
General 3D Acquisition and Tracking of Dot
Targets on a Mars Rover Prototype

Todd E. Litwin
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Blvd., MS 107

Pasadena, CA 91109
Todd.E.Litwin@jpl.nasa.gov

Abstract – In June and July 2003 two Mars Explora-
tion Rovers were launched to the Red Planet. Back on
Earth, engineering-model rovers were driven on a mock
Mars landscape in a large indoor sandbox. Character-
izing their complete 6-DOF motion was accomplished
by automatically acquiring dot targets mounted on their
cluttered, upper surfaces from any position and orien-
tation within the sandbox using a system of 12 ceiling-
mounted cameras. A least-squares, n-camera, triangula-
tion technique was used to attain typical 3D accuracies
of 1-2cm within the 22m × 9m test area.

Keywords: Robotics, Vision, Acquisition, Tracking,
3D, Dot Targets, Mars Rover, Clutter, Occlusion, Tri-
angulation, Least Squares, Camera Models.

1 Introduction
On June 10 and July 7, 2003, the two Mars Explora-

tion Rovers built by the Jet Propulsion Laboratory in
Pasadena, California, were launched toward Mars from
NASA’s Kennedy Space Center in Florida. These rovers
are the most sophisticated autonomous surface vehicles
ever sent to another planet. They carry a number of
instruments, including a suite of cameras [1] used for
taking science and engineering images. A subset of the
cameras were used by an on-board mobility system [2]
[3] [4] to create elevation maps of the terrain in order to
avoid obstacles while navigating autonomously on the
Martian surface.

The mobility system underwent extensive testing dur-
ing development. Much of the testing with flight-like
rover models took place on an indoors sandbox, mea-
suring 22×9 meters, and set up to simulate the Martian
surface. Part of that testing required validating the mo-
tion of the rover as it drove across the sand. The visual
tracking system described here was developed to provide
the necessary ground-truth information.

Based on an earlier 4-camera monocular tracker cre-
ated by the author for the 1997 Mars Pathfinder mission

[5]1, the current system uses 12 cameras mounted ap-
proximately 5 meters above the sand to track a set of dot
targets on the test rover’s upper surface. It automati-
cally acquires the initial positions of the dots wherever
the rover may be within the sandbox, handling occlu-
sions and discriminating between the dots and other vi-
sual clutter. It then tracks the dots as the rover moves.
Each dot’s position is determined using a multi-camera
least-squares triangulation technique, the results being
used to compute the position and orientation of the
rover vehicle coordinate system within the sandbox.

2 Environment
The sandbox, shown in Fig. 1, is a 22×9-meter region

containing a mock-up of the Martian surface. It is filled
with a mixture of several types of reddish sand to mimic
the appearance and texture of Mars. Volcanic rocks in
a variety of sizes are scattered about as obstacles the
rover must avoid.

In addition to these natural objects, a number of
artificial ones are present. There is the rover itself,
along with a mock lander that has a visually rich set
of air bags. There are building parts such as walls,
doors, windows, air-conditioning ducts, and fluorescent
lighting fixtures. There is support equipment that in-
cludes raised flooring, large dots used for camera calibra-
tion, plastic protective covers, cabinets, tables, chairs,
tool chests, hand tools, and other miscellaneous items.
Sometimes there are people. All of these things fall in
the fields of view of some or all of the cameras. Some of
these items are specular.

Sometimes the scene is illuminated with standard flu-
orescent lights. At other times it is illuminated with spe-
cially designed high-intensity lighting meant to mimic
the color and intensity of the sun on Mars. While the
cameras have lenses with hardware auto-iris support,
the distribution of image intensities does change when
the lights do.

1Other prior trackers[6][7][8] were developed at JPL as well.

4430-7803-9298-1/05/$20.00©2005 IEEE

2005 IEEE International Conference on Systems, Man and Cybernetics
Waikoloa, Hawaii October 10-12, 2005

Figure 1: Sandbox as viewed by one of the cameras.
Note the rover left of center, with target dots on so-
lar panels, sitting on mock lander amidst much visual
clutter.

