
Abstract 
In this article, we will present an overview of the 
Coupled Layered Architecture for Robotic 
Autonomy. CLARAty develops a framework for 
generic and reusable robotic components that can 
be adapted to a number of heterogeneous robot 
platforms. It also provides a framework that will 
simplify the integration of new technologies and 
enable the comparison of various elements. 
CLARAty consists of two distinct layers: a 
Functional Layer and a Decision Layer. The 
Functional Layer defines the various abstractions of 
the system and adapts the abstract components to 
real or simulated devices. It provides a framework 
and the algorithms for low- and mid-level autonomy. 
The Decision Layer provides the system’s high-level 
autonomy, which reasons about global resources 
and mission constraints. The Decision Layer 
accesses information from the Functional Layer at 
multiple levels of granularity. In this article, we will 
also present some of the challenges in developing 
interoperable software for various rover platforms. 

1 Introduction 
Developing intelligent capabilities for robotic systems 
requires the integration of various technologies from 
different disciplines. It also requires the interaction of 
various software components within a real-time system, 
and the management of uncertainties resulting from the 
interaction of the robot with its environment. The 
uncertainties from the environment, the complexities of 
software/hardware interactions, and the variability of the 
robotic hardware make the task of developing robotic 
software complex, hard, and costly. Hence, it has become 
increasingly important to leverage robotic developments 
across projects and platforms. Because a number of the 
algorithms developed for robotic systems can be 
generalized, it is possible to use these algorithms on 
various platforms irrespective of the details of their 
implementations. It is such algorithms that the Coupled 
Layered Architecture for Robotic Autonomy (CLARAty) 
[22] is trying to provide a framework for, while 
maintaining the ability to easily integrate platform-
specific algorithms.  
 

CLARAty is a domain-specific robotic architecture designed 
with four main objectives: (i) to reduce the need to develop 
custom robotic infrastructure for every research effort, (ii) 
to simplify the integration of new technologies onto 
existing systems, (iii) to tightly couple declarative and 
procedural-based algorithms, and (iv) to operate a number 
of heterogeneous rovers with different physical capabilities 
and hardware architectures. CLARAty is a collaborative 
effort among several institutions: California Institute of 
Technology's Jet Propulsion Laboratory, Ames Research 
Center, Carnegie Mellon University, and a number of other 
universities and members from the robotics community. 

2 Background 
With the increased interest in developing rovers for future 
Mars exploration missions, a significant number of rover 
platforms have been designed and built over the past 
decade [18][22]. Several NASA centers and university 
partners use these platforms to test their newly developed 
technologies in order to improve the autonomous robot 
capabilities. Because of isolated software development 
efforts, exacerbated by differences in the mechanical and 
electrical designs of these vehicles, they have historically 
shared little in terms of software infrastructure. As a 
result, transferring capabilities from one rover to another 
has been a major and costly endeavor. Furthermore, 
because robotics systems cover several domain areas, 
researchers of a single domain also needed to integrate 
their newly developed technology into the complex 
robotic environment. Proper integration requires an in-
depth understanding and characterization of the behavior 
of various components of the system, which may vary 
from one platform to another. 
 
One of our goals is to provide a design that allows 
researchers to use various components spanning domains 
outside their immediate expertise, but have these 
components be flexible and extendible to support various 
applications. To do so, we need to capture well-
understood and well-developed knowledge from the 
various domains into generalized and reusable 
components. Just like an operating system provides a 
level of abstraction from the computational hardware, our 
goal is to provide a level of abstraction from the robotic 
hardware implementation that will allow developers to 
“integrate once and run anywhere.” Of course, there are 
physical limitations to this goal that result from the large 
variability in rover capabilities.  
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The development of robotics and autonomy architectures 
dates back several decades. We will not attempt to 
provide a comprehensive review of the body of work 
upon which this effort builds. Typical robot and 
autonomy architectures are comprised of three levels - 
Functional, Executive, and Planning levels [1][11][19]. 
Some architectures emphasized one area over the others 
and thus became more dominant in that domain. For 
example, some architectures emphasized the planning 
aspects of the system [7][8], others emphasized the 
executive [4][19], while others emphasized the functional 
aspects of the system [20][16]. There have also been 
efforts that aimed at blurring the distinction between the 
planning and executive layers [9]. Other architectures did 
not explicitly follow this typical breakdown. Some 
focused on particular paradigms such as fuzzy-logic based 
implementations [12] or behavior-based implementations 
[2][5]. There has also been considerable effort put in 
architectures that addressed multiple and cooperating 
robots [15][23].  
 
