Follow this link to skip to the main content
  NASA Logo
Jet Propulsion Laboratory
California Institute of Technology
+ View the NASA Portal
Search JPL
JPL Home Earth Solar System Stars and Galaxies Technology
JPL Robotics
Search Robotics
 
Home Page
Applications
Projects
Tasks
Groups
People
Systems
Facilities
Publications
Patents
Awards
News
Image Gallery
Video Gallery
Charter
Links
 
APPLICATION - VIDEO GALLERY
underline
Application Page Publications Image Gallery Videos
Small Body Orbiting
Microspine Grippers, 2011 - The video presents microspine-based anchors being developed for gripping rocks on the surfaces of comets and asteroids, or for use on cliff faces and lava tubes on Mars. Two types of anchor prototypes are shown on supporting forces in all directions away from the rock; greater than 160 N tangent, greater than 150 N at 45 degrees, and greater than 180 N normal to the surface of the rock. A compliant robotic ankle with two active degrees of freedom interfaces these anchors to the Lemur IIB robot for future climbing trials. Finally, a rotary percussive drill is shown coring into rock regardless of gravitational orientation. As a harderthan-zero-g proof of concept, inverted drilling was performed creating 20mm diameter boreholes 83 mm deep in vesicular basalt samples while retaining 12 mm diameter rock cores in 3-6 pieces. (ICRA 2012 Best Video Award Finalist)
Microspine Grippers, 2011
Click here for video (.mp4 - 31 MB, 768x576)
Caption: The video presents microspine-based anchors being developed for gripping rocks on the surfaces of comets and asteroids, or for use on cliff faces and lava tubes on Mars. Two types of anchor prototypes are shown on supporting forces in all directions away from the rock; greater than 160 N tangent, greater than 150 N at 45 degrees, and greater than 180 N normal to the surface of the rock. A compliant robotic ankle with two active degrees of freedom interfaces these anchors to the Lemur IIB robot for future climbing trials. Finally, a rotary percussive drill is shown coring into rock regardless of gravitational orientation. As a harderthan-zero-g proof of concept, inverted drilling was performed creating 20mm diameter boreholes 83 mm deep in vesicular basalt samples while retaining 12 mm diameter rock cores in 3-6 pieces. (ICRA 2012 Best Video Award Finalist)

 
Privacy/Copyright Image Policy Glossary Sitemap Feedback Contact Us
  National Aeronautics and Space Administration website.