Amongst all this clutter the tracker must identify and
track a 3-dot target on the rover’s upper surface. It
must do this even when other equipment mounted on
the rover occludes dots from some camera views.

The only information provided about the dots is their
diameters, their locations in rover vehicle coordinates,
the range of distances they may be away from the cam-
eras, and with what range of intensities they may show
up in the images. Models describing how each camera
views the scene are also available; see section 3.4.

The tracker software runs on a general-purpose CPU.
There is an ethernet interface, and hardware to acquire
and display images and to control the lens irises, but no
special image processing hardware. See Section 4.

3 Algorithm
When the system starts, it automatically enters an

acquisition mode, taking and analyzing images until it
finds the rover. It then transitions into a tracking mode,
where it repeatedly analyzes new images and updates
the reported state of the rover. If it loses track for
a minimum number of consecutive tracking cycles, it
reenters acquisition mode.

3.1 Acquisition

The acquisition algorithm uses a lazy-evaluation ap-
proach. To manage the potentially explosive number of
candidate solutions, it prunes away as many of those
candidates as possible at each step before moving on to
the next.

3.1.1 Capture

Sample new images from all cameras.

3.1.2 Identify

Find 2D dot candidates in each image individually.
Start by segregating the image into pixels whose in-
tensities indicate that they might be dots. Find all
4-neighbor-connected regions of these pixels[9]. Elim-
inate regions that are outside an allowed range of 2D
sizes derived from the expected range of distances from
the camera.

3.1.3 Match

Correlate dot candidates between cameras, collecting
a set of 3D dot finalists, each composed of a list of pairs
of dot candidates. This is done in two major steps.

In the first step each pair-wise combination of regions
between cameras is considered to be a candidate dot
pair. Triangulate the two views of each region’s 2D cen-
troid to find the closest crossover point of their lines of
sight. Eliminate the pair if the triangulation is collinear
or intersects behind the camera, if the distance is outside
the expected range from either camera, if the distance
between the lines at the point of minimum cross-over
is larger than the diameter of the largest target dot, or
if either region is outside the allowed range of 2D sizes
for the computed distance from its camera. Project the
mean cross-over point back into each camera and elim-
inate the pair if the projection does not fall within the
bounding box of either camera’s region. If it survives
all tests so far, then accept the current candidate pair
as ready to join the ranks of finalists.

In the second step look through all finalists already
identified, if any. Find the closest prior finalist whose
projection from 3D into 2D for each candidate-pair cam-
era view falls within the bounding box of the candidate’s
2D region in that view. If a prior finalist is identified,
then merge the new candidate pair into the list of such
pairs maintained for that finalist, updating its 3D po-
sition as computed over all of its pairs, computed for
speed as the mean of each pair’s triangulated mean point
of nearest cross-over. If a prior finalist is not identified,
then create a new one containing only the new candidate
pair.

3.1.4 Select

If there are fewer than n finalists (where n is the num-
ber of dots on the target), abort and try again. Other-
wise choose the n dots best matching the target array.
Start by recomputing each finalist’s 3D position using
a least-squares calculation of the best cross-over point
of the set of all lines, weighted by the inverse-square
distance from each camera, as derived in the appendix.

Consider each subset of n dot finalists individually
from the whole collection. Eliminate any subset that
is upside down to handle cases with mirror symmetry
about a horizontal axis. Compute the variance of the n
3D dot positions and eliminate any subset whose vari-
ance is more than twice the variance of the set.

444

Examine each permutation [10] individually of each
surviving subset. Compute a score for each permutation
based on how well it matches the dot sizes and inter-dot
distances of the target. Compute the score as the square
of the differences of the inter-dot distances for the actual
and target dots, plus the square of the differences of the
dot diameters for the actual and target dots.

Choose the best permutation of all subsets. Check
that it has a score close enough to an ideal target to be
reasonable. If not, abort and try again.

Report the 3D position of each dot.