One difference between the CLARAty architecture and the 
conventional three-level architectures is the explicit 
distinction between levels of granularity and levels of 
intelligence. In conventional architectures both 
granularity and intelligence were aligned along one axis. 
As you move to higher abstractions of the system, 
intelligence increases. This is not true for CLARAty, 
where intelligence and granularity are on two different 
axes. In other words, the system decomposition allows for 
intelligent behavior at very low levels while still 
maintaining the structure of the different abstraction 
levels. This is similar in concept to some hybrid reactive 
and deliberative systems.  

3 An Overview of the CLARAty 
Architecture 

The CLARAty architecture has two distinct layers: the 
Functional Layer and the Decision Layer. The Functional 
Layer uses an object-oriented system decomposition and 
employs a number of known design patterns [10] to 
achieve reusable and extendible components. These 
components define an interface and provide basic system 
functionality that can be adapted to a variety of real or 
simulated robots. It provides both low- and mid-level 
autonomy capabilities. The Decision Layer couples the 
planning and execution system. It globally reasons about 
the intended goals, system resources, and state of the 
system and its environment. The Decision Layer uses a 
declarative-based model while the Functional Layer uses 
a procedural-based model. Because the Functional Layer 
provides an adaptation to a physical or simulated system, 
all specific model information is collocated in the system 
adaptations. The Decision layer receives this information 
by querying the Functional Layer for predicted resource 
usage, state updates, and model information. However, 

additional adaptation specific heuristics are often used 
with current planners to assist in plan generation. These 
adaptation specific heuristics, which are only used by the 
Decision Layer, can be accessed directly and not via the 
Functional Layer. 
 
The Decision Layer accesses the Functional Layer at 
various levels of granularity (Figure 1). The architecture 
allows for overlap in the functionality of both layers. This 
intentional overlap allows users to elaborate the 
declarative model to lower levels of granularity. But is 
also allows the Functional Layer to build higher level 
abstractions (e.g. navigator) that provide mid-level 
autonomy capabilities. In the latter case, the Decision 
Layer serves as a monitor to the execution of the 
Functional Layer behavior, which can be interrupted and 
preempted depending on mission priorities and 
constraints.  

3.1 The Functional Layer 
The Functional Layer includes a number of generic 
frameworks centered on various robotic-related 
disciplines. Packages included in the Functional Layer 
are: digital and analog I/O, motion control and 
coordination, locomotion, manipulation, vision, 
navigation, mapping, terrain evaluation, path planning, 
science analysis, estimation, simulation, and system 
behavior. The Functional Layer provides the system’s 
low- and mid-level autonomy capabilities. Control 
algorithms such as vision-based navigation, sensor-based 
manipulation, and visual target tracking that use a 
predefined sequence of operations are often implemented 
in the Functional Layer. In some cases though, it is  
possible to generate such sequence of operations by 

Functional Layer

Decision Layer

Functional Layer

Decision Layer

Figure 1: The Decision Layer interacting with the 
Functional Layer at various levels of granularity 
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modeling them as activities and having the Decision 
Layer schedule instantiations of these activities based on 
appropriate mission goals and constraints. 
 
The Functional Layer has four main features. First, it 
provides a system level decomposition with various levels 
of abstractions. For example, a general locomotor provides 
an interface to any type of mobility platform whether it is a 
wheeled vehicle, a legged mechanism, or a hybrid of the 
two. A functional specialization of the locomotor is the 
wheeled locomotor. This specialization introduces the 
concept of wheeled mobility and wheel configuration. This 
functional specialization extends the locomotion interface 
to include additional capabilities. Further extensions of the 
wheeled locomotor include special types of wheel 
locomotors with known locomotion models. 
 
