
Abstract
In this article, we will present an overview of the
Coupled Layered Architecture for Robotic
Autonomy. CLARAty develops a framework for
generic and reusable robotic components that can
be adapted to a number of heterogeneous robot
platforms. It also provides a framework that will
simplify the integration of new technologies and
enable the comparison of various elements.
CLARAty consists of two distinct layers: a
Functional Layer and a Decision Layer. The
Functional Layer defines the various abstractions of
the system and adapts the abstract components to
real or simulated devices. It provides a framework
and the algorithms for low- and mid-level autonomy.
The Decision Layer provides the system’s high-level
autonomy, which reasons about global resources
and mission constraints. The Decision Layer
accesses information from the Functional Layer at
multiple levels of granularity. In this article, we will
also present some of the challenges in developing
interoperable software for various rover platforms.

1 Introduction
Developing intelligent capabilities for robotic systems
requires the integration of various technologies from
different disciplines. It also requires the interaction of
various software components within a real-time system,
and the management of uncertainties resulting from the
interaction of the robot with its environment. The
uncertainties from the environment, the complexities of
software/hardware interactions, and the variability of the
robotic hardware make the task of developing robotic
software complex, hard, and costly. Hence, it has become
increasingly important to leverage robotic developments
across projects and platforms. Because a number of the
algorithms developed for robotic systems can be
generalized, it is possible to use these algorithms on
various platforms irrespective of the details of their
implementations. It is such algorithms that the Coupled
Layered Architecture for Robotic Autonomy (CLARAty)
[22] is trying to provide a framework for, while
maintaining the ability to easily integrate platform-
specific algorithms.

CLARAty is a domain-specific robotic architecture designed
with four main objectives: (i) to reduce the need to develop
custom robotic infrastructure for every research effort, (ii)
to simplify the integration of new technologies onto
existing systems, (iii) to tightly couple declarative and
procedural-based algorithms, and (iv) to operate a number
of heterogeneous rovers with different physical capabilities
and hardware architectures. CLARAty is a collaborative
effort among several institutions: California Institute of
Technology's Jet Propulsion Laboratory, Ames Research
Center, Carnegie Mellon University, and a number of other
universities and members from the robotics community.

2 Background
With the increased interest in developing rovers for future
Mars exploration missions, a significant number of rover
platforms have been designed and built over the past
decade [18][22]. Several NASA centers and university
partners use these platforms to test their newly developed
technologies in order to improve the autonomous robot
capabilities. Because of isolated software development
efforts, exacerbated by differences in the mechanical and
electrical designs of these vehicles, they have historically
shared little in terms of software infrastructure. As a
result, transferring capabilities from one rover to another
has been a major and costly endeavor. Furthermore,
because robotics systems cover several domain areas,
researchers of a single domain also needed to integrate
their newly developed technology into the complex
robotic environment. Proper integration requires an in-
depth understanding and characterization of the behavior
of various components of the system, which may vary
from one platform to another.

One of our goals is to provide a design that allows
researchers to use various components spanning domains
outside their immediate expertise, but have these
components be flexible and extendible to support various
applications. To do so, we need to capture well-
understood and well-developed knowledge from the
various domains into generalized and reusable
components. Just like an operating system provides a
level of abstraction from the computational hardware, our
goal is to provide a level of abstraction from the robotic
hardware implementation that will allow developers to
“integrate once and run anywhere.” Of course, there are
physical limitations to this goal that result from the large
variability in rover capabilities.

CLARAty and Challenges of Developing Interoperable Robotic Software
Issa A.D. Nesnas*, Anne Wright**, Max Bajracharya*, Reid Simmons***, Tara Estlin*

*Email:firstname.lastname@jpl.nasa.gov
* Jet Propulsion Laboratory, California Institute of Tehcnology, Pasadena, CA 91109

** NASA Ames Research Center, Moffet Field, Sunnyvale, CA 95134
*** Carnegie Mellon University, Pittsburg, PA 15214

March 10, 2003

 2

The development of robotics and autonomy architectures
dates back several decades. We will not attempt to
provide a comprehensive review of the body of work
upon which this effort builds. Typical robot and
autonomy architectures are comprised of three levels -
Functional, Executive, and Planning levels [1][11][19].
Some architectures emphasized one area over the others
and thus became more dominant in that domain. For
example, some architectures emphasized the planning
aspects of the system [7][8], others emphasized the
executive [4][19], while others emphasized the functional
aspects of the system [20][16]. There have also been
efforts that aimed at blurring the distinction between the
planning and executive layers [9]. Other architectures did
not explicitly follow this typical breakdown. Some
focused on particular paradigms such as fuzzy-logic based
implementations [12] or behavior-based implementations
[2][5]. There has also been considerable effort put in
architectures that addressed multiple and cooperating
robots [15][23].

