref would change since we are tracking
a new trajectory. Let us denote these reference inputs by
δcollnewref

and δrollnewref
. These are calculated as

δcollnewref
= δcollref +Dz̈s(t) (15)

δrollnewref
= δrollref +D1φ̇s(t) (16)

where D and D1 are gains which are obtained empiri-
cally. The PID controller given by Equations 11 and 12
is used for tracking this new trajectory.

In Figure 4(g) the results of trajectory tracking are given
and in Figure 4(h) the result of tracking a given roll is
given. This corresponds to the initial run from which
the PID gains for the tracking controller given by Equa-
tion 11 are determined. The gains so obtained are used
in the second trial (with different initial conditions). The
height and roll trajectories for the second trial are given
by

zs(t) = −75 + 2.25(t2) − 0.15(t3)

φs(t) =
π

5
−

π

50
t (17)

The performance of the controller, for the trajectory given
by Equation 17 is shown in Figures 5(g) and (h). As seen
from the figures, the spacecraft emulation controller per-
forms quite well and the transfer function although sim-
ple, is able to track the required trajectory and the roll
with accuracy.

6 Analysis of Simulation Results

Figure 4 was obtained by fitting a cubic polynomial to ini-
tial height 150 m and the final height 0 m. The initial and
final velocities were both zero. A simple P-controller was
used for both height and roll control (the height controller
was based on angular velocity, and the roll controller was
based on the roll rate) as described in section 3. The
spacecraft was considered to have two thrusters on it for
controlling roll and height. The forces required for con-
trolling the spacecraft are described in section 3.1. These
forces were inputs to the helicopter controller. Roll in-
put was obtained by integrating the difference between
the thruster forces twice, whereas the collective input was
just the sum of the thruster forces. A PID controller was
used for the helicopter. The gains were derived from an
initial trial with particular initial conditions. Figure 5
(g),(h) shows the desired values and the tracking values
obtained from the helicopter controller.

A second trial used the same controller as the first (gains
unchanged) but the initial height was changed to 75m.
From Figure 5 it is apparent that the system tracks fairly
well. The tracking error which is defined as the difference
between the actual trajectory and the observed trajectory
is approximately 5 m.

7 Conclusions and Future Work

This paper describes an emulator built around an au-
tonomous model helicopter controller. The emulator
accepts spacecraft thruster inputs (forces) and converts
them into stick inputs for the model helicopter so that the
helicopter can track trajectories designed for the space-
craft. To our knowledge this is a novel emulator design
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Figure 4: Landing emulation descending from a height of 150 m. Subfigure (a) and (b) show the cyclic pitch input and
the collective input for tracking the trajectory given in (g) and (h) respectively. subfigure (e) and (f) shows the thruster
inputs required by a spacecraft for tracking the same trajectory.

concept. We show simulation results which provide ini-
tial evidence that the model helicopter is able to track the
trajectories specified by the spacecraft with reasonable
accuracy. The results presented in this paper are prelim-
inary and rely on a number of simplifying assumptions.
The spacecraft model used here is a small perturbation
model and hence cannot be used for tracking varying roll,
pitch and yaw simultaneously. But for the class of prob-
lems that we are considering we do not consider this as
a major problem since landing is a essentially a 3-DOF
problem with varying inputs in height, either x or y di-
rections and roll or pitch input and the model presented
here is capable of tracking small variations in all these
four degrees of freedom.

In the future, we plan to validate our results on our model
helicopter platform by identifying the model used here.
We also plan to extend the controller so that we can track
in 3D. We plan to explore the use of a neural network
to train the transfer function so that we would be able to
get better results. Finally we plan to test with realistic
trajectories, based on the output of a vision-based hazard
detection algorithm for landing.
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