Second, the Functional Layer separates algorithmic 
capabilities from system capabilities. It is important to 
decouple system limitations from the algorithmic 
limitations in order to avoid propagation of assumptions 
that are unique to a particular platform. Algorithms are 
expressed in their most general terms without 
compromising understandability and efficiency. Where 
efficiency requirements are not met, specializations are 
provided to overwrite the general solution. An example of 
this can be found in the manipulation domain. General 
inverse kinematics algorithms provide a generic solution 
for all serial manipulators but are often not efficient. As a 
result, they are overwritten with specialized, more 
efficient versions. The general versions however, are 
useful in instances where the specialized solutions have 
not been derived yet or for validating the specialized 
implementation. 
 
Third, the Functional Layer separates the behavioral 
definitions and interactions of the system from the 
implementation. This separation not only allows the 
dynamic binding of adaptations at runtime, but it also 
makes both the functional and implementation trees 
extensible. For example, a wheeled locomotor separates 
considerations related to the behavioral and functional 
models from considerations related to the hardware 
interface. Another example is the controlled motor, which 
separates the specialization to a particular hardware 
controller from the functional specialization of a controlled 
motor to a joint (which extends the motor functionality by 
imposing checking of joint limits on all the move 
commands). This pattern is used in various parts of the 
architecture and is known as the bridge pattern [10]. 
 
Fourth, the Functional Layer provides flexible runtime 
models. The runtime model is part of the abstraction 
model, of which, one part is associated with the generic 
functionality and the other with the adaptation. The 
runtime model associated with the adaptation is 

dependent on particular capabilities of the underlying 
hardware and can change from one system to another. For 
example, a system with a distributed motion control 
architecture does not need to run the servo control and 
trajectory generation  threads on the main processor. This 
capability can be implemented in firmware on distributed 
processors. 

3.2 The Decision Layer 
The Decision Layer is a global engine that reasons about 
system resources and mission constraints. It includes 
general planners, executives, schedulers, activity 
databases, and rover and planner specific heuristics. 
 
The Decision Layer plans, schedules, and executes 
activity plans. It also monitors the execution modifying 
the sequence of activities dynamically when necessary. 
The goal of a generic Decision Layer is to have a unified 
representation of activities and interfaces. The current 
instantiation of the Decision Layer which we use at JPL 
features a tight coupling of the planner and the executive. 
For this example, the planner implementation is the 
CASPER planning and scheduling system [7] and the 
executive implementation is the TDL executive system 
[19]. 
 
The Decision Layer interacts with the Functional Layer 
using a client-server model. The Decision Layer queries 
the Functional Layer about availability of system 
resources in order to predict the resource usage of a given 
operation. The Decision Layer sends commands to the 
Functional Layer at various levels of granularity. The 
Decision Layer can utilize encapsulated Functional Layer 
capabilities with relatively high-level commands, or 
access lower-level capabilities and combine them in ways 
not provided by the Functional Layer. The former is 
valuable when planning capabilities are limited, or when 
under-constrained system operation is acceptable. The 
latter is valuable if detailed, globally optimized, planning 
is possible, or if resource margins are small. CLARAty 
supports both modes of operation. Status on resources, 
state conditions, and activity execution is reported from 
the Functional Layer to the Decision Layer 
asynchronously or synchronously at rates specified by the 
Decision Layer. 

4 Challenges in System Decomposition 
The proper decomposition for a generic robotic system, in 
large, depends on what elements of the software are 
targeted for reuse in future applications. One approach for 
an architectural decomposition is to highlight the runtime 
model and inter-component communication mechanism 
independent of the domain it addresses [16]. Another 
would be to highlight the states of the system making 
them explicit with global scope [6]. A third would be to 
highlight the abstract behavior and interface to the states 
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of the system while hiding runtime models. CLARAty 
adopted the latter approach in order to hide the variability 
that arises from various implementations.  
 
Two fundamental notions of CLARAty are: (1) abstractions 
at various levels of granularity, and (2) encapsulation of 
information at the appropriate levels of the hierarchy. First, 
abstractions are an important notion in a robotic system in 
order to reduce complexity and to provide an operational 
interface at various levels of the system architecture.  
Algorithmic development can occur at any level of 
abstraction. Second, without the proper encapsulation, 
implementation specific information and assumptions can 
“bubble up” to higher levels and break reusability across 
domains and platforms. This does not mean that CLARAty 
does not support platform specific algorithms. Specific 
algorithms are ones that either cannot be generalized, or 
would be ineffective if generalized to a broader scope.  
 