One difference between the CLARAty architecture and the
conventional three-level architectures is the explicit
distinction between levels of granularity and levels of
intelligence. In conventional architectures both
granularity and intelligence were aligned along one axis.
As you move to higher abstractions of the system,
intelligence increases. This is not true for CLARAty,
where intelligence and granularity are on two different
axes. In other words, the system decomposition allows for
intelligent behavior at very low levels while still
maintaining the structure of the different abstraction
levels. This is similar in concept to some hybrid reactive
and deliberative systems.

3 An Overview of the CLARAty
Architecture

The CLARAty architecture has two distinct layers: the
Functional Layer and the Decision Layer. The Functional
Layer uses an object-oriented system decomposition and
employs a number of known design patterns [10] to
achieve reusable and extendible components. These
components define an interface and provide basic system
functionality that can be adapted to a variety of real or
simulated robots. It provides both low- and mid-level
autonomy capabilities. The Decision Layer couples the
planning and execution system. It globally reasons about
the intended goals, system resources, and state of the
system and its environment. The Decision Layer uses a
declarative-based model while the Functional Layer uses
a procedural-based model. Because the Functional Layer
provides an adaptation to a physical or simulated system,
all specific model information is collocated in the system
adaptations. The Decision layer receives this information
by querying the Functional Layer for predicted resource
usage, state updates, and model information. However,

additional adaptation specific heuristics are often used
with current planners to assist in plan generation. These
adaptation specific heuristics, which are only used by the
Decision Layer, can be accessed directly and not via the
Functional Layer.

The Decision Layer accesses the Functional Layer at
various levels of granularity (Figure 1). The architecture
allows for overlap in the functionality of both layers. This
intentional overlap allows users to elaborate the
declarative model to lower levels of granularity. But is
also allows the Functional Layer to build higher level
abstractions (e.g. navigator) that provide mid-level
autonomy capabilities. In the latter case, the Decision
Layer serves as a monitor to the execution of the
Functional Layer behavior, which can be interrupted and
preempted depending on mission priorities and
constraints.

3.1 The Functional Layer
The Functional Layer includes a number of generic
frameworks centered on various robotic-related
disciplines. Packages included in the Functional Layer
are: digital and analog I/O, motion control and
coordination, locomotion, manipulation, vision,
navigation, mapping, terrain evaluation, path planning,
science analysis, estimation, simulation, and system
behavior. The Functional Layer provides the system’s
low- and mid-level autonomy capabilities. Control
algorithms such as vision-based navigation, sensor-based
manipulation, and visual target tracking that use a
predefined sequence of operations are often implemented
in the Functional Layer. In some cases though, it is
possible to generate such sequence of operations by

Functional Layer

Decision Layer

Functional Layer

Decision Layer

Figure 1: The Decision Layer interacting with the
Functional Layer at various levels of granularity

 3

modeling them as activities and having the Decision
Layer schedule instantiations of these activities based on
appropriate mission goals and constraints.

The Functional Layer has four main features. First, it
provides a system level decomposition with various levels
of abstractions. For example, a general locomotor provides
an interface to any type of mobility platform whether it is a
wheeled vehicle, a legged mechanism, or a hybrid of the
two. A functional specialization of the locomotor is the
wheeled locomotor. This specialization introduces the
concept of wheeled mobility and wheel configuration. This
functional specialization extends the locomotion interface
to include additional capabilities. Further extensions of the
wheeled locomotor include special types of wheel
locomotors with known locomotion models.

Second, the Functional Layer separates algorithmic
capabilities from system capabilities. It is important to
decouple system limitations from the algorithmic
limitations in order to avoid propagation of assumptions
that are unique to a particular platform. Algorithms are
expressed in their most general terms without
compromising understandability and efficiency. Where
efficiency requirements are not met, specializations are
provided to overwrite the general solution. An example of
this can be found in the manipulation domain. General
inverse kinematics algorithms provide a generic solution
for all serial manipulators but are often not efficient. As a
result, they are overwritten with specialized, more
efficient versions. The general versions however, are
useful in instances where the specialized solutions have
not been derived yet or for validating the specialized
implementation.