3.1.5 Locate

Compute the state of the target. First compute the
position and orientation of the target based on the 3D
positions of each dot, using the quaternion method of
Hebert [11]. Then transform the ideal dot positions
with the position and orientation, comparing them to
the measured positions. If the RMS residual is over a
threshold, reject the solution. Finally, run a single iter-
ation of the tracking algorithm on the result, rejecting
the acquisition if that algorithm rejects it.

3.2 Tracking

3.2.1 Capture

Sample new images from all cameras whose fields of
view include the target’s previous 3D position.

3.2.2 Update

Find each dot in each camera. First project each dot’s
previous 3D position into 2D for each camera. Consider
a bounding box around its projection that is 3 dot radii
away in all four directions. Find 4-neighbor-connected
regions as described earlier. Eliminate a region if it is
outside the allowed range of 2D sizes for the computed
distance from its camera Find the closest region to the
previous 3D position’s 2D projection. Eliminate region
if it is more than 1.5 dot radii away since the tracker
runs quickly enough that we do not expect this to be
reasonable. If any two of the dots in one camera view
select the same region, abort and try again.

3.2.3 Triangulate

Compute the 3D position of each dot using the
weighted least-squares method described earlier. If any
dot has moved more than an input maximum distance,
abort and try again.

3.2.4 Locate

Use the dot positions to compute the state of the
rover. First compute the position and orientation of
the target based on the 3D positions of each dot as de-
scribed earlier. Then transform the ideal dot positions
from rover to world coordinates using the new position
and orientation, and compare to measured positions. If
the RMS residual is over a threshold, reject the solution.

3.3 Areas for Improvement

There are a number of possible refinements that could
be explored. Start by considering the base algorithm:

• At one point in the acquisition algorithm a search
is made for the closest prior finalist that matches a
new one. This is currently done by projecting the
prior one’s current 3D position into each candidate
pair’s image to see if it falls within the bounding
box of the region. Sometimes this test is too strin-
gent, leading to a splintering of sets. It might be
reasonable to extend the test into 3D by looking
at range uncertainties, or else by enlarging the 2D
bounding box in both views using projections or
range windows.

• The tracker is nearly stateless. While it uses the
past 3D dot solutions to seed the next cycle, those
values are forgotten thereafter. In the face of noise
there is some jitter in the solutions. A Kalman or
other filter could be applied to the dot positions,
although it would be important to control the pa-
rameters to prevent undue lag in response to sud-
den movements.

Efficiency is also an important consideration. For
example, only 3-dot targets are used at present even
though the system is set up to support any reasonable
number of targets greater than 2. Extending to 4 dots
already raises the number of combinations so high that
acquisition goes from a few seconds to several minutes.
Anything that could be done to eliminate bad candi-
dates earlier in the process or otherwise speed things up
should be considered.

• When the current algorithm is looking at the size
of a dot in an image, it only considers the larger di-
mension of its bounding box. Since this is an over-
estimate in most cases, the tests are not as stringent
as they might be. Using the covariance approach
to estimate the semimajor axis of the dot’s ellipti-
cal projection into the image would give a better
estimate of its size and allow bad matches to be
thrown out earlier.

• There is one place where the smaller dimension of
the dot’s bounding box is used in a test. The covari-
ance approach’s calculation of the semiminor axis
would be an improvement here, too.

• The semimajor and semiminor axes could be used
together if we knew what angle the dot presented
to the camera. The current system does not pro-
vide dot orientation knowledge as input, only posi-
tion. If the system were upgraded to read in a nor-
mal vector to the dot’s surface along with the other
configuration information, then the elliptical shape
seen might be used to advantage. It is easy to see

445

that the tracking cycle could use this as a check af-
ter determining the full 3D pose of the rover. While
it would be harder to use during acquisition, find-
ing a way to do so could improve robustness and
speed significantly, and would be worth exploring.

• The ellipticity of a true dot’s projection into the
image could be applied yet another way. A de-
tailed check of the symmetry of the shape could be
used early in the acquisition algorithm to filter out
shapes that do not look at all like ellipses.