There are three main types of abstractions in the 
Functional Layer: (1) data structure classes, (2) 
generic/specialized physical classes, (3) generic/ 
specialized functional classes. All classes are designed to 
maximize code reuse across disciplines, eliminate 
duplicated functionality without compromising efficiency, 
and simplify code integration.  
 
Both functional and physical generic components: (a) 
provide interface definitions and implementations of basic 
functionality, (b) manage local resources, and (c) support 
state and resource queries by the Decision Layer. 

4.1 Data Structure Classes 
Data structure classes, which handle data transformation 
and storage, enable easy propagation of software 
optimization, and allow easy serialization and transport 
between processors. One characteristic of data structures 
is that they do not have any executive capability. While 
their efficiency is of prime importance, they themselves 
do not invoke other threads. These classes provide the 
extended interface for communication among generic 
physical and functional components. Since general-
purpose data structures are reusable beyond the scope of 
robotics applications, we are leveraging standardized 
developments such as the Standard Template Library [3]. 
However, not all such needs could be adequately met from 
standardized sources. CLARAty provides some general data 
structures and a number of domain specific ones. Such 
classes include points, bits, arrays, vectors, matrices, rotation 
matrices, images, homogeneous transforms, quaternions, 
frames, frame trees, messages, and resources.  

4.2 Generic Physical Classes 
Generic physical components (GPC) define the structure 
and behavior of physical objects in an abstract sense. 
Some of these classes have partial implementations since 

specialized physical or simulation classes will complete 
their implementation. A generic physical component can 
be extended along two axes: function and implementation. 
The functional extension includes the addition of control 
and operational capabilities. The implementation axis 
includes specialization to hardware and, where necessary, 
the overriding of the generic default implementation. A 
generic physical component can also have a model that 
describes the device without specifying how it is 
implemented. For example, a locomotor abstraction 
provides an interface to any type of mobility mechanism, 
whether it be wheeled, legged, or hybrid. The interface 
allows specifying a point on the vehicle to be moved to a 
different point in the world, and allows other parameters, 
such as the path and speed, to either be specified or left 
unconstrained. There are also a number of queries about 
the state of the vehicle and it pose. Without further 
knowledge of the type of mechanism, it is not possible to 
get more information without imposing additional 
constraints on the type. In addition to defining the 
interface and behavior, the generic physical classes also 
define the finite state machines of an abstraction.   
 
Generic physical classes can be active, i.e. they provide 
their own threading model. Examples of such components 
are: manipulator, locomotor, controlled motor, wheel, 
camera, and I/O to name few. A complete list of these 
components and their characteristics can be found in [13]. 
 
The base abstraction for generic physical components is 
the device class from which other classes derive. It uses a 
generic mechanism to query device properties and can 
retrieve both generic and specialized properties of a 
device via a generic mechanism. The device class 
provides a centralized infrastructure for device thread 
safety. Devices include three types of information: 
attributes (static parameters such as initialization 
parameters), parameters (dynamic parameters that are 
changed by the user or application at runtime), and device 
output data. Devices also have standardized interfaces to 
query their given names and ancestries.  

4.3 Generic Functional Classes 
A generic functional class is an abstract class that 
describes the interface and functionality of a generic 
algorithm. A generic functional class can have a complete 
implementation of its functionality because it interfaces 
with generic physical classes. Examples of generic 
functional classes are: mapper, navigator, traversability 
analyzer, and visual tracker. Just like physical classes, 
functional classes can be active and can generate separate 
threads of execution.  
 
An example of a generic functional class is the navigator. 
The navigator provides a functional behavior that will 
evaluate a terrain and assess its traversability, then move a 
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mobility platform using both local and global information. 
The navigator interfaces with a locomotor for controlling 
the vehicle, an estimator for querying of pose information, 
a traversability analyzer for converting sensor data into a 
model of the world, an action selector to determine the 
appropriate next action for the robot to perform given its 
current state, and cost functions for converting terrain 
evaluation data into a form that can be used by the path 
planner. A detailed description of the navigator functional 
classes can be found in [21]. 
 