Third, the Functional Layer separates the behavioral
definitions and interactions of the system from the
implementation. This separation not only allows the
dynamic binding of adaptations at runtime, but it also
makes both the functional and implementation trees
extensible. For example, a wheeled locomotor separates
considerations related to the behavioral and functional
models from considerations related to the hardware
interface. Another example is the controlled motor, which
separates the specialization to a particular hardware
controller from the functional specialization of a controlled
motor to a joint (which extends the motor functionality by
imposing checking of joint limits on all the move
commands). This pattern is used in various parts of the
architecture and is known as the bridge pattern [10].

Fourth, the Functional Layer provides flexible runtime
models. The runtime model is part of the abstraction
model, of which, one part is associated with the generic
functionality and the other with the adaptation. The
runtime model associated with the adaptation is

dependent on particular capabilities of the underlying
hardware and can change from one system to another. For
example, a system with a distributed motion control
architecture does not need to run the servo control and
trajectory generation threads on the main processor. This
capability can be implemented in firmware on distributed
processors.

3.2 The Decision Layer
The Decision Layer is a global engine that reasons about
system resources and mission constraints. It includes
general planners, executives, schedulers, activity
databases, and rover and planner specific heuristics.

The Decision Layer plans, schedules, and executes
activity plans. It also monitors the execution modifying
the sequence of activities dynamically when necessary.
The goal of a generic Decision Layer is to have a unified
representation of activities and interfaces. The current
instantiation of the Decision Layer which we use at JPL
features a tight coupling of the planner and the executive.
For this example, the planner implementation is the
CASPER planning and scheduling system [7] and the
executive implementation is the TDL executive system
[19].

The Decision Layer interacts with the Functional Layer
using a client-server model. The Decision Layer queries
the Functional Layer about availability of system
resources in order to predict the resource usage of a given
operation. The Decision Layer sends commands to the
Functional Layer at various levels of granularity. The
Decision Layer can utilize encapsulated Functional Layer
capabilities with relatively high-level commands, or
access lower-level capabilities and combine them in ways
not provided by the Functional Layer. The former is
valuable when planning capabilities are limited, or when
under-constrained system operation is acceptable. The
latter is valuable if detailed, globally optimized, planning
is possible, or if resource margins are small. CLARAty
supports both modes of operation. Status on resources,
state conditions, and activity execution is reported from
the Functional Layer to the Decision Layer
asynchronously or synchronously at rates specified by the
Decision Layer.

4 Challenges in System Decomposition
The proper decomposition for a generic robotic system, in
large, depends on what elements of the software are
targeted for reuse in future applications. One approach for
an architectural decomposition is to highlight the runtime
model and inter-component communication mechanism
independent of the domain it addresses [16]. Another
would be to highlight the states of the system making
them explicit with global scope [6]. A third would be to
highlight the abstract behavior and interface to the states

 4

of the system while hiding runtime models. CLARAty
adopted the latter approach in order to hide the variability
that arises from various implementations.

Two fundamental notions of CLARAty are: (1) abstractions
at various levels of granularity, and (2) encapsulation of
information at the appropriate levels of the hierarchy. First,
abstractions are an important notion in a robotic system in
order to reduce complexity and to provide an operational
interface at various levels of the system architecture.
Algorithmic development can occur at any level of
abstraction. Second, without the proper encapsulation,
implementation specific information and assumptions can
“bubble up” to higher levels and break reusability across
domains and platforms. This does not mean that CLARAty
does not support platform specific algorithms. Specific
algorithms are ones that either cannot be generalized, or
would be ineffective if generalized to a broader scope.

There are three main types of abstractions in the
Functional Layer: (1) data structure classes, (2)
generic/specialized physical classes, (3) generic/
specialized functional classes. All classes are designed to
maximize code reuse across disciplines, eliminate
duplicated functionality without compromising efficiency,
and simplify code integration.

Both functional and physical generic components: (a)
provide interface definitions and implementations of basic
functionality, (b) manage local resources, and (c) support
state and resource queries by the Decision Layer.

4.1 Data Structure Classes
Data structure classes, which handle data transformation
and storage, enable easy propagation of software
optimization, and allow easy serialization and transport
between processors. One characteristic of data structures
is that they do not have any executive capability. While
their efficiency is of prime importance, they themselves
do not invoke other threads. These classes provide the
extended interface for communication among generic
physical and functional components. Since general-
purpose data structures are reusable beyond the scope of
robotics applications, we are leveraging standardized
developments such as the Standard Template Library [3].
However, not all such needs could be adequately met from
standardized sources. CLARAty provides some general data
structures and a number of domain specific ones. Such
classes include points, bits, arrays, vectors, matrices, rotation
matrices, images, homogeneous transforms, quaternions,
frames, frame trees, messages, and resources.