As mentioned earlier, the tracker’s cameras have auto-
iris hardware to control exposure. With time and drift
of the hardware after more than a year of operation,
the camera CCDs would sometimes saturate and cause
blooming. Such blooming, which occurs for some dot
orientations and lighting conditions, causes an asym-
metrical enlargement of the dots, distorting the com-
puted dot centroid. In extreme cases the dots can be
completely obscured by this effect. To combat this, a
previously unused ability for software to control the iris
settings was used in some simple ways to override the
auto-iris control. While things improved, more work on
image analysis to set and control exposure dynamically
would help.

3.4 Camera Models

It is important to note how critical it is to have high
quality camera models. It is obvious that without the
ability to project between 2D image and 3D world co-
ordinates it would be impossible for any acquisition or
tracking algorithm to function. But it is even more im-
portant to have very accurate models when trying to
perform the kind of sensitive geometrical reasoning that
the acquisition algorithm described here does. Since a
number of the pruning steps depend upon using partial
derivatives of the 2D-to-3D and 3D-to-2D projections,
the formalism used to represent camera models must
provide this as well. For a real-time system, of course,
performance is also a desirable feature.

The JPL robotics program has a family of camera
models that satisfies all these requirements. This family
starts with a linear model developed at JPL in the late
1970s [12] and used extensively in the research program
until the early 1990s [13]. With a compact 4-vector
representation, it is very efficient. It takes only 2 dot
products, 2 subtractions, and one division to project a
3D point into each 2D coordinate, for example.

The rover tracker uses the next member of this
camera-model family [14], which adds radial lens dis-
tortion to the linear model, a feature typically needed
to retain high accuracy as fields of view increase. A final
member of the family [15], not needed for the tracker’s
cameras, adds a moving entrance pupil and general-
izes the earlier models to include both perspective-

Figure 2: Display of tracker in action, as viewed by
four different cameras. Red lines connect projections of
located dot positions. Green lines form coordinate axes
with elongation in the forward direction.

projection and fish-eye cameras along with other optical
geometries.

These models were used at JPL only by research pro-
grams through the mid 1990s. They then started to
see service in flight projects. They debuted with the
Mars Pathfinder IMP cameras [16], and are currently
in use for all the flight cameras on the Mars Explora-
tion Rovers [1]. It is expected that they will be used in
future missions as well.

4 Performance
The tracking system runs on a 350MHz PowerPC pro-

cessor under the VxWorks real-time operation system,
controlling PMC-based image-acquisition and graphics-
display modules and a VME A/D board. It usually
takes a few seconds to acquire the rover’s position and
orientation. Tracking generally runs at about 6Hz, de-
pending upon how many cameras can see the dots at
any given time.

The system was able to track the rover anywhere in
the visible parts of the sandbox. Most of the time this
was on relatively level ground, although it also worked
on the lower half of a 25◦ inclined plane that was added
for testing the limits of vehicle mobility.

The primary output of the tracker is the position and
orientation of the rover vehicle coordinate system along
with a time tag. This data is augmented by information
on the dot locations, both in 3D and in 2D, and error
estimates. See Fig. 2.

To validate the tracker’s absolute accuracy, a dot tar-
get was placed in several locations in the sandbox. The
tracker’s output was compared to that of a survey made
with a Total Station. The RMS error between the two

446

measurements was 15.3mm over approximately 18 me-
ters.

To validate the tracker’s relative accuracy, the out-
put data was logged for a series of runs in which a
dot target was moved in approximately straight lines
across the sandbox, with both longitudinal and trans-
verse runs. This was accomplished by suspending the
target by a rod from a large ceiling crane normally used
to move equipment around the sandbox, and then mov-
ing the crane in one dimension at a time throughout
the sandbox. There was some lateral vibration of the
dangling target noticeable. This vibration, as well as
any non-linearity of the crane rails, certainly affected
the results, which must be considered upper limits to
the system’s true accuracy. Those results showed that
the RMS error from straight lines was 7.6mm horizon-
tally and 6.1mm vertically across all the runs, with the
maximum observed RMS deviation of a single run being
12.0mm. The maximum deviation for a single measure-
ment across all the runs was 61.3mm.