The estimator is another type of generic functional 
component that can be specialized to a particular type of 
state propagation filter such as a Kalman Filter or a 
Bayesian Filter.  

4.4 Specialized Physical/Functional Classes  
Specialized classes are extensions of generic classes that 
adapt the general configuration or algorithm to a 
particular robotic platform. An example of a specialized 
physical class is found in the Rocky 7 rover 
implementation. For the development of the Rocky 7 mast 
software, the generic manipulator class is specialized to a 
Rocky 7 mast class. This class specifies the link 
dimensions, joint limits, actuator types, and end 
effector(s). The base manipulator class provides the 
generic forward and inverse kinematics, joint motion 
control, trajectory tracking, conditional motion, and error 
recovery. The Rocky 7 mast class overrides the generic 
kinematics of the manipulator class with the closed-form 
kinematics that are specifically derived for the Rocky 7 
mast.  
 
Specialized functional classes are derived from their 
generic counterparts. They specialize a particular 
configuration and tune the behavior. For example, a 
rocker bogie locomotor model is a specialization of a 
generic wheel locomotor model (the rocker bogie is a 
mechanism that has differential motion of the left and 
right sides of a six wheel vehicle – commonly used for 
Mars rovers).  

4.5 Runtime and Data Flow Models 
Because CLARAty supports systems with different 
hardware architectures, the runtime model changes across 
robotic platforms. As a result, it is important to 
encapsulate the specialized runtime implementation but 
characterize the usage of resources. 
 
Two models of data flow are used in CLARAty. Both push 
and pull models are used depending on the adaptation 
layer and matching hardware architecture. For systems 
that have bandwidth limitations on a shared bus, and 
where the need for the data is asynchronous and 
constitutes a subset of all possible information that can be 
obtained, a pull model allows maximum flexibility. If the 

usage is predictable and synchrounous then a push model 
is used. For a given bus, and if both modes are supported 
by hardware, it is possible to switch the system between 
these two modes depending on the system configuration. 
For example, on a rover that uses a shared bus for 
communicating with distributed motion controllers 
connected to both the mast and the arm, the system may 
only retrieve information on the manipulator that is being 
controlled.  
 
Generic interfaces bridge between the timing 
requirements of consumers and actual data flow of a 
given device, as well as support extendible data sets with 
strong typing.  Consumers can choose whether to force a 
new update, access stored data from the most recent 
transactions, or retrieve a data source object.  In the latter 
case, the consumer can customize its timing constraints, 
and either use it for future queries or pass it on to another 
consumer such as a data logger.  When new information 
becomes available, any consumers waiting on such a data 
source wake up and receive the update.  If new data is not 
available within the timing constraints of a given 
consumer, they wake up empty handed and can choose to 
force an update. 

5 Implementation of Locomotion on various 
mobile platforms 

One of the main challenges in developing generic 
components and adaptating them to different robots stems 
from the variability of the platforms and their capabilities. 
In this section, we will use the example of wheeled 
locomotion to illustrate how to use domain knowledge to 
classify vehicles to enable the development of generic and 
reusable classes. We will also discuss the challenges that 
arise from adapting the generic algorithms to a number of 
rover platforms with different hardware architectures  
 
Wheeled locomotors have different capabilities depending 
on their mechanical configuration. Consider the 
locomotion capabilities of a number of mobile platforms 
shown in Figure 2 (the ATRV, Rocky 7, Rocky 8, FIDO, 
K9, Sojourner, and Hyperion rovers). These wheeled 
vehicles have different maneuvering capabilties. The 
proper classification of these vehicles will be based on the 
domain knowledge of the kinematics and dynamics for 
controlling these vehicles. One approach, which we 
adopted, is to separate vehicles with moveable axles (e.g. 
Hyperion) from ones with all fixed axles (or fixed contact 
model - all others). For fixed axle robots, one can further 
classify these as non-steerable (or skid steerable) such as 
the ATRVs, partially steerable such as the Rocky 7 and 
Sojourner rovers, and fully steerable such as the Rocky 8, 
FIDO, and K9 rovers. Partially steerable vehicles can 
have different configurations. For example the Sojourner 
rover has six drive wheels and two non-steerable center 
wheels. On the other hand, Rocky 7 has only  two 
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steerable front wheels. As such, partially steerable 
wheeled locomotors are constrained to instantaneously 
move about a rotation center that lies along the non-
steerable wheel axle (or a virtual axle that averages all 
non-steerable axles in order to minimize slip). Fully 
steerable vehicles can do crab maneuvers and can 
maintain a certain heading while driving along a path 
trajectory. Partially steerable vehicles have more 
constraints and cannot independently control path and 
heading, but can use parallel a parking maneuver to 
achieve a crab equivalent [14].  
 