4.2 Generic Physical Classes
Generic physical components (GPC) define the structure
and behavior of physical objects in an abstract sense.
Some of these classes have partial implementations since

specialized physical or simulation classes will complete
their implementation. A generic physical component can
be extended along two axes: function and implementation.
The functional extension includes the addition of control
and operational capabilities. The implementation axis
includes specialization to hardware and, where necessary,
the overriding of the generic default implementation. A
generic physical component can also have a model that
describes the device without specifying how it is
implemented. For example, a locomotor abstraction
provides an interface to any type of mobility mechanism,
whether it be wheeled, legged, or hybrid. The interface
allows specifying a point on the vehicle to be moved to a
different point in the world, and allows other parameters,
such as the path and speed, to either be specified or left
unconstrained. There are also a number of queries about
the state of the vehicle and it pose. Without further
knowledge of the type of mechanism, it is not possible to
get more information without imposing additional
constraints on the type. In addition to defining the
interface and behavior, the generic physical classes also
define the finite state machines of an abstraction.

Generic physical classes can be active, i.e. they provide
their own threading model. Examples of such components
are: manipulator, locomotor, controlled motor, wheel,
camera, and I/O to name few. A complete list of these
components and their characteristics can be found in [13].

The base abstraction for generic physical components is
the device class from which other classes derive. It uses a
generic mechanism to query device properties and can
retrieve both generic and specialized properties of a
device via a generic mechanism. The device class
provides a centralized infrastructure for device thread
safety. Devices include three types of information:
attributes (static parameters such as initialization
parameters), parameters (dynamic parameters that are
changed by the user or application at runtime), and device
output data. Devices also have standardized interfaces to
query their given names and ancestries.

4.3 Generic Functional Classes
A generic functional class is an abstract class that
describes the interface and functionality of a generic
algorithm. A generic functional class can have a complete
implementation of its functionality because it interfaces
with generic physical classes. Examples of generic
functional classes are: mapper, navigator, traversability
analyzer, and visual tracker. Just like physical classes,
functional classes can be active and can generate separate
threads of execution.

An example of a generic functional class is the navigator.
The navigator provides a functional behavior that will
evaluate a terrain and assess its traversability, then move a

 5

mobility platform using both local and global information.
The navigator interfaces with a locomotor for controlling
the vehicle, an estimator for querying of pose information,
a traversability analyzer for converting sensor data into a
model of the world, an action selector to determine the
appropriate next action for the robot to perform given its
current state, and cost functions for converting terrain
evaluation data into a form that can be used by the path
planner. A detailed description of the navigator functional
classes can be found in [21].

The estimator is another type of generic functional
component that can be specialized to a particular type of
state propagation filter such as a Kalman Filter or a
Bayesian Filter.

4.4 Specialized Physical/Functional Classes
Specialized classes are extensions of generic classes that
adapt the general configuration or algorithm to a
particular robotic platform. An example of a specialized
physical class is found in the Rocky 7 rover
implementation. For the development of the Rocky 7 mast
software, the generic manipulator class is specialized to a
Rocky 7 mast class. This class specifies the link
dimensions, joint limits, actuator types, and end
effector(s). The base manipulator class provides the
generic forward and inverse kinematics, joint motion
control, trajectory tracking, conditional motion, and error
recovery. The Rocky 7 mast class overrides the generic
kinematics of the manipulator class with the closed-form
kinematics that are specifically derived for the Rocky 7
mast.

Specialized functional classes are derived from their
generic counterparts. They specialize a particular
configuration and tune the behavior. For example, a
rocker bogie locomotor model is a specialization of a
generic wheel locomotor model (the rocker bogie is a
mechanism that has differential motion of the left and
right sides of a six wheel vehicle – commonly used for
Mars rovers).

4.5 Runtime and Data Flow Models
Because CLARAty supports systems with different
hardware architectures, the runtime model changes across
robotic platforms. As a result, it is important to
encapsulate the specialized runtime implementation but
characterize the usage of resources.

Two models of data flow are used in CLARAty. Both push
and pull models are used depending on the adaptation
layer and matching hardware architecture. For systems
that have bandwidth limitations on a shared bus, and
where the need for the data is asynchronous and
constitutes a subset of all possible information that can be
obtained, a pull model allows maximum flexibility. If the

usage is predictable and synchrounous then a push model
is used. For a given bus, and if both modes are supported
by hardware, it is possible to switch the system between
these two modes depending on the system configuration.
For example, on a rover that uses a shared bus for
communicating with distributed motion controllers
connected to both the mast and the arm, the system may
only retrieve information on the manipulator that is being
controlled.