While these results are satisfactory, there were times
when the system didn’t work so well. Very occasionally
the tracker would lock onto the wrong object, producing
wildly wrong results. There were also degenerate cases
where partial occlusion would cause unusually large er-
rors in the dot centroids. The results in the previous
paragraph have a few such cases removed.

Some of the potential algorithm improvements dis-
cussed in section 3.3 would have eliminated many of
these problem cases. Better surveying of the dots also
would have helped. When the surveying was poor, some
of the parameters controlling tolerance to error were
loosened to allow successful acquisition to take place.
This also made the system more prone to accepting bad
data as good.

Very rarely the rover would be sitting in such a posi-
tion such that no dot target was visible by at least two
cameras without occlusions. This defeated the acqui-
sition algorithm, leaving the system repeatedly trying
to acquire, and making it more prone to locking on to
the wrong target. If the rover passed through such poses
briefly while moving, the tracking algorithm was usually
able to bridge the gap.

5 Conclusion
The work here shows one promising approach to ac-

quiring and tracking a dot target in a relatively uncon-
strained environment, with pointers to areas for further
work. The tracker was used to log almost all test runs
for the mobility system, and for testing the rover’s low-
level attitude-determination system. It was also used
to initialize the state of the vehicle prior to many test
runs.

Overall the tracking system performed very well. It
was generally fast, accurate, and resilient to clutter. Its
automatic acquisition and usually robust tracking con-

�
�

�
�

�
�

�
�

�
�

��

�
���

�

�
�

�
���

�

û

b

d

p

Figure 3: Deviation, d, of a point from a line, minimized
through least squares to find best overlap of multiple
lines of sight to the target point.

tributed greatly to user satisfaction, making it easy and
reliable enough to be used often. While it did have some
occasional problems, in the end it provided much needed
information to the testers, and contributed to mission
readiness.

Appendix
The following presents the derivation for the equa-

tions used to compute the best 3D point for a target
implied by projecting the 2D image coordinates as rays
from n cameras. Since in general these rays do not in-
tersect, a least squares calculation is made for the point
that minimizes the sum of the squared perpendicular
distances from those rays.

Let b be a base point and û be a unit vector defining
one of the lines, as shown in Fig. 3. Let p be the tar-
get point “near” the line. Let d be the perpendicular
difference vector between the point and the line:

d = b + [(p − b) · û]û − p
dj = bj + (p0 − b0)u0uj + (p1 − b1)u1uj

+(p2 − b2)u2uj − pj

where the subscripts j ∈ {0, 1, 2} represent the three
spatial dimensions.

Taking the derivative of d2 with respect to each com-
ponent of p yields:

∂

∂p0
d2 =

∂

∂p0
(d2

0 + d2
1 + d2

2)

= 2d0
∂

∂p0
d0 + 2d1

∂

∂p0
d1 + 2d2

∂

∂p0
d2

= 2d0(u2
0 − 1) + 2d1u1u0 + 2d2u2u0

∂

∂p1
d2 = 2d0u0u1 + 2d1(u2

1 − 1) + 2d2u2u1

∂

∂p2
d2 = 2d0u0u2 + 2d1u1u2 + 2d2(u2

2 − 1)

447

We find the minimum deviation where the derivatives
of the sums over all points are zero:

∂

∂p0

∑

i

d2
i =

∑
i

∂
∂p0

d2
i = 0

∑
i

∂
∂p1

d2
i = 0

∑
i

∂
∂p2

d2
i = 0

This can be recast into a form appropriate for matrix
representation:

∑

i

ci00p0 +
∑

i

ci01p1 +
∑

i

ci02p2 +
∑

i

ei0 = 0

∑

i

ci10p0 +
∑

i

ci11p1 +
∑

i

ci12p2 +
∑

i

ei1 = 0

∑

i

ci20p0 +
∑

i

ci21p1 +
∑

i

ci22p2 +
∑

i

ei2 = 0

Solve these 3 equations for the 3 unknowns: p0, p1,
p2:

Cp = −e ⇒ p = −C−1e

where the terms for C and e are defined by expanding
and judiciously arranging the derivatives:

1
2

∂

∂p0
d2 = p0(u4

0 + u2
0u

2
1 + u2

0u
2
2 − 2u2

0 + 1) +

p1(u1u
3
0 + u3

1u0 + u1u
2
2u0 − 2u1u0) +

p2(u2u
3
0 + u3

2u0 + u2u
2
1u0 − 2u2u0) +

b0(−u4
0 − u2

0u
2
1 − u2

0u
2
2 + 2u2

0 − 1) +
b1(−u1u

3
0 − u3

1u0 − u1u
2
2u0 + 2u1u0) +

b2(−u2u
3
0 − u3

2u0 − u2u
2
1u0 + 2u2u0)

≡ c00p0 + c01p1 + c02p2 + e0

1
2

∂

∂p1
d2 = p0(u3

0u1 + u0u
3
1 + u0u

2
2u1 − 2u0u1) +

p1(u4
1 + u2

1u
2
0 + u2

1u
2
2 − 2u2

1 + 1) +
p2(u3

2u1 + u2u
3
1 + u2u

2
0u1 − 2u2u1) +

b0(−u0u
3
1 − u3

0u1 − u0u
2
2u1 + 2u0u1) +

b1(−u4
1 − u2

1u
2
0 − u2

1u
2
2 + 2u2

1 − 1) +
b2(−u2u

3
1 − u3

2u1 − u2u
2
0u1 + 2u2u1)

≡ c10p0 + c11p1 + c12p2 + e1

1
2

∂

∂p2
d2 = p0(u3

0u2 + u0u
3
2 + u0u

2
1u2 − 2u0u2) +

p1(u3
1u2 + u1u

3
2 + u1u

2
0u2 − 2u1u2) +

p2(u4
2 + u2

2u
2
0 + u2

2u
2
1 − 2u2

2 + 1) +
b0(−u0u

3
2 − u3

0u2 − u0u
2
1u2 + 2u0u2) +

b1(−u1u
3
2 − u3

1u2 − u1u
2
0u2 + 2u1u2) +

b2(−u4
2 − u2

2u
2
0 − u2

2u
2
1 + 2u2

2 − 1)

≡ c20p0 + c21p1 + c22p2 + e2

The above results in equations that produce a uni-
formly weighted result. If different weights are desired,
we can replace each cijk and eij with wicijk and wieij ,
respectively. Weights based on the inverse-squared dis-
tance to each camera were used in the tracker by first
computing the uniformly weighted solution to get ap-
proximate distances to the point and then by returning
to perform the weighted solution.

Acknowledgments
The author would like to thank Jim Lloyd, Edward

Tunstel, Ken Galbraith, and Eric Nieman for help fab-
ricating the tracker; John Leimgruber for writing soft-
ware to control the Leica Total Station used for survey-
ing landmarks; Bruce Bon for his algorithm to find the
closest crossover point of two lines; Peter Unold for his
implementation of the permutation generator [10]; An-
drew E. Johnson for his implementation of the quater-
nion method of Hebert [11]; Donald Gennery for all his
work on the camera-model mathematics; and Mark Mai-
mone and Jeff Biesiadecki for much encouragement and
for valuable comments born of many hours of use.

The research described in this paper was performed
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration.

References
[1] J. N. Maki, J. F. Bell, K. E. Herkenhoff, S. W.

Squyres, A. Kiely, M. Klimesh, M. Schwochert, T.
Litwin, R. Willson, A. Johnson, M. Maimone, E.
Baumgartner, A. Collins, M. Wadsworth, S. T. El-
liot, A. Dingizian, D. Brown, E. C. Hagerott, L.
Scherr, R. Deen, D. Alexander, J. Lorre, “The Mars
Exploration Rover Engineering Cameras,” Journal
of Geophysical Research — Planets, Special Issue:
The Mars Exploration Rover Mission, 2003.