A general way for describing the motion of all fixed axle 
models is by specifying three independent control 
variables that are a function of time: delta length of 
traverse, delta heading, and motion direction angle. For 
fully steered vehicles one can use all three parameters. 
For partially steered vehicles, the motion direction angle 
is constrained by the fixed axle(s). The latter is a 
degenerate case of the fully steered model. 
 
A second challenge that arises in addressing these classes 
of vehicles comes from the accessibility to the system’s 
control parameters. For example, the ATRV provides 
independent control for each side of the vehicle only but 
not for each individual wheel. So the control model for 
the vehicle is different from those vehicles where each 
wheel can be controlled individually. 

A third challenge stems from the different motion control 
architectures. Consider the motion control architecture of 
Rocky 7, Rocky 8, K9 and FIDO (all have six wheels and 
almost all have full steering capabilities). While closer in 
resemblence to each other than to the ATRVs, for 
instance, the control architecture for each vehicle is still 
unique. Starting with the Rocky 8 and K9 rovers [17] 
(Figure 3), both rovers use a distributed motion control 
architecture where each motor interfaces with a single-
axis microprocessor controlling the motor servo loop and, 
in some cases, profiling a trajectory. Distributed 
micocontrollers can, as in the case of Rocky 8, also 
perform analog and digital I/O operations. They also 
possess some additional programmable processing 
capabilities. In a distributed system, microcontrollers are 
connected to the main processor via some type of a serial 
bus. The K9 rover uses a multi-drop RS422 serial link for 
the control of its mobility motors. Rocky 8 uses a single 
I2C bus for its locomotor, arm, and mast subsystems. 
There is an important coupling between the arm/mast and 
the locomotor as a result of the shared bus. The software 
architecture has to enable the simultaneous operation of 
the manipulator and locomotor subsystems by managing 
the shared resource. While the two subsystems are linked 
in their implementation, functionally they are not.  
 
Another aspect of hardware architecture is hardware 
synchronization. The K9 system supports hardware 
synchronization of motors via broadcasting serial 
commands which tell all axes to synchronously execute 
their loaded trajectory, or synchronously stop. The Rocky 
8 rover implements synchronization in software by 
loading all motor trajectories first and then issuing start 
commands to all motors sequentially to minimize latency 
between the first and last motor. Once again the software 
architecture should support these two different modes of 
synchronizations. As such, support for device groups is an 
essential part of the CLARAty architecture.  The flexibility 
in the implementation of group commands is also 
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important since hardware implementations can vary 
dramatically.  
 
The Rocky 7 system uses commercial-of-the-shelf 
(COTS) microcontroller chips (LM629) for the motor 
control (Figure 4). These controllers are laid out on a 
central motion control board and are connected to the host 
processor via a custom parallel port connection with chip 
multiplexing. All actuators in the system share the same 
bus, but the communication bandwidth is higher than the 
serial links for both Rocky 8 and K9. Similar to Rocky 8, 
this motion control board supports the locomotion and 
manipulation subsystems. As in the case of Rocky 8 and 
K9, the closed loop servo control is done on the 
microcontrollers that have fixed control law with 
programmable parameters and modes. 
  