Generic interfaces bridge between the timing
requirements of consumers and actual data flow of a
given device, as well as support extendible data sets with
strong typing. Consumers can choose whether to force a
new update, access stored data from the most recent
transactions, or retrieve a data source object. In the latter
case, the consumer can customize its timing constraints,
and either use it for future queries or pass it on to another
consumer such as a data logger. When new information
becomes available, any consumers waiting on such a data
source wake up and receive the update. If new data is not
available within the timing constraints of a given
consumer, they wake up empty handed and can choose to
force an update.

5 Implementation of Locomotion on various
mobile platforms

One of the main challenges in developing generic
components and adaptating them to different robots stems
from the variability of the platforms and their capabilities.
In this section, we will use the example of wheeled
locomotion to illustrate how to use domain knowledge to
classify vehicles to enable the development of generic and
reusable classes. We will also discuss the challenges that
arise from adapting the generic algorithms to a number of
rover platforms with different hardware architectures

Wheeled locomotors have different capabilities depending
on their mechanical configuration. Consider the
locomotion capabilities of a number of mobile platforms
shown in Figure 2 (the ATRV, Rocky 7, Rocky 8, FIDO,
K9, Sojourner, and Hyperion rovers). These wheeled
vehicles have different maneuvering capabilties. The
proper classification of these vehicles will be based on the
domain knowledge of the kinematics and dynamics for
controlling these vehicles. One approach, which we
adopted, is to separate vehicles with moveable axles (e.g.
Hyperion) from ones with all fixed axles (or fixed contact
model - all others). For fixed axle robots, one can further
classify these as non-steerable (or skid steerable) such as
the ATRVs, partially steerable such as the Rocky 7 and
Sojourner rovers, and fully steerable such as the Rocky 8,
FIDO, and K9 rovers. Partially steerable vehicles can
have different configurations. For example the Sojourner
rover has six drive wheels and two non-steerable center
wheels. On the other hand, Rocky 7 has only two

 6

steerable front wheels. As such, partially steerable
wheeled locomotors are constrained to instantaneously
move about a rotation center that lies along the non-
steerable wheel axle (or a virtual axle that averages all
non-steerable axles in order to minimize slip). Fully
steerable vehicles can do crab maneuvers and can
maintain a certain heading while driving along a path
trajectory. Partially steerable vehicles have more
constraints and cannot independently control path and
heading, but can use parallel a parking maneuver to
achieve a crab equivalent [14].

A general way for describing the motion of all fixed axle
models is by specifying three independent control
variables that are a function of time: delta length of
traverse, delta heading, and motion direction angle. For
fully steered vehicles one can use all three parameters.
For partially steered vehicles, the motion direction angle
is constrained by the fixed axle(s). The latter is a
degenerate case of the fully steered model.

A second challenge that arises in addressing these classes
of vehicles comes from the accessibility to the system’s
control parameters. For example, the ATRV provides
independent control for each side of the vehicle only but
not for each individual wheel. So the control model for
the vehicle is different from those vehicles where each
wheel can be controlled individually.

A third challenge stems from the different motion control
architectures. Consider the motion control architecture of
Rocky 7, Rocky 8, K9 and FIDO (all have six wheels and
almost all have full steering capabilities). While closer in
resemblence to each other than to the ATRVs, for
instance, the control architecture for each vehicle is still
unique. Starting with the Rocky 8 and K9 rovers [17]
(Figure 3), both rovers use a distributed motion control
architecture where each motor interfaces with a single-
axis microprocessor controlling the motor servo loop and,
in some cases, profiling a trajectory. Distributed
micocontrollers can, as in the case of Rocky 8, also
perform analog and digital I/O operations. They also
possess some additional programmable processing
capabilities. In a distributed system, microcontrollers are
connected to the main processor via some type of a serial
bus. The K9 rover uses a multi-drop RS422 serial link for
the control of its mobility motors. Rocky 8 uses a single
I2C bus for its locomotor, arm, and mast subsystems.
There is an important coupling between the arm/mast and
the locomotor as a result of the shared bus. The software
architecture has to enable the simultaneous operation of
the manipulator and locomotor subsystems by managing
the shared resource. While the two subsystems are linked
in their implementation, functionally they are not.