[2] S. B. Goldberg, M. W. Maimone, and L. H.
Matthies, “Stereo Vision and Rover Navigation
Software for Planetary Exploration,” 2002 IEEE
Aerospace Conference proceedings, volume 5, Big
Sky, Montana, USA, pp. 2025–2036, March 2002.

448

[3] J. J. Biesiadecki, M. W. Maimone, and J. C. Morri-
son. “The Athena SDM Rover: A Testbed for Mars
Rover Mobility,” iSAIRAS conference proceedings,
Montreal, Canada, June 2001.

[4] L. H. Matthies, T. E. Litwin, and A. Kelly, “Ob-
stacle Detection for Unmanned Ground Vehicles:
A Progress Report,” International Symposium of
Robotics Research, Munich, Germany, October
1995.

[5] L. H. Matthies, E. Gat, R. Harrison, B. H. Wilcox,
R. A. Volpe, and T. E. Litwin, “Mars Microrover
Navigation: Performance Evaluation and Enhance-
ment,” IEEE Conference on Robots and Systems
(IROS), Pittsburgh, PA, Aug 5–9, 1995.

[6] D. B. Gennery, “Visual Tracking of Known Three-
Dimensional Objects,” International Journal of
Computer Vision, 7:3, pp. 243–270, 1992.

[7] B. H. Wilcox, K. Tso, T. E. Litwin, S. Hayati, B. B.
Bon: “Autonomous Sensor Based Dual-Arm Satel-
lite Grappling,” NASA Conference on Space Teler-
obotics, Pasadena, CA, Jan. 31 – Feb. 2, 1989.

[8] D. B. Gennery, “Stereo Vision for the Acquisition
and Tracking of Moving Three-Dimensional Ob-
jects,” in Techniques for 3-D Machine Perception,
North Holland: Elsevier Science Publishers B. V.,
1986.

[9] D. H. Ballard and C. M. Brown, Computer Vision,
Englewood Cliffs, NJ: Prentice-Hall, 1982, ISBN
0–13–165316–4, p. 151.

[10] N. Dershowitz, “A Simplified Loop-Free Algorithm
for Generating Permutations,” BIT–15, pp. 158–
164, 1975.

[11] O. D. Faugeras and M. Hebert, “The Representa-
tion, Recognition, and Locating of 3-D Objects,”
The International Journal of Robotics Research,
Vol. 5, No. 3, Fall 1986.

[12] Y. Yakimovsky and R. T. Cunningham, “A Sys-
tem for Extracting Three-Dimensional Measure-
ments from a Stereo Pair of TV Cameras,” Com-
puter Graphics and Image Processing 7, pp. 195–
210, 1978.

[13] D. B. Gennery, T. E. Litwin, B. H. Wilcox, and
B. B. Bon, “Sensing and Perception Research at
JPL,” Proc. IEEE Int. Conf. on Robotics and Au-
tomation, Raleigh, NC, pp. 311–317, March 31 –
April 3, 1987.

[14] D. Gennery, “Least-Squares Camera Calibration
Including Lens Distortion and Automatic Editing
of Calibration Points,” in Calibration and Orienta-
tion of Cameras in Computer Vision, A. Grun and

T. Huang, editors, Springer-Verlag, ISBN 3–540–
65283–3, 2001.

[15] D. B. Gennery, “Generalized Camera Calibration
Including Fish-Eye Lenses,” JPL document clear-
ance number 03–0869. Submitted to the Interna-
tional Journal of Computer Vision, 2005.

[16] J. Crisp, T. E. Litwin, J. J. Lorre, D. A. Alexan-
der, A. J. Runkle, T. J. Parker, and H. J. Moore,
“Pathfinder rover cameras: resolution, stereome-
try, and geology,” Abstract in Eos Trans. AGU,
78(46), Suppl: F403, Fall 1997.

449

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