Figure 5 shows a third implementation of a motion 
control architecture. The FIDO rover [18] uses a 
centralized hardware-mapped control architecture. The 
motors are directly connected to an analog output board 
and the encoders are directly connected to a quadrature 
encoder board. All hardware states and registers from the 
PC104+ boards are mapped via the PCI backplane to the 
host processor’s memory making them readily accessible 
to the software. There is virtually zero cost from a 
software architecture standpoint to retrieve the value of 
any register as compared to the other systems. Hence the 
coupling among the various motor/encoder states is 
abstracted by the hardware. However, since there is only 
one processor (host) in the system, the servo loops for all 
actuators have to be done on the main processor. This 
introduces a coupling between the servo control of the 
motors and the application algorithms which will be 
competing for the same computational resources. It also 
places a requirement on the operating system and the 
software architecture to meet hard real-time scheduling 
guarantees. So while the K9 and Rocky 8 rovers can 
operate in a soft real-time environment such as Linux, the 
FIDO rover requires the operating system and supporting 
architecture to run in hard real-time. On the other hand, 
the FIDO architecture has the advantage of allowing the 

software to easily modify the control law and insert 
validation checks in case a motor or encoder failure 
occurs.  
 
Despite all these architectural variations, there is a level 
of abstraction that can be used to interoperate across these 
systems. Given that each motor is controlled via the 
generic controlled motor interface, the runtime model for 
each implementation will vary. For a system such as 
Rocky 8, pushing all motor and I/O information via the 
I2C bus limits the bandwidth since the type of 
information requested may vary depending on the 
algorithm that is in operation at any time. Using a pull 
model, a single thread for trajectory generation (20 Hz) is 
used on the host while the microcontrollers run a lead/lag 
compensator for servo control. Motor commands are sent 
to the hardware using a synchronous cooperative 
scheduling model. Alternatively, the FIDO rover uses two 
threads, one for closed loop PID servo control at 200 Hz, 
and a second for trajectory generation. The Rocky 7 and 
K9 motors run no additional threads and pass the 
necessary trajectory parameters to the motor controllers, 
which run their own hardware threads. Hence, an 
asynchronous communication model is used.  
 
While these are four different implementations of a 
motion control system, the behavior and functional 
requirements of the controlled motor are the same. All 
these implementation variations are part of the 
encapsulated specialization of the controlled motor and 
motor group abstractions. To the user of a controlled 
motor, the abstraction of the controlled motor and the 
resources its adaptation consumes is what is needed 
without necessarily exposing the details of the 
implementation. In any of these implementations, you 
would still like to do position commanding, velocity 
profiling, and trajectory control. You would also like to 
detect and report stall conditions and be able to interrupt 
the motion. Furthermore, you would like to read the 
current and desired positions, velocities, accelerations, 
and health status. For a person developing a general wheel 
coordination algorithm for a mobile robot, it should only 
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be necessary to understand the behavior of the component 
rather than have intimate knowledge of the 
implementation and hardware details. Nor should a 
particular implementation inadvertently influence the 
design of the coordination algorithms. The controlled 
motor and motor group classes are an abstract 
representation for motion control that define what the 
components are supposed to do. These components hide 
the details of the implementation without compromising 
particular features of the hardware. The controlled motor 
abstraction is then used in a wheel abstraction and later a 
wheel locomotor model. The same paradigm applies at 
various levels of CLARAty. 
 
Preliminary results showed that for one implementation of 
wheeled locomotor, around 90% of the implementation 
was reusable among FIDO, Rocky 8 and Rocky 7 
(measured in lines of code which included comments). 
For the controlled motor, the reusable percentage ranged 
from 50%-70%. These statistics consider that all software 
drivers are non-reusable, even though they can be reused 
when boards share the same COTS chips.  

6 Summary 
Currently, the CLARAty architecture has been adapted to 
five real rovers with different hardware architectures and 
physical capabilities. It has also been adapted to high-
fidelity simulation platforms. CLARAty is operating the 
Rocky 8, FIDO and Rocky 7 rovers at JPL. It is also 
running on the K9 rover at ARC and an ATRV rover at 
CMU.  Various capabilities have been demonstrated on 
these vehicles. We have presented a brief overview of the 
CLARAty architecture and some of the challenges in 
designing interoperable software that can run on varying 
physical rover platforms. We are continuing the 
development of CLARAty to achieve its goals of a generic 
reusable robotic software base that we hope to publish as 
open source.  
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