Another aspect of hardware architecture is hardware
synchronization. The K9 system supports hardware
synchronization of motors via broadcasting serial
commands which tell all axes to synchronously execute
their loaded trajectory, or synchronously stop. The Rocky
8 rover implements synchronization in software by
loading all motor trajectories first and then issuing start
commands to all motors sequentially to minimize latency
between the first and last motor. Once again the software
architecture should support these two different modes of
synchronizations. As such, support for device groups is an
essential part of the CLARAty architecture. The flexibility
in the implementation of group commands is also

Front
x

y
z
C

(a)
Skid Steering

(no steering wheels)

Front
x

y
z

C

(c)
Two –wheel steering

Front

x
y z

C

(e)
All wheel steering

(e.g. MER, Rocky8,
Fido, K9)

(f)
Steerable Axle
(e.g.Hyperion)

xy

z
C

(b)
Tricycle

(one steering wheel)

Front
x

y z

(d)
Partially Steerable

(e.g. Sojourner,
Rocky 7)

ATRV (a) Sojourner (d)

Rocky 8 (e)

Rocky 7 (d)

K9 (e)FIDO (e)

Front
x

y
z
C

(a)
Skid Steering

(no steering wheels)

Front
x

y
z

C

(c)
Two –wheel steering

Front

x
y z

C

(e)
All wheel steering

(e.g. MER, Rocky8,
Fido, K9)

(f)
Steerable Axle
(e.g.Hyperion)

xy

z
C

(b)
Tricycle

(one steering wheel)

Front
x

y z

(d)
Partially Steerable

(e.g. Sojourner,
Rocky 7)

Front
x

y
z
C

(a)
Skid Steering

(no steering wheels)

Front
x

y
z
C

(a)
Skid Steering

(no steering wheels)

Front
x

y
z

C

(c)
Two –wheel steering

Front
x

y
z

C

(c)
Two –wheel steering

Front

x
y z

C

(e)
All wheel steering

(e.g. MER, Rocky8,
Fido, K9)

Front

x
y z

C

(e)
All wheel steering

(e.g. MER, Rocky8,
Fido, K9)

(f)
Steerable Axle
(e.g.Hyperion)

xy

z
C

(b)
Tricycle

(one steering wheel)

xy

z
C

(b)
Tricycle

(one steering wheel)

Front
x

y z

(d)
Partially Steerable

(e.g. Sojourner,
Rocky 7)

Front
x

y z

(d)
Partially Steerable

(e.g. Sojourner,
Rocky 7)

ATRV (a) Sojourner (d)

Rocky 8 (e)

Rocky 7 (d)

K9 (e)FIDO (e)

Figure 2: Various types of wheeled locomotors

Figure 3: Distributed motion control architecture for
Rocky 8 and K9

Compact PCI
- x86 Arch
- Wireless E/net
- 1394 FireWire
- I2C Bus

Rocky 8

Actuator/Encoders

Potentio-
meters

I2C

1394 Bus

IMU

RS232

Sun Sensor
K9

PC104+
- x86 Arch
- Wireless E/net
-1394 FireWire
-RS422 serial Bus

Rocky Widgets
Single-axis controllers
Current sensing
Digital I/O
Analog I/O

PIC-SERVOs
Single-axis controllers

Current sensing

IMU

RS232

Compact PCI
- x86 Arch
- Wireless E/net
- 1394 FireWire
- I2C Bus

Rocky 8

Actuator/Encoders

Potentio-
meters

I2C

1394 Bus

IMU

RS232

Sun Sensor
K9

PC104+
- x86 Arch
- Wireless E/net
-1394 FireWire
-RS422 serial Bus

Rocky Widgets
Single-axis controllers
Current sensing
Digital I/O
Analog I/O

PIC-SERVOs
Single-axis controllers

Current sensing

IMU

RS232

 7

important since hardware implementations can vary
dramatically.

The Rocky 7 system uses commercial-of-the-shelf
(COTS) microcontroller chips (LM629) for the motor
control (Figure 4). These controllers are laid out on a
central motion control board and are connected to the host
processor via a custom parallel port connection with chip
multiplexing. All actuators in the system share the same
bus, but the communication bandwidth is higher than the
serial links for both Rocky 8 and K9. Similar to Rocky 8,
this motion control board supports the locomotion and
manipulation subsystems. As in the case of Rocky 8 and
K9, the closed loop servo control is done on the
microcontrollers that have fixed control law with
programmable parameters and modes.

Figure 5 shows a third implementation of a motion
control architecture. The FIDO rover [18] uses a
centralized hardware-mapped control architecture. The
motors are directly connected to an analog output board
and the encoders are directly connected to a quadrature
encoder board. All hardware states and registers from the
PC104+ boards are mapped via the PCI backplane to the
host processor’s memory making them readily accessible
to the software. There is virtually zero cost from a
software architecture standpoint to retrieve the value of
any register as compared to the other systems. Hence the
coupling among the various motor/encoder states is
abstracted by the hardware. However, since there is only
one processor (host) in the system, the servo loops for all
actuators have to be done on the main processor. This
introduces a coupling between the servo control of the
motors and the application algorithms which will be
competing for the same computational resources. It also
places a requirement on the operating system and the
software architecture to meet hard real-time scheduling
guarantees. So while the K9 and Rocky 8 rovers can
operate in a soft real-time environment such as Linux, the
FIDO rover requires the operating system and supporting
architecture to run in hard real-time. On the other hand,
the FIDO architecture has the advantage of allowing the

software to easily modify the control law and insert
validation checks in case a motor or encoder failure
occurs.

Despite all these architectural variations, there is a level
of abstraction that can be used to interoperate across these
systems. Given that each motor is controlled via the
generic controlled motor interface, the runtime model for
each implementation will vary. For a system such as
Rocky 8, pushing all motor and I/O information via the
I2C bus limits the bandwidth since the type of
information requested may vary depending on the
algorithm that is in operation at any time. Using a pull
model, a single thread for trajectory generation (20 Hz) is
used on the host while the microcontrollers run a lead/lag
compensator for servo control. Motor commands are sent
to the hardware using a synchronous cooperative
scheduling model. Alternatively, the FIDO rover uses two
threads, one for closed loop PID servo control at 200 Hz,
and a second for trajectory generation. The Rocky 7 and
K9 motors run no additional threads and pass the
necessary trajectory parameters to the motor controllers,
which run their own hardware threads. Hence, an
asynchronous communication model is used.

While these are four different implementations of a
motion control system, the behavior and functional
requirements of the controlled motor are the same. All
these implementation variations are part of the
encapsulated specialization of the controlled motor and
motor group abstractions. To the user of a controlled
motor, the abstraction of the controlled motor and the
resources its adaptation consumes is what is needed
without necessarily exposing the details of the
implementation. In any of these implementations, you
would still like to do position commanding, velocity
profiling, and trajectory control. You would also like to
detect and report stall conditions and be able to interrupt
the motion. Furthermore, you would like to read the
current and desired positions, velocities, accelerations,
and health status. For a person developing a general wheel
coordination algorithm for a mobile robot, it should only

Compact PCI
PPC 750 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless EthernetRocky 7

Actuator/Encoders

Potentiometers

Parallel Custom Interface
MUX/Handshaking

Video Switcher

GyrosAccels

AIO

PID Controllers

Compact PCI
PPC 750 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless EthernetRocky 7

Actuator/Encoders

Potentiometers

Parallel Custom Interface
MUX/Handshaking

Video Switcher

GyrosAccels

AIO

PID Controllers

Figure 4: Custom parallel bus for the multiplexed
motion controllers on Rocky 7

Fido

Actuator/Encoders

Potentiometers

PID Control in
Software

Video Switcher

IMU

RS232
Serial

PC104+
x86 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless EthernetFido

Actuator/Encoders

Potentiometers

PID Control in
Software

Video Switcher

IMU

RS232
Serial

PC104+
x86 Arch
Framegrabbers
Digital I/O
Analog I/O
Wireless Ethernet

Figure 5: Centralized memory-mapped motion
control architecture for FIDO

 8

be necessary to understand the behavior of the component
rather than have intimate knowledge of the
implementation and hardware details. Nor should a
particular implementation inadvertently influence the
design of the coordination algorithms. The controlled
motor and motor group classes are an abstract
representation for motion control that define what the
components are supposed to do. These components hide
the details of the implementation without compromising
particular features of the hardware. The controlled motor
abstraction is then used in a wheel abstraction and later a
wheel locomotor model. The same paradigm applies at
various levels of CLARAty.

Preliminary results showed that for one implementation of
wheeled locomotor, around 90% of the implementation
was reusable among FIDO, Rocky 8 and Rocky 7
(measured in lines of code which included comments).
For the controlled motor, the reusable percentage ranged
from 50%-70%. These statistics consider that all software
drivers are non-reusable, even though they can be reused
when boards share the same COTS chips.

6 Summary
Currently, the CLARAty architecture has been adapted to
five real rovers with different hardware architectures and
physical capabilities. It has also been adapted to high-
fidelity simulation platforms. CLARAty is operating the
Rocky 8, FIDO and Rocky 7 rovers at JPL. It is also
running on the K9 rover at ARC and an ATRV rover at
CMU. Various capabilities have been demonstrated on
these vehicles. We have presented a brief overview of the
CLARAty architecture and some of the challenges in
designing interoperable software that can run on varying
physical rover platforms. We are continuing the
development of CLARAty to achieve its goals of a generic
reusable robotic software base that we hope to publish as
open source.

7 Acknowledgments
The work described in this paper was carried out by the
entire CLARAty team at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract to the
National Aeronautics and Space Administration, and at
Carnegie Mellon University and Ames Research Center.

8 References:
[1] R. Alami et al. An Archtecture for Autonomy. Int’l Journal

of Robotics Research, 17(4), April 1998.
[2] R. C. Arkin “Motor schema based mobile robot

navigation,” Int’l J. of Robotics Research, 4(8):92–112,
1989.

[3] M. H. Austern. Generic Programming and the STL
Addison-Wesley Professional Computing Series, Reading,
MA, October 1998.

[4] J. Borrelly et al. The ORCCAD Architecture. Int’l J. of
Robotics Research, 17(4), April 1998.

[5] R. A. Brooks. A robust layered control system for a mobile
robot. IEEE Transactions on Robotics and Automation,
2(1):14–23, 1986.

[6] D. Dvorak, “Software Architecture Themes In JPL’s
Mission Data System”, Proc. IEEE Aerospace Conference,
.Big Sky Montana, 2000

[7] T. Estlin, et al. “Using continuous planning techniques to
coordinate multiple rovers.” Proc. of the IJCAI Workshop,
Sweden, August 1999.

[8] R. Firby. “Adaptive Execution in Complex Dynamic
Worlds” PhD thesis, Yale University, Department of
Computer Science, 1989.

[9] F. Fisher, et al., “An automated deep space
communications station,” Proc. IEEE Aerospace
Conference, Colorado, March 1998.

[10] E. Gamma, et al., “Design Patterns: Elements of Reusable
Object-Oriented Software,” Readking, Mass: Addison-
Wesley, 1995.

[11] E. Gat. “On Three-Layer Architectures,” In Artificial
Intelligence and Mobile Robots, Boston, MA, 1998. MIT

[12] K. Konolige, et.al. “The saphira architecture: A design for
autonomy.” J. of Experimental and Theoretical AI,
9(1):215–235, 1997.

[13] I.A. Nesnas, et.al. “Toward Developing Reusable Software
Components for Robotic Applications" Proc. Int’l Conf on
Intelligent Robots and Systems, Hawaii, Oct, 2001

[14] I.A. Nesnas, et.al. “Rover Maneuvering for Autonomous
Vision-Based Dexterous Manipulation,” IEEE Conf. on
Robotics and Automation, CA, 2000

[15] L. Parker, “Alliance: An architecture for fualt tolerant
multi-robot coorperation,”. ORNL TM12920, Oak Ridge
National Laboratory, Oak Ridge, TN, 1995.

[16] G. Pardo-Castellote et.al, “Controlshell: A software
architecture for complex electromechanical systems,” Int’l
Journal of Robotics Research, 17(4), 1988.

[17] L.M. Pedersen, et al., “Integrated Demonstration of
Instrument Placement, Robust Execution and Contingent
Planning,” Proc. Int’l Symp on AI, Robotics and
Automation for Space, 2003.

[18] P. Schenker, et.al., “Planetary rover developments
supporting Mars science, sample return and future human
robotic colonization,” Autonomous Robots, 103-126, 2003

[19] R. Simmons and D. Apfelbaum, “A Task Description
Language for Robot Control,” IEEE/RSJ Intelligent
Robotics and Systems Conf., Canada, October 1998.

[20] Mobility Software. http://isrobotics.com/rwi/software.htm.
Real World Interface, division of IRobot, Somerville, MA.

[21] C. Urmson, et.al., “A Generic Framework for Robotic
Navigation,” Proc. IEEE Aerospace Conf., Montana,
March 2003.

[22] R. Volpe, et.al. “The CLARAty architecture for robotic
autonomy,” Proc. of IEEE Aerospace Conf., Montana,
March 2001.

[23] B.B. Werger and M.J. Mataric, “From Insect to Internet:
Situated Control for Networked Robot Teams,” Annals of
Mathematics and AI, 31:1-4, pp. 173-198, 